
Learning Rough Volatility

Blanka Horvath

CIRM
Luminy, 6th September 2018

Innovative Research in Mathematical Finance
dedicated to the 70th birthday of

Yuri Kabanov



I Rough volatility models have been around since October 2014
(see the Rough Volatility website for a chronicle of developments)

I These models have repeatedly proven to be superior to standard models in many
areas: in volatility forecasting, in option pricing, close fits to the implied vol
surface, . . .

I Relaxing the assumption of independence of volatility increments was crucial for
the superior performance of rough volatility models ⇒ but: several standard
pricing methods no longer available & naive Monte Carlo methods slow

I Calibration time has been a bottleneck for rough volatility several advances have
been made to speed up the calibration process [BLP ’15, MP ’17, HJM ’17].

Learning Rough Volatility



I Rough volatility models have been around since October 2014
(see the Rough Volatility website for a chronicle of developments)

I These models have repeatedly proven to be superior to standard models in many
areas: in volatility forecasting, in option pricing, close fits to the implied vol
surface, . . .

I Relaxing the assumption of independence of volatility increments was crucial for
the superior performance of rough volatility models ⇒ but: several standard
pricing methods no longer available & naive Monte Carlo methods slow

I Calibration time has been a bottleneck for rough volatility several advances have
been made to speed up the calibration process [BLP ’15, MP ’17, HJM ’17].

Learning Rough Volatility



Today’s talk:
Speedups for rough volatility models along two lines:

1. in pricing of vanilla options based on faster Monte Carlo approximations for a
family of rough stochastic volatility models. [H-Jacquier-Muguruza ’17])

2. in calibration by means of machine learning (ongoing with A. Sani, A. Muguruza
and with M. Tomas).

Learning Rough Volatility



Framework

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0
g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

where Φ ∈ C1, g ∈ Lα :=
{
uαL(u) : L ∈ C1b([0,T ]), α ∈

(
−1

2 ,
1
2

)}
and Y satisfies Yamada-Watanabe conditions for path-wise uniqueness.

Learning Rough Volatility



FCLT for Hölder cont. processes:

Learning Rough Volatility



Generalised Fractional Operators Gα

Definition

Let g ∈ Lα :=
{
uαL(u) : L ∈ C1b([0,T ]), α ∈

(
−1

2 ,
1
2

)}
and fix λ ∈ (0, 1). The GFO

for f ∈ Cλ([0,T ]) is

(Gαf )(t) :=


∫ t

0
f (s)

d

dt
g(t − s)ds, for α ∈ [0, 1),

d

dt

∫ t

0
f (s)g(t − s)ds, for α ∈ (−λ, 0).

Remark: If g(u) = uα, then GFO=Riemann-Liouville fractional operators

Learning Rough Volatility



FCLT for Hölder continuous processes

Theorem (rough Donsker theorem)

Consider the sequence (Wn(t))n≥1 and W its weak limit in
(
C1/2([0,T ]), ‖ · ‖1/2

)
.

Then (GαWn)n≥1 converges weakly to
∫ ·
0 g(· − s)dWs in

(
Cα+1/2([0,T ]), ‖ · ‖α+1/2

)
for α ∈ (−1

2 ,
1
2).

Learning Rough Volatility



FCLT for rough volatility models

Define recursively in time, for any n ≥ 1, t ∈ [0,T ], tk = k
N

Xn(t) := −1

2

T

n

bntc∑
k=1

Φ ((GαYn) (tk)) +

√
T

σn

bntc∑
k=1

√
Φ ((GαYn) (tk)) (Wn(tk+1)−Wn(tk))

Theorem (rDonsker for rough volatility models)

(Xn)n≥1, converges weakly to X in (C1/2−(T), ‖ · ‖1/2−),

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0
g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

Learning Rough Volatility



FCLT for rough volatility models
Define recursively in time, for any n ≥ 1, t ∈ [0,T ], tk = k

N

Xn(t) := −1

2

T

n

bntc∑
k=1

Φ ((GαYn) (tk)) +

√
T

σn

bntc∑
k=1

√
Φ ((GαYn) (tk)) (Wn(tk+1)−Wn(tk))

Theorem (rDonsker for rough volatility models)

(Xn)n≥1, converges weakly to X in (C1/2−(T), ‖ · ‖1/2−),

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0
g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

