"Innovative Research in Mathematical Finance", 3-7.09.2017

On a multi-asset version on the Kusuoka limit theorem of option superreplication under transaction costs

Yuri Kabanov

Lomonosov Moscow State University and Laboratoire de Mathématiques, Université de Franche-Comté and Federal Research Center Informatics and Control, Moscow

Based on a joint work with Julien Grépat

Luminy, CIRM, September 6, 2018

Let S^i be scalar geometric Brownian motions describing the prices of d-1 risky securities, i.e.

$$dS_t^i = \sigma^i S_t^i dW_t^i, \quad S_0^i = 1, \quad i = 1, \dots, d-1,$$

where W^i are independent Wiener processes. It is well-known that the financial market model based on such a description is complete. However, the standard binomial approximation leads to a complete market only in the case of one risky securities. A good alternative to save completeness of approximating models is multinomial approximation spanned by a sequence of independent random variables taking values in the vertices of a regular simplex.

Let
$$\mathcal{V} := \{v_1, ..., v_d\}$$
 be the set of vertices of a regular simplex $\Sigma \subset \mathbb{R}^{d-1}$, i.e. d affine independent vectors such that $|v_i|^2 = d - 1$, $\sum_{j \leq d} v_j = 0$, and $v_i v_j = -1$ for $i \neq j$. Also,
 $(1/d) \sum_{j \leq d} v_j \otimes v_j = (1/d) \sum_{j \leq d} v_j v'_j = I_{d-1}$.

Let σ be an invertible symmetric $(d-1) \times (d-1)$ -matrix. Define the discrete-time process $\eta^n = (\eta_l^n)_{l \leq n}$ with values in \mathbb{R}^{d-1} by putting $\eta_0^n = \mathbf{1} := (1, ..., 1)$,

$$\ln \eta_l^n = \sum_{k=1}^l \ln \left(\mathbf{1} + n^{-1/2} \sigma \xi_k^n \right). \tag{1}$$

Put $S_t^n := \eta_{[nt]}^n$, $t \in [0, 1]$. Then S^n is a piecewise-constant process in \mathbb{R}^{d-1} jumping at $t_k = t_k^n := k/n$ modeling the price evolution of d-1 risky assets. The price process of all traded assets, including the numéraser is *d*-dimensional, $\tilde{S}^n := (1, S^n)$. One can check that $\mathcal{L}(S^n | P^n)$ converge to the law of process S with $S^i = \mathcal{E}((\sigma W)^i)$.

Details

So,
$$S_t^n := \eta_{[nt]}^n$$
, $t \in [0, 1]$, $\ln \eta_l^n := \sum_{k=1}^l \ln (\mathbf{1} + n^{-1/2} \sigma \xi_k^n)$.
The identities $\sum v_j = 0$ and $(1/d) \sum v_j v_j' = I_{d-1}$ implies that $E\xi_k^n = 0$, $E\xi_k^n(\xi_k^n)' = I_{d-1}$, $E(\sigma\xi_k^n)(\sigma\xi_k^n)' = \sigma\sigma'$. Then
 $E \ln (\mathbf{1} + n^{-1/2} \sigma \xi_k^n) = -(1/(2n)) \operatorname{diag} \sigma\sigma' + o(1/n)$,
 $E \ln (\mathbf{1} + n^{-1/2} \sigma \xi_k^n) (\ln (\mathbf{1} + n^{-1/2} \sigma \xi_k^n))' = (1/n) \sigma\sigma' + o(1/n)$.
The supermartingale $\ln S^n$ has the Doob decomposition
 $\ln S^n = L^n + E^n \ln S^n$ where $L^n := \ln S^n - E^n \ln S^n$ is a martingale $\langle L^n \rangle_t = \sigma\sigma't + o(1)$ and $E^n \ln S_t^n = -(1/2) \operatorname{diag} \sigma\sigma't + o(1)$ By

