Learning Rough Volatility

Blanka Horvath

CIRM Luminy, 6th September 2018

Innovative Research in Mathematical Finance dedicated to the 70th birthday of Yuri Kabanov

・ロト ・日・・日・・日・ ・日・

- Rough volatility models have been around since October 2014 (see the Rough Volatility website for a chronicle of developments)
- These models have repeatedly proven to be superior to standard models in many areas: in volatility forecasting, in option pricing, close fits to the implied vol surface, ...

- Rough volatility models have been around since October 2014 (see the Rough Volatility website for a chronicle of developments)
- These models have repeatedly proven to be superior to standard models in many areas: in volatility forecasting, in option pricing, close fits to the implied vol surface, ...
- ► Relaxing the assumption of independence of volatility increments was crucial for the superior performance of rough volatility models ⇒ but: several standard pricing methods no longer available & naive Monte Carlo methods slow
- Calibration time has been a bottleneck for rough volatility several advances have been made to speed up the calibration process [BLP '15, MP '17, HJM '17].

Today's talk:

Speedups for rough volatility models along two lines:

- 1. in pricing of vanilla options based on faster Monte Carlo approximations for a family of rough stochastic volatility models. [H-Jacquier-Muguruza '17])
- 2. in calibration by means of machine learning (ongoing with A. Sani, A. Muguruza and with M. Tomas).

Framework

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0, \\ V_t &= \Phi \left(\int_0^t g(t-s) \mathrm{d} Y_s \right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2), \\ dY_t &= b(Y_t) \mathrm{d} t + \sigma(Y_t) \mathrm{d} Z_t, \quad \mathrm{d} Z_t \mathrm{d} W_t = \rho \mathrm{d} t. \end{split}$$

where $\Phi \in C^1$, $g \in \mathcal{L}^{\alpha} := \left\{ u^{\alpha} L(u) : L \in \mathcal{C}_b^1([0, T]), \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \right\}$ and Y satisfies Yamada-Watanabe conditions for path-wise uniqueness.

Imperial College

FCLT for Hölder cont. processes:

Generalised Fractional Operators \mathcal{G}^{lpha}

Definition

Let $g \in \mathcal{L}^{\alpha} := \left\{ u^{\alpha} L(u) : L \in \mathcal{C}^{1}_{b}([0, T]), \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \right\}$ and fix $\lambda \in (0, 1)$. The GFO for $f \in \mathcal{C}^{\lambda}([0, T])$ is

$$(\mathcal{G}^{lpha}f)(t):= \left\{ egin{array}{c} \int_{0}^{t}f(s)rac{\mathrm{d}}{\mathrm{d}t}g(t-s)\mathrm{d}s, & ext{for }lpha\in[0,1), \ rac{\mathrm{d}}{\mathrm{d}t}\int_{0}^{t}f(s)g(t-s)\mathrm{d}s, & ext{for }lpha\in(-\lambda,0). \end{array}
ight.$$

Remark: If $g(u) = u^{\alpha}$, then GFO=Riemann-Liouville fractional operators

・ロト・イラト・イミト・イミト ミー シへで Learning Rough Volatility

Imperial College

FCLT for Hölder continuous processes London

Theorem (rough Donsker theorem)

Consider the sequence $(W_n(t))_{n\geq 1}$ and W its weak limit in $(\mathcal{C}^{1/2}([0, T]), \|\cdot\|_{1/2})$. Then $(\mathcal{G}^{\alpha}W_n)_{n\geq 1}$ converges weakly to $\int_0^{\cdot} g(\cdot - s) dW_s$ in $(\mathcal{C}^{\alpha+1/2}([0, T]), \|\cdot\|_{\alpha+1/2})$ for $\alpha \in (-\frac{1}{2}, \frac{1}{2})$.

E nar

FCLT for rough volatility models

Imperial College London

FCLT for rough volatility models Define recursively in time, for any $n \ge 1$, $t \in [0, T]$, $t_k = \frac{k}{N}$

$$X_n(t) := -\frac{1}{2} \frac{T}{n} \sum_{k=1}^{\lfloor nt \rfloor} \Phi\left(\left(\mathcal{G}^{\alpha} Y_n\right)(t_k)\right) + \sqrt{\frac{T}{\sigma n}} \sum_{k=1}^{\lfloor nt \rfloor} \sqrt{\Phi\left(\left(\mathcal{G}^{\alpha} Y_n\right)(t_k)\right)} \left(W_n(t_{k+1}) - W_n(t_k)\right)$$