Learning Rough Volatility



FCLT for rough volatility models
Define recursively in time, for any n ≥ 1, t ∈ [0,T ], tk = k

N

Xn(t) := −1

2

T

n

bntc∑
k=1

Φ ((GαYn) (tk)) +

√
T

σn

bntc∑
k=1

√
Φ ((GαYn) (tk)) (Wn(tk+1)−Wn(tk))

Theorem (rDonsker for rough volatility models)

(Xn)n≥1, converges weakly to X in (C1/2−(T), ‖ · ‖1/2−),

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0
g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

Learning Rough Volatility



FCLT for Hölder cont. processes:

Learning Rough Volatility



Examples in this framework
dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0

g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

g(u) = uα, Φ(x) = E(x), Yt = Zt

Rough Bergomi:

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0

Vt = ξ0(t)E
(

2νCH

∫ t

0

dZu

(t − u)1/2−H

)
, ν, ξ0(·) > 0

dZtdWt = ρdt, ρ ∈ (0, 1)

Learning Rough Volatility



Examples in this framework
dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0

g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

g(u) = uα, Φ(x) = E(x), Yt = Zt

Rough Bergomi:

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0

Vt = ξ0(t)E
(

2νCH

∫ t

0

dZu

(t − u)1/2−H

)
, ν, ξ0(·) > 0

dZtdWt = ρdt, ρ ∈ (0, 1)

Learning Rough Volatility



Examples in this framework
dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0

g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

g(u) = uα, Φ(x) = η + Id ., dYt = κ(θ − Yt)dt + ξ
√
YtdZt

Rough Heston:

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Yt =

∫ t

0

κ(θ − Ys)dt +

∫ t

0

ξ
√

YsdZs V0, κ, ξ, θ > 0, 2κθ > ξ2

Vt = η +

∫ t

0

(t − s)αdYs , η > 0, α ∈ (−1/2, 1/2).

Learning Rough Volatility



Examples in this framework
dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Vt = Φ

(∫ t

0

g(t − s)dYs

)
, V0 > 0, α ∈ (−1/2, 1/2) ,

dYt = b(Yt)dt + σ(Yt)dZt , dZtdWt = ρdt.

g(u) = uα, Φ(x) = η + Id ., dYt = κ(θ − Yt)dt + ξ
√
YtdZt

Rough Heston:

dXt = −1

2
Vtdt +

√
VtdWt , X0 = 0,

Yt =

∫ t

0

κ(θ − Ys)dt +

∫ t

0

ξ
√

YsdZs V0, κ, ξ, θ > 0, 2κθ > ξ2

Vt = η +

∫ t

0

(t − s)αdYs , η > 0, α ∈ (−1/2, 1/2).

Learning Rough Volatility



Example: rough Bergomi smiles

Figure 1: Implied volatilities of rDonsker with left-point and variance matching evaluation and
the Hybrid scheme with 5 · 105 simulations. Parameters: ν = 1, ρ = −0.7, ξ0 = 0.04, n = 468
steps

Learning Rough Volatility



Example: rough Bergomi smiles

Figure 2: Parameters: ν = 1, ρ = −0.7, ξ0 = 0.04, n = 468 steps

Learning Rough Volatility



Conclusion

I rDonsker is 1.25× faster than Hybrid scheme (because we omit the Cholesky bit)

n=300 n=600 n=900 n=1200 n=1500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
a
ti

o

Computational time ratios

Hybrid/Markovian

rDonsker/Markovian

n=300 n=600 n=900 n=1200 n=1500
0

1

2

3

4

5

R
a
ti

o

Computational time ratios Markovian case

Learning Rough Volatility



Speedups for rough volatility models along two lines:

Part 1: in pricing of vanilla options based on faster Monte Carlo approximations for a
family of rough stochastic volatility models. [H-Jacquier-Muguruza ’17])

Part 2: in calibration by means of machine learning techniques (ongoing with A. Sani, A.
Muguruza and with M. Tomas).