In $S^n = L^n + E^n \ln S^n$ where $L^n := \ln S^n - E^n \ln S^n$ is a martingale, $\langle L^n \rangle_t = \sigma \sigma' t + o(1)$ and $E^n \ln S_t^n = -(1/2) \operatorname{diag} \sigma \sigma' t + o(1)$ By the CLT for martingales the laws $\mathcal{L}(\ln S^n | P^n)$ converge in \mathbb{D}_{d-1} to the law of the Gaussian process $X_t := \sigma w_t - (1/2) \operatorname{diag} \sigma \sigma' t$ where w is the standard Wiener process in \mathbb{R}^{d-1} . Hence, $\mathcal{L}(S^n | P^n)$ converge to the law of process S with components $S^i = \mathcal{E}((\sigma w)^i)$.

Yuri Kabanov

Geometric formulation of models transaction costs, 1

- Piecewise constant price process $S^n = (S_t^n)_{t \in [0,1]}$ with jumps at $t_k = k/n$, k = 1, ..., n, $S_0 = 1$, $S^0 \equiv 1$.
- Solvency cone in terms of the numéraire $K^n \in \mathbb{R}^d$ with $K^{n*} = \mathbb{R}_+(\mathbf{1} + n^{-1/2}U_n)$ where the sequence of convex compact sets U_n lays in a bounded subset of the linear subspace $\{x \in \mathbb{R}^d : x^0 = 0\}$ (identified with \mathbb{R}^{d-1}) and converges to a convex compact U. E.g., $U_n = [-\kappa_0, \kappa_0]$.
- Solvency cone in terms of physical units $\hat{K}_t^n := K^n/S_t^n$ with the dual $\hat{K}_t^{n*} := D_t^n K^{n*}$, where $D_t^n := \text{diag } S_t^n$.
- Price dynamics

$$\widehat{V}_t = x + \sum_{t_k \leq t} \widehat{\Delta B}_{t_k}, \qquad \widehat{\Delta B}_{t_k} \in L^0(-\widehat{K}^n_{t_k}, \mathcal{F}^n_{t_k}).$$

We denote $\widehat{\mathcal{A}}_{x}^{n}(1)$ the set of terminal values of such processes. • Consistent price systems are martingales $Z \in \mathcal{M}_{0}(\widehat{K}^{n*} \setminus \{0\})$, i.e $Z_{t} \in L^{1}(\widehat{K}_{t}^{*n})$, Z is constant on $[t_{k-1}, t_{k}[, \mathbb{Z}_{0}^{0} = 1.$

Yuri Kabanov

Small transaction costs

Geometric formulation of models transaction costs, 2

- Hedging set is the set of initial values allowing portfolio processes with the terminal values dominating the contingent claim $\hat{F}(S^n)$, i.e.

$$\Gamma^n = \{ x \in \mathbb{R}^d : \ \widehat{F}(S^n) \in \widehat{\mathcal{A}}^n_x(1) \}.$$

• The hedging theorem gives the following description :

$$\Gamma^n = \{ x \in \mathbb{R}^d : \ Z_0 x \ge E Z_1 \widehat{F}(S^n) \ \forall Z \in \mathcal{M}_0(\widehat{K}^{n*}) \}.$$

- **Problem** : given a model for S^n find the limit Γ^{∞} of Γ^n .
- Closed limit convergence $\Gamma^n \to \Gamma^\infty$:
 - **1** For any $x \in \Gamma^{\infty}$, there are $x^n \in \Gamma^n$ such that $x^n \to x$.
 - Provide a sequence of a sequence of vectors xⁿ ∈ Γⁿ, its limit x belongs to Γ[∞].

Grépat theorem (simplified form)

• d = 2. The price process $\tilde{S}_t^n := (1, \eta_{[nt]})$ where

$$\eta_k^n = \prod_{j \le k} \left(1 + n^{-1/2} \sigma \xi_j^n \right),$$

 ξ_k^n , k = 1, ..., n, are independent and take values -1 and 1 with equal probabilities.