FCLT for rough volatility models Define recursively in time, for any $n \ge 1$, $t \in [0, T]$, $t_k = \frac{k}{N}$

 $X_{n}(t) := -\frac{1}{2} \frac{T}{n} \sum_{k=1}^{\lfloor nt \rfloor} \Phi\left(\left(\mathcal{G}^{\alpha} Y_{n}\right)(t_{k})\right) + \sqrt{\frac{T}{\sigma n}} \sum_{k=1}^{\lfloor nt \rfloor} \sqrt{\Phi\left(\left(\mathcal{G}^{\alpha} Y_{n}\right)(t_{k})\right)} \left(W_{n}(t_{k+1}) - W_{n}(t_{k})\right)$

Theorem (rDonsker for rough volatility models)

 $(X_n)_{n\geq 1}$, converges weakly to X in $(\mathcal{C}^{1/2-}(\mathbb{T}), \|\cdot\|_{1/2-}),$

$$\begin{aligned} \mathrm{d}X_t &= -\frac{1}{2}V_t\mathrm{d}t + \sqrt{V_t}\mathrm{d}W_t, \quad X_0 = 0, \\ V_t &= \Phi\left(\int_0^t g(t-s)\mathrm{d}Y_s\right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2) \\ dY_t &= b(Y_t)\mathrm{d}t + \sigma(Y_t)\mathrm{d}Z_t, \quad \mathrm{d}Z_t\mathrm{d}W_t = \rho\mathrm{d}t. \end{aligned}$$

Imperial College

FCLT for Hölder cont. processes:

Examples in this framework

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0, \\ V_t &= \Phi \left(\int_0^t g(t-s) \mathrm{d} Y_s \right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2), \\ dY_t &= b(Y_t) \mathrm{d} t + \sigma(Y_t) \mathrm{d} Z_t, \quad \mathrm{d} Z_t \mathrm{d} W_t = \rho \mathrm{d} t. \end{split}$$

3

Examples in this framework

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0, \\ V_t &= \Phi \left(\int_0^t g(t-s) \mathrm{d} Y_s \right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2), \\ dY_t &= b(Y_t) \mathrm{d} t + \sigma(Y_t) \mathrm{d} Z_t, \quad \mathrm{d} Z_t \mathrm{d} W_t = \rho \mathrm{d} t. \end{split}$$

Rough Bergomi:

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \qquad X_0 = 0 \\ V_t &= \xi_0(t) \mathcal{E} \left(2\nu C_H \int_0^t \frac{dZ_u}{(t-u)^{1/2-H}} \right), \quad \nu, \xi_0(\cdot) > 0 \\ dZ_t dW_t &= \rho dt, \qquad \rho \in (0,1) \end{split}$$

Learning Rough Volatility

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Examples in this framework

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0, \\ V_t &= \Phi \left(\int_0^t g(t-s) \mathrm{d} Y_s \right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2), \\ dY_t &= b(Y_t) \mathrm{d} t + \sigma(Y_t) \mathrm{d} Z_t, \quad \mathrm{d} Z_t \mathrm{d} W_t = \rho \mathrm{d} t. \end{split}$$

Examples in this framework

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0, \\ V_t &= \Phi \left(\int_0^t g(t-s) \mathrm{d} Y_s \right), \quad V_0 > 0, \; \alpha \in (-1/2, 1/2), \\ dY_t &= b(Y_t) \mathrm{d} t + \sigma(Y_t) \mathrm{d} Z_t, \quad \mathrm{d} Z_t \mathrm{d} W_t = \rho \mathrm{d} t. \end{split}$$

Rough Heston:

$$dX_t = -\frac{1}{2}V_t dt + \sqrt{V_t} dW_t, \qquad X_0 = 0,$$

$$Y_t = \int_0^t \kappa(\theta - Y_s) dt + \int_0^t \xi \sqrt{Y_s} dZ_s \quad V_0, \kappa, \xi, \theta > 0, \ 2\kappa\theta > \xi^2$$

$$V_t = \eta + \int_0^t (t-s)^\alpha dY_s, \qquad \eta > 0, \ \alpha \in (-1/2, 1/2).$$

3

Example: rough Bergomi smiles

Figure 1: Implied volatilities of rDonsker with left-point and variance matching evaluation and the Hybrid scheme with $5 \cdot 10^5$ simulations. Parameters: $\nu = 1, \rho = -0.7, \xi_0 = 0.04, n = 468$

Imperial College

Example: rough Bergomi smiles

Figure 2: Parameters: $\nu = 1, \rho = -0.7, \xi_0 = 0.04$, n = 468 steps

Learning Rough Volatility

3

Imperial College

Conclusion

▶ rDonsker is 1.25× faster than Hybrid scheme (because we omit the Cholesky bit)

Speedups for rough volatility models along two lines:

- Part 1: in pricing of vanilla options based on faster Monte Carlo approximations for a family of rough stochastic volatility models. [H-Jacquier-Muguruza '17])
- Part 2: in calibration by means of machine learning techniques (ongoing with A. Sani, A. Muguruza and with M. Tomas).