Learning Rough Volatility



Part 2: Speed-ups on calibration

I one step away from of-the-shelf optimizers to explore the parameter space more
efficiently, limiting the number of function evaluations for calibration. Tested for
variance options in a ”weighted rough Bergomi” framework (De Marco, Guyon)

dSt = −1

2
Vtdt +

√
VtdWt Vt = ξ0(t) (γνt + (1− γ)ηt)

νt = E
(
ν
√

2H

∫ t

0
(t − s)H−1/2dZs

)
ηt = E

(
η
√

2H

∫ t

0
(t − s)H−1/2dZs

)
(w Amir Sani and Aitor Muguruza) and

I approximation by neural networks (w Mehdi Thomas and Aitor Muguruza)

Learning Rough Volatility



Part 2: Speed-ups on calibration

I one step away from of-the-shelf optimizers to explore the parameter space more
efficiently, limiting the number of function evaluations for calibration. Tested for
variance options in a ”weighted rough Bergomi” framework (De Marco, Guyon)

dSt = −1

2
Vtdt +

√
VtdWt Vt = ξ0(t) (γνt + (1− γ)ηt)

νt = E
(
ν
√

2H

∫ t

0
(t − s)H−1/2dZs

)
ηt = E

(
η
√

2H

∫ t

0
(t − s)H−1/2dZs

)
(w Amir Sani and Aitor Muguruza) and

I approximation by neural networks (w Mehdi Thomas and Aitor Muguruza)

Learning Rough Volatility



Optimizers to minimize nr. fn eval

I Limited-memory Bounded BroydenFletcherGoldfarbShanno (L-BFGS-B)

I Truncated Newton (TNC)

I Sequential Least-Squares Quadratic Programming (SLSQP)

I 2-stage Minimization

Stage 1: Classifier-Directed Global Minimizer (2-min Time Budget)
Stage 2: Local Minimizer initialized with Stage 1 x0

Learning Rough Volatility



Approximation by neural networks I

(Ongoing work) General setup: two parts of the network:

1. Generator: Input (parameters) Output (implied volatilities)

2. Calibrator: Input (implied volatilities) Output (*optimal* parameters).

Both feed-forward neural networks for the generator three hidden layers
(1000-800-600)-nodes. Calibrator 1 layer on top.

Learning Rough Volatility



Approximation by neural networks I
General setup: two parts of the network:

1 Generator (approximation of IV surfaces via NN)

In order to train the network we first need to build a training set (supervised learning).

I For this we can use numerical valuation functions (Bergomi model, Rough
Bergomi, Heston, . . . Part 1): We generate 20,000 surfaces for each model, using
a fixed grid of strikes and tenors.

I Though training time consuming, it can be done offline.

I We sample uniformly points in the parameter set θ ∈ Θ, then compute and save
f (θ). Those samples will constitute our training set. We repeat this procedure
until we reach enough samples for our surrogate function to be a good
approximation.

Learning Rough Volatility



Approximation by neural networks I
General setup: two parts of the network:

1 Generator (approximation of IV surfaces via NN)

In order to train the network we first need to build a training set (supervised learning).

I For this we can use numerical valuation functions (Bergomi model, Rough
Bergomi, Heston, . . . Part 1): We generate 20,000 surfaces for each model, using
a fixed grid of strikes and tenors.

I Though training time consuming, it can be done offline.

I We sample uniformly points in the parameter set θ ∈ Θ, then compute and save
f (θ). Those samples will constitute our training set. We repeat this procedure
until we reach enough samples for our surrogate function to be a good
approximation.

Learning Rough Volatility



Approximation by neural networks I

General setup: two parts of the network:

2 Calibrator

In order to train the network we first need to build a training set. Conclusions:

I This can be done online, fast (within range of ˜ 1 second already unoptimized)

I Evaluation of parameters now more direct than via Monte Carlo. One minimizes
now the distance between the (approximator) surrogate functions f̂ (θ∗) and the
volatility surface.

Learning Rough Volatility



Approximation by neural networks I

General setup: two parts of the network:

2 Calibrator

In order to train the network we first need to build a training set. Conclusions:

I This can be done online, fast (within range of ˜ 1 second already unoptimized)

I Evaluation of parameters now more direct than via Monte Carlo. One minimizes
now the distance between the (approximator) surrogate functions f̂ (θ∗) and the
volatility surface.

Learning Rough Volatility



Approximation by neural networks II

We see that after learning, calibrating many parameters is fast

⇒ approximate several models at the same time.
New learning procedure:

I Train the generator on several models at the same time (here Parameters from
Heston and Bergomi parameters) in Monte Carlo experiments as before.

I Calibrate several models at the same time ⇒ determine the best-fit model to a
given data (flag).

I Controlled experiments: train on both Bergomi and Heston ⇒ test on data
generated by Heston.

