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Cheers to Yuri.

Theorem (Fenchel–Moreau, Hamel 2009)

f : X → G (Z,C) proper closed convex, or identically ∅ or Z

if, and only if, f = f∗∗.

Consequence. (Kabanov 1999, superhedging in discrete time).

Γ :=
{
v ∈ IRd : V v,L

T � C for some L ∈ A
}

=
⋂

Z∈P0

{
v ∈ IRd : Ẑ0v ≥ EẐTC

}
=: D.

Proof. Γ is the value of a set-valued proper closed sublinear risk

measure at −C, and D is the value of its biconjugate at −C. (Note:

C here corresponds to x in the general theory. The additional dual

variable z∗ is Ẑ0.)
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The question.

What is a quantile of a multivariate random variable?

For example, its median?
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The question.

Let X : Ω→ IR be a (univariate) random variable on a
probability space (Ω,F , P ).

FX(s) = P (X ≤ s) = P (X ∈ s− IR+) is its cdf and

q−X (p) = inf {s ∈ IR | FX(s) ≥ p} its lower p-quantile,

q+X (p) = sup {r ∈ IR | P (X < r) ≤ p} its upper p-quantile.

where FX : IR→ [0, 1], q−X , q
+
X : [0, 1]→ IR (inverse!).

Question. What about FX , q−X , q+X for X : Ω→ IRd, d > 1?
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The question.

What’s the problem with

FX , q
−
X for X : Ω→ IRd, d > 1?

Well,

FX(s) = P (X ≤ s) = P (X ∈ s− IR+) depends on the order
(in IR) and

inf {s ∈ IR | FX(s) ≥ p} is hard to generalize to IRd.

Question. What if ≤ is replaced by ≤C , C ⊆ IRd a closed
convex cone?
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The question.

Bad news.

Even if C = IRd
+, i.e., the case of joint distribution function

F jdfX (z) = P (X ≤IRd
+
z), the formula

Q−X(p) = inf
{
z ∈ IRd | F jdfX (z) ≥ p

}
doesn’t work.

Even worse, the joint distribution function is not very
useful for statistical analysis: it ‘does not mean much’ (M.
Hallin 2017). Instead, so-called depth functions are used.
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The question.

Remaining question.

What is a quantile of a multivariate random variable

in the presence of an order relation for its values?
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Quote.

Naturally, the quantiles of a multivariate random variable are
also of interest, and the search for a multidimensional
counterpart of the quantiles of a random variable has attracted
considerable attention in the statistical literature.

The fundamental difficulty in reaching agreement on a suitable
generalization of univariate quantiles is arguably the lack of a
natural ordering in a multidimensional setting.

Belloni/Winkler 2011, The Annals of Statistics
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Another quote.

Unlike the real line, the d-dimensional space IRd, for d ≥ 2, is
not canonically ordered. As as a consequence, such fundamental
and strongly order-related univariate concepts as quantile and
distribution functions, and their empirical counterparts,
involving ranks and signs, do not canonically extend to the
multivariate context.

Hallin 2017, ECARES Working Paper
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Observation.

If X : Ω→ IR is univariate, the set

LQX(p) = {r ∈ IR | P (X ≤ r) ≥ p}

is “directed upward,” i.e.,

LQX(p) + IR+ = LQX(p) and q−X (p) = inf LQX(p).
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Observation.

On the other hand, the set

UQX(p) = {r ∈ IR | P (X < r) ≤ p}

is “directed downward,” i.e.

UQX(p)− IR+ = UQX(p) and q+X (p) = supUQX(p).

Note. (lower quantiles are sufficient)

q+X (p) = −q−−X (1− p).

Recall. (V@R is a quantile)

V@Rα (X) = q−−X (1− α) for α ∈ (0, 1).
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Observation.

LQX(p)∩UQX(p) = [inf LQX(p), supUQX(p)] =
[
q−X (p), q+X (p)

]
.
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Rest of the talk.

� Lower (real-valued) C-distribution functions

� Lower & upper (set-valued) C-quantiles

� Set-valued V@R & first order stochastic dominance

� Multivariate V@R for conical market models
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Next.

� Lower (real-valued) C-distribution functions
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Lower C-distribution functions.

Some notation.

C ⊆ IRd a closed convex cone,

its positive dual

C+ =
{
w ∈ IRd | ∀z ∈ C : wT z ≥ 0

}
,

closed homogeneous halfspace with normal w ∈ IRd\{0}:

H+(w) =
{
z ∈ IRd | wT z ≥ 0

}
.