Part 2: Speed-ups on calibration

・ キャット きょう キャット しょうしょう

Imperial College London

Part 2: Speed-ups on calibration

Imperial College

London

<ロ ト < 昂 ト < 言 ト < 言 ト ミ の Q ペ Learning Rough Volatility

one step away from of-the-shelf optimizers to explore the parameter space more efficiently, limiting the number of function evaluations for calibration. Tested for variance options in a "weighted rough Bergomi" framework (De Marco, Guyon)

$$dS_t = -\frac{1}{2}V_t dt + \sqrt{V_t} dW_t \quad V_t = \xi_0(t) \left(\gamma \nu_t + (1-\gamma)\eta_t\right)$$
$$\nu_t = \mathcal{E}\left(\nu\sqrt{2H} \int_0^t (t-s)^{H-1/2} dZ_s\right) \quad \eta_t = \mathcal{E}\left(\eta\sqrt{2H} \int_0^t (t-s)^{H-1/2} dZ_s\right)$$

(w Amir Sani and Aitor Muguruza) and

approximation by neural networks (w Mehdi Thomas and Aitor Muguruza)

Optimizers to minimize nr. fn eval

- Limited-memory Bounded BroydenFletcherGoldfarbShanno (L-BFGS-B)
- Truncated Newton (TNC)
- Sequential Least-Squares Quadratic Programming (SLSQP)
- 2-stage Minimization

Stage 1: Classifier-Directed Global Minimizer (2-min Time Budget) Stage 2: Local Minimizer initialized with Stage 1 x_0 Imperial College

(Ongoing work) General setup: two parts of the network:

- 1. Generator: Input (parameters) Output (implied volatilities)
- 2. Calibrator: Input (implied volatilities) Output (*optimal* parameters).

Both feed-forward neural networks for the generator three hidden layers (1000-800-600)-nodes. Calibrator 1 layer on top.

Imperial College

General setup: two parts of the network:

1 Generator (approximation of IV surfaces via NN)

In order to train the network we first need to build a training set (supervised learning).

Imperial College

London

General setup: two parts of the network:

1 Generator (approximation of IV surfaces via NN)

In order to train the network we first need to build a training set (supervised learning).

- For this we can use numerical valuation functions (Bergomi model, Rough Bergomi, Heston, ... Part 1): We generate 20,000 surfaces for each model, using a fixed grid of strikes and tenors.
- Though training time consuming, it can be done offline.
- We sample uniformly points in the parameter set θ ∈ Θ, then compute and save f(θ). Those samples will constitute our training set. We repeat this procedure until we reach enough samples for our surrogate function to be a good approximation.

Imperial College

General setup: two parts of the network:

2 Calibrator

In order to train the network we first need to build a training set. Conclusions:

Imperial College

London

General setup: two parts of the network:

2 Calibrator

In order to train the network we first need to build a training set. Conclusions:

- ▶ This can be done online, fast (within range of ~ 1 second already unoptimized)
- Evaluation of parameters now more direct than via Monte Carlo. One minimizes now the distance between the (approximator) surrogate functions $\hat{f}(\theta^*)$ and the volatility surface.

Imperial College

We see that after learning, calibrating many parameters is fast

Imperial College

London

We see that after learning, calibrating many parameters is fast \Rightarrow approximate several models at the same time.

Imperial College

London

We see that after learning, calibrating many parameters is fast \Rightarrow approximate several models at the same time. New learning procedure:

- Train the generator on several models at the same time (here Parameters from Heston and Bergomi parameters) in Monte Carlo experiments as before.
- ► Calibrate several models at the same time ⇒ determine the best-fit model to a given data (flag).
- ► Controlled experiments: train on both Bergomi and Heston ⇒ test on data generated by Heston.

Imperial College

Conclusions and further steps

Imperial College London

- 1. Adding further rough volatility models to the library to determine which model describes best the given set of data.
- Calibration of Implied volatility gives an ideal objective function for learning (data ⇔ models).
- 3. Or: optimising the distribution of distributions directly (bypassing IV)

Thank you and Happy Birthday Yuri!