Learning Rough Volatility



Approximation by neural networks II

We see that after learning, calibrating many parameters is fast
⇒ approximate several models at the same time.

New learning procedure:

I Train the generator on several models at the same time (here Parameters from
Heston and Bergomi parameters) in Monte Carlo experiments as before.

I Calibrate several models at the same time ⇒ determine the best-fit model to a
given data (flag).

I Controlled experiments: train on both Bergomi and Heston ⇒ test on data
generated by Heston.

Learning Rough Volatility



Approximation by neural networks II

We see that after learning, calibrating many parameters is fast
⇒ approximate several models at the same time.
New learning procedure:

I Train the generator on several models at the same time (here Parameters from
Heston and Bergomi parameters) in Monte Carlo experiments as before.

I Calibrate several models at the same time ⇒ determine the best-fit model to a
given data (flag).

I Controlled experiments: train on both Bergomi and Heston ⇒ test on data
generated by Heston.

Learning Rough Volatility



Approximation experiment via NN (Bergomi)

Learning Rough Volatility



Approximation experiment via NN (Bergomi)

Learning Rough Volatility



Conclusions and further steps

1. Adding further rough volatility models to the library to determine which model
describes best the given set of data.

2. Calibration of Implied volatility gives an ideal objective function for learning
(data ⇔ models).

3. Or: optimising the distribution of distributions directly (bypassing IV)

Learning Rough Volatility



Thank you and
Happy Birthday Yuri!

Learning Rough Volatility



FCLT for Hölder continuous processes

Define for any ω ∈ Ω, n ≥ 1, t ∈ [0,T ], the approximating sequence

Wn(t, ω) :=
1

σ
√
n

j∑
k=1

ξk(ω) +
nt − j

σ
√
n
ξj+1(ω), whenever t ∈

[
j

n
,
j + 1

n

)
, for j = 0, . . . , n−1.

where the family (ξi )i≥1 forms an iid sequence of centered random variables with finite
moments of all orders and E(ξ21) = σ2 > 0.

Theorem (Donsker-Lamperti Theorem)

The sequence (Wn)n≥1 converges weakly to a Brownian motion in (Cα([0,T ]), ‖ · ‖α) for all
α < 1

2 .

Learning Rough Volatility



FCLT for Hölder continuous processes

Define for any ω ∈ Ω, n ≥ 1, t ∈ [0,T ], the approximating sequence

Wn(t, ω) :=
1

σ
√
n

j∑
k=1

ξk(ω) +
nt − j

σ
√
n
ξj+1(ω), whenever t ∈

[
j

n
,
j + 1

n

)
, for j = 0, . . . , n−1.

where the family (ξi )i≥1 forms an iid sequence of centered random variables with finite
moments of all orders and E(ξ21) = σ2 > 0.

Theorem (Donsker-Lamperti Theorem)

The sequence (Wn)n≥1 converges weakly to a Brownian motion in (Cα([0,T ]), ‖ · ‖α) for all
α < 1

2 .

Learning Rough Volatility



FCLT for Hölder continuous processes

Define for any ω ∈ Ω, n ≥ 1, t ∈ [0,T ], the approximating sequence

Wn(t, ω) :=
1

σ
√
n

j∑
k=1

ξk(ω) +
nt − j

σ
√
n
ξj+1(ω), whenever t ∈

[
j

n
,
j + 1

n

)
, for j = 0, . . . , n−1.

where the family (ξi )i≥1 forms an iid sequence of centered random variables with finite
moments of all orders and E(ξ21) = σ2 > 0.

Theorem (Donsker-Lamperti Theorem)

The sequence (Wn)n≥1 converges weakly to a Brownian motion in (Cα([0,T ]), ‖ · ‖α) for all
α < 1

2 .

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments , i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments , i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments

, i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments , i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments , i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility



Monte-Carlo

The left-point approximation may be modified e.g.∫ Ti
n

0

g

(
Ti

n
− s

)
dWs ≈

1√
nσ

j−1∑
k=1

g (t∗k ) ξk , j = 0, . . . , n

where t∗k is chosen optimally to match first and second moments , i.e.,

g(t∗k ) =

√√√√n

∫ Tk
n

T (k−1)
n

g(t − s)2ds, k = 1, . . . , n.

I This simple trick improves substantially the simulation (specially when α is close to −1/2)

I The hybrid scheme also admits this trick

Learning Rough Volatility