Bipolar theorem. C =
⋂
w∈C+ H+(w).
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Lower C-distribution functions.

Let (Ω,F , P ) be a probability space and X : Ω→ IRd a random
variable.

Definition

The w-distribution function FX,w : IRd → [0, 1] of X is the
composition of the cdf of wTX and w ∈ IRd\{0}, i.e.,

FX,w(z) = FwTX(wT z) = P
(
X ∈ z −H+(w)

)
.

The lower C-distribution function FX,C : IRd → [0, 1] of X is

FX,C(z) = inf
w∈C+\{0}

FX,w(z).
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Lower C-distribution functions.

Lower C-distribution function:

FX,C(z) = inf
w∈C+\{0}

FX,w(z) = inf
w∈C+\{0}

P
(
X ∈ z −H+(w)

)
.

Observation. (since C ⊆ H+(w) for all w ∈ C+\{0})

∀z ∈ IRd : FX,C(z) ≥ P (X ∈ z − C),

and this inequality is strict in general even for C = IRd
+ (already

for X bivariate normal and z = 0 ∈ IR2).
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Lower C-distribution functions.

Proposition

(a) Affine invariance: if b ∈ IRd, A ∈ IRd×d invertible, then

∀z ∈ IRd : FAX+b,ATC (Az + b) = FX,C (z) .

(b) Monotonicity in z: if y ≤C z, then FX,C (y) ≤ FX,C (z).

(c) Monotonicity in X:

X ≤C Y ⇒ ∀z ∈ IRd : FX,C (z) ≥ FY,C (z) .

(d) Right-continuity: if {zn}n∈IN ⊆ IRd with lim
n→∞

zn = z ∈ IRd

and zn+1 ≤C zn for all n ∈ {1, 2, . . .}, then

lim
n→∞

FX,C (zn) = FX,C (z) .
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Lower C-distribution functions.

Proposition

(e) Behavior at infinity: If L+(z) =
{
w ∈ C+ | wT z = 0

}
, then

lim
t→∞

FX,C (tz) =

{
min{a, b} if z ∈ C
0 if z 6∈ C

where a = inf
w∈L+(z)\{0}

FX,w(0), b = lim
t→∞

inf
w∈C+\L+(z)

FX,w(z) and

lim
t→−∞

FX,C (tz) =

{
0 if z 6∈ −C
min{a, c} if z ∈ −C

where c = lim
t→−∞

inf
w∈C+\L+(z)

FX,w(z).
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Lower C-distribution functions.

Summary.

The lower C-distribution function FX,C almost behaves like
a (univariate) cdf.

It is, however, different from the joint distribution function
even if C = IRd

+.

For d = 1, C = IR+, one gets back the univariate cdf.
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Next.

� Lower & upper C-quantiles
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Lower & upper C-quantiles.

P(IRd) =
{
D | D ⊆ IRd

}
power set

Definition

The lower w-quantile of X is Q−X,w : [0, 1)→ P(IRd) defined by

Q−X,w (p) =
{
z ∈ IRd | FX,w(z) ≥ p

}
.

The lower C-quantile of X is Q−X,C : [0, 1)→ P(IRd) defined by

Q−X,C (p) =
{
z ∈ IRd | FX,C(z) ≥ p

}
.
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Lower & upper C-quantiles.

Straightforward results.

∀p ∈ [0, 1) : Q−X,C (p) =
⋂

w∈C+\{0}

Q−X,w (p).

∀z ∈ IRd : FX,C(z) = sup
{
p ∈ [0, 1) | z ∈ Q−X,C(p)

}
(FX,C can be reconstructed from the quantile function.)
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Lower & upper C-quantiles.

Proposition

(a) Q−X,C : [0, 1)→ P(IRd) has closed convex values and satisfies

cl co
(
Q−X,C (p) + C

)
= Q−X,C (p).

(b) For all b ∈ IRd and all invertible A ∈ IRd×d,

Q−X+b,C (p) = Q−X,C (z) + b and Q−
AX,ATC

(p) = AQ−X,C (p) .

(c) If p1 ≥ p2 then Q−X,C (p1) ⊆ Q−X,C (p2).

(d) If X ≤C Y then Q−X,C (p) ⊇ Q−Y,C (p) for all p ∈ [0, 1).

Note. (a): Q−X,C maps into the complete lattice ordered by ⊇:

G(IRd, C) :=
{
D ⊆ IRd | D = cl co (D + C)

}
.
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Lower C-quantiles and Tukey depth.

Tukey depth function.

HDX(z) = inf
w∈IRd\{0}

P
(
X ∈ z −H+(w)

)
, z ∈ IRd.

Tukey depth region.

DX (p) =
{
z ∈ IRd | HDX (z) ≥ p

}
, p ∈ [0, 1/2].

Observation. Special cases of FX,C and Q−X,C , respectively, for

C = {0}, C+ = IRd: one looks for “deepest points.”

Observation. Univariate quantile: d = 1, C = C+ = IR+.
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C = {0}, C+ = IRd: one looks for “deepest points.”

Observation. Univariate quantile: d = 1, C = C+ = IR+.
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Lower & upper C-quantiles.

Definition

For w ∈ C+\{0}, the function Q+
X,w : (0, 1]→ P(IRd) defined by

Q+
X,w (p) =

{
z ∈ IRd | P (wTX < wT z) ≤ p

}
is called the upper w-quantile function of X. The function
Q+
X,C : (0, 1]→ P(IRd) defined by

Q+
X,C (p) =

⋂
w∈C+\{0}

Q+
X,w (p)

is called the upper C-quantile function of X.

Remark. Q+
X,C : IRd → G(IRd,−C) (opposite to Q−X,C).
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Lower & upper C-quantiles.

Surprising result. (no other concept known with this type of
property)

Q+
X,C (p) = Q−X,−C(1− p).

Compare this to

q+X (p) = −q−−X(1− p).
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Lower & upper C-quantiles.

Summary.

The lower C-quantile Q−X,C is a set-valued inverse of FX,C .

It shares most properties with scalar quantiles.

It also generalizes the Tukey (halfspace) depth function as
well as the univariate quantile.
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Lower & upper C-quantiles: how do they look like?

Example. (a four point uniform distribution)

Ω =
{

(−1, 2)T , (0, 0)T , (1, 1)T , (2,−1)T
}
⊆ IR2,

X uniformly distributed over Ω.

Lower and upper quantile sets for the seven cases

p ∈ (0, 14), p = 1
4 , p ∈ (14 ,

1
2), p = 1

2 , p ∈ (12 ,
3
4), p = 3

4 , p ∈ (34 , 1).
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Lower & upper C-quantiles: how do they look like?

Figure : p ∈ (0, 14 ) Figure : p = 1
4
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Lower & upper C-quantiles: how do they look like?

Figure : p ∈ ( 1
4 ,

1
2 ) Figure : p = 1

2
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Lower & upper C-quantiles: how do they look like?

Figure : p ∈ ( 1
2 ,

3
4 ) Figure : p = 3

4
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Lower & upper C-quantiles: how do they look like?

Figure : p ∈ ( 3
4 , 1)
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Lower & upper C-quantiles: how do they look like?

Remark. In general,

Q−X,C (p)
⋂

Q+
X,C (p) = ∅.

Compare this to

LQX(p)∩UQX(p) = [inf LQX(p), supUQX(p)] =
[
q−X (p), q+X (p)

]
.
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Lower & upper C-quantiles: how do they look like?

Contours of Q−
X,IR2

+

(p) Sample points in Q−
X,IR2

+

(p)

Figure : Lower C-quantiles in 5% increments for C = IR2
+ and

X ∼ Uniform
(
(0, 1)× (0, 1) ∪ (1, 2)× (1, 2)

)
.
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Lower & upper C-quantiles: how do they look like?

Contours of Q−
X,IR2

+

(p) Sample points in Q−
X,IR2

+

(p)

Figure : Lower C-quantiles in 5% increments for C = IR2
+ and

X ∼ Uniform
(
(−1, 1)× (1, 3) ∪ (1, 3)× (−1, 1)

)
.
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Lower & upper C-quantiles.

The joint distribution lower quantile.

QjdfX (p) :=
{
z ∈ IR2 | F jdfX (z) ≥ p

}
Example. (same as before)

QjdfX (p) is different from lower C-quantile in general.

QjdfX (p) is non-convex in general.

Q−X,C (p) is also different from the convex hull of QjdfX (p).
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Lower & upper C-quantiles.

Figure : p = 1
4 Figure : p = 1

2
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Next.

� Set-valued V@R & first order stochastic dominance
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Value-at-Risk.

Definition

The Value-at-Risk of X : Ω→ IRd at level α ∈ (0, 1) is

V@Rα,C(X) = Q−−X,C (1− α).

Recall. (univariate V@R)

V@Rα (X) = q−−X (1− α) for α ∈ (0, 1).
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Value-at-Risk.

Basic formula.

V@Rα,C(X) =

{
z ∈ IRd | sup

w∈C+\{0}
P
(
X + z ∈ −intH+(w)

)
≤ α

}
=

⋂
w∈C+\{0}

{
z ∈ IRd | P

(
X + z ∈ −intH+(w)

)
≤ α

}

Interpretation. V@Rα,C(X) includes all deterministic
portfolios z (= deposits) which keep the probability of
bankruptcy ≤ α when added to the random position X – for all
“price” vectors w ∈ C+ since

X + z ∈ −intH+(w) ⇔ wT (X + z) < 0.
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Value-at-Risk.

Proposition

(1) The function X 7→ V@Rα,C(X) maps into G(IRd, C) and is
positively homogeneous. In particular, V@Rα,C(0) = C.

(2) X 7→ V@Rα,C(X) is IRd-translative, i.e.,

∀y ∈ IRd : V@Rα,C(X + y1I) = V@Rα,C(X)− y.

(3) X 7→ V@Rα,C(X) is monotone non-increasing w.r.t. ≤C ,
i.e., X ≤C Y implies V@Rα,C(X)⊆V@Rα,C(Y ).

Note. This qualifies V@R as a set-valued risk measure in the
sense of Hamel/Heyde 2010 SIFIN.
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Value-at-Risk.

X̃ = (RDAX | RHSI | RS&P )
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Value-at-Risk.

V @R
10%,IR3

+
(X̃)
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Value-at-Risk.

Vertices of V @R

Figure : Value-at-Risk with C = IR3
+ for the monthly return of three

major stock indexes.
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Value-at-Risk.

Scalarization formula.

V@Rα,C(X) =
⋂

w∈C+\{0}

{
z ∈ IRd | wT z ≥ V@Rscaα (wTX)

}

Special case. C = IRd
+

V@Rα,IRd
+

(X) =
⋂

w∈IRd
+\{0}

{
z ∈ IRd | wT z ≥ V@Rscaα (wTX)

}
⊆

⋂
i∈{1,...,d}

{
z ∈ IRd | zi ≥ V@Rscaα (Xi)

}
,

i.e., V@Rα,IRd
+

is “more conservative” than the component-wise

Value-at-Risk.
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Value-at-Risk.

Embrechts/Puccetti 06. F jdfX jdf and

V@Rjdfα (X) = ∂
{
z ∈ IRd | F jdfX (z) ≥ α

}
.

Associated to order generated by IRd
+; even if it is replaced by

C and ∂ is dropped,

V@Rα,C(X) = Q−−X,C (1− α) =
{
z ∈ IRd | F−X,C(z) ≥ 1− α

}
⊇
{
z ∈ IRd | P (−X ∈ z − C) ≥ 1− α

}
since

∀z ∈ IRd : F−X,C(z) ≥ P (−X ∈ z − C).

Note. V@Rα,C is “less conservative” than the E/P version.
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Stochastic dominance.

Definition

The random variable Y ∈ L0
d(Ω,F , P ) is said to C-stochastically

dominate X ∈ L0
d(Ω,F , P ), written as Y �CFSD X, iff

∀z ∈ IRd : FY,C (z) ≤ FX,C (z) .

Proposition

For X,Y ∈ L0
d(Ω,F , P ), Y �CFSD X is true if, and only if,

∀p ∈ (0, 1) : Q−Y,C (p) ⊆ Q−X,C (p) ,

and if, and only if,

∀α ∈ (0, 1) : V@Rα,C(X) ⊆ V@Rα,C(Y ).
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Next.

� Multivariate V@R for conical market models
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V@R for the market.

Obvious idea. Make the cone C random.

Motivation (from finance). Conical market models.

Motivation (from statistics). I hardly have a clue, just
ideas. Ilya, would it make sense to analyse data with an order
relation which changes with the data point?
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V@R for the market.

The model.

K(ω) ⊆ IRd closed convex cones (measurable) generating
on L0

d the order

X1 ≤K X2 ⇔ X2 −X1 ∈ K (P − a.s.)

Potential quantiles: z ∈ IRm ordered via closed convex cone
K0 ⊆ IRm with 1 ≤