FCLT for Hölder continuous processes

FCLT for Hölder continuous processes

Define for any $\omega \in \Omega$, $n \geq 1$, $t \in [0, T]$, the approximating sequence

$$W_n(t,\omega) := \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^J \xi_k(\omega) + \frac{nt-j}{\sigma\sqrt{n}} \xi_{j+1}(\omega), \quad \text{whenever } t \in \left[\frac{j}{n}, \frac{j+1}{n}\right), \text{ for } j = 0, \dots, n-1.$$

where the family $(\xi_i)_{i\geq 1}$ forms an iid sequence of centered random variables with finite moments of all orders and $\mathbb{E}(\xi_1^2) = \sigma^2 > 0$.

Imperial College

FCLT for Hölder continuous processes

Define for any $\omega \in \Omega$, $n \geq 1$, $t \in [0, T]$, the approximating sequence

$$W_n(t,\omega) := \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^J \xi_k(\omega) + \frac{nt-j}{\sigma\sqrt{n}} \xi_{j+1}(\omega), \quad \text{whenever } t \in \left[\frac{j}{n}, \frac{j+1}{n}\right), \text{ for } j = 0, \dots, n-1.$$

where the family $(\xi_i)_{i\geq 1}$ forms an iid sequence of centered random variables with finite moments of all orders and $\mathbb{E}(\xi_1^2) = \sigma^2 > 0$.

Theorem (Donsker-Lamperti Theorem)

The sequence $(W_n)_{n\geq 1}$ converges weakly to a Brownian motion in $(\mathcal{C}^{\alpha}([0, T]), \|\cdot\|_{\alpha})$ for all $\alpha < \frac{1}{2}$.

・ロト・イラト・イミト・イミト ミー シへで Learning Rough Volatility

Imperial College

Imperial College London

Imperial College London

The left-point approximation may be modified e.g.

$$\int_0^{\frac{Ti}{n}} g\left(\frac{Ti}{n}-s\right) \mathrm{d}W_s \approx \frac{1}{\sqrt{n\sigma}} \sum_{k=1}^{j-1} g\left(t_k^*\right) \xi_k, \quad j=0,\ldots,n$$

where t_k^* is chosen optimally to match first and second moments

The left-point approximation may be modified e.g.

$$\int_0^{\frac{Ti}{n}} g\left(\frac{Ti}{n}-s\right) \mathrm{d}W_s \approx \frac{1}{\sqrt{n\sigma}} \sum_{k=1}^{j-1} g\left(t_k^*\right) \xi_k, \quad j=0,\ldots,n$$

where t_k^* is chosen optimally to match first and second moments , i.e.,

$$g(t_k^*) = \sqrt{n\int_{rac{T(k-1)}{n}}^{rac{Tk}{n}}g(t-s)^2\mathrm{d}s}, \quad k=1,\ldots,n.$$

The left-point approximation may be modified e.g.

$$\int_0^{\frac{Ti}{n}} g\left(\frac{Ti}{n}-s\right) \mathrm{d}W_s \approx \frac{1}{\sqrt{n\sigma}} \sum_{k=1}^{j-1} g\left(t_k^*\right) \xi_k, \quad j=0,\ldots,n$$

where t_k^* is chosen optimally to match first and second moments , i.e.,

$$g(t_k^*) = \sqrt{n \int_{rac{T(k-1)}{n}}^{rac{Tk}{n}} g(t-s)^2 \mathrm{d}s}, \quad k = 1, \dots, n.$$

• This simple trick improves substantially the simulation (specially when α is close to -1/2)

<ロ> < 書 > < 書 > < 言 > 言 の Q ペ Learning Rough Volatility

The left-point approximation may be modified e.g.

$$\int_0^{\frac{Ti}{n}} g\left(\frac{Ti}{n}-s\right) \mathrm{d}W_s \approx \frac{1}{\sqrt{n\sigma}} \sum_{k=1}^{j-1} g\left(t_k^*\right) \xi_k, \quad j=0,\ldots,n$$

where t_k^* is chosen optimally to match first and second moments , i.e.,

$$g(t_k^*) = \sqrt{n\int_{rac{T(k-1)}{n}}^{rac{Tk}{n}}g(t-s)^2\mathrm{d}s}, \quad k=1,\ldots,n.$$

- This simple trick improves substantially the simulation (specially when α is close to -1/2)
- The hybrid scheme also admits this trick

・ロト イクト イミト イミト き つへの Learning Rough Volatility