•
$$U_n = (1 + n^{-1/2}\lambda)^{-1} - 1, n^{-1/2}\lambda).$$

- F is a bounded continuous function on the Skorohod space.
- Let W be a Wiener process and let g be a predictable process,

$$\sigma(\sigma - 2\lambda)^+ \leq g^2 \leq \sigma(\sigma + 2\lambda).$$

ut $\Gamma^\infty := \{x \in \mathbb{R}^2 : \ \mathbf{1}x \geq EX_1\widehat{F}(X) \ \forall X = (1, \mathcal{E}(g \cdot W))\}.$

Theorem (Grépat, 2013)

 $\Gamma^n \to \Gamma^\infty$.

Ρ

Multidimensional result

$$\begin{split} &\mathbb{B} := \{\beta = (1/d) \sum_{j \leq d} u_j \otimes v_j : \ u_j \in U\}, \\ &\mathfrak{M} := \{\sigma \sigma' + \sigma \beta + \beta' \sigma', \ \beta \in \mathbb{B}\}, \\ &\mathfrak{M}_+ := \mathfrak{M} \cap \mathbb{S}_+. \end{split}$$

A : $\beta + \sigma$ is invertible $\forall \beta \in \mathbb{B}$ and $(\beta + \sigma)^{-1}\beta \Sigma \subseteq \operatorname{int} \Sigma$.

Theorem

If **A** is fulfilled, then $\Gamma^n \to \Gamma^\infty$ where $\Gamma^\infty := \{ x \in \mathbb{R}^d : \mathbf{1} x \ge E \widetilde{X}_1 \widehat{F}(X) \ \forall X = \mathcal{E}(H \cdot W), \ HH' \in \mathfrak{M}_+ \}.$ A particular case : Bank–Dolinsky–Perkkiö theorem

$$U_n := [-\kappa_-, \kappa_+] \subset \mathbb{R}^{d-1}.$$

• Let **G** be the set of $(d-1) \times (d-1)$ -matrices of the matrix

$$\sigma\sigma' + \sigma\beta + \beta'\sigma'$$

where β is a matrix which column $\beta_k = \sum_{j \le d} w_{jk} v_j$ for some $w_{jk} \in [0, (1/d)(\kappa_- + \kappa_+)]$ (the set of such β is denoted by **B**). • Let W be (d-1)-valued Wiener process defined on some

stochastic basis and let $\mathcal H$ be the set of predictable (d-1)-valued processes such that $HH' \in \mathbf G$.

Theorem

Suppose that for any $\beta \in \mathbf{B}$ the matrix $\sigma' + \beta$ is invertible and $v'_i\beta(\sigma' + \beta)^{-1}v_j > -1$ for all i, j. Then

$$\lim \bar{x}^n = \sup_{H \in \mathcal{H}} E\bar{F}(1, \mathcal{E}(H^2 \cdot W^2), \dots, \mathcal{E}(H^d \cdot W^d)).$$

- Bank P., Dolinsky Y., Perkkiö A-P. The scaling limit of superreplication prices with small transaction costs in the multivariate case. Finance and Stochastics, 21, 2, 487-508 (2017)
- Grépat J. : On the Limit Behavior of Option Hedging Sets under Transaction Costs. Recent Advances in Financial Engineering, 75–91 (2013)
- He H. : Convergence from discrete to continuous time contingent claim prices. Rev. Fin. Stud., **3**, 523-546 (1990)
- Kabanov Yu., Safarian M. : On Leland's strategy of option pricing with transaction costs. Finance and Stochastics, 1, 3, 239-250 (1997)
- Kusuoka, S. : Limit theorem on option replication cost with transaction costs. Ann. Appl. Probab., **5**, 198–221 (1995)

- Kabanov Yu., Safarian M. : Markets with Transaction Costs. Springer, Berlin (2009)
- Kusuoka, S. : Limit theorem on option replication cost with transaction costs. Ann. Appl. Probab., **5**, 198–221 (1995)
- Leland H. E. : Option pricing and replication with transaction costs, J. Finance, **40**, 1283–1301 (1985)
- Lépinette E. : Modified Leland's strategy for constant transaction costs rate. Mathematical Finance 22, 4 (2012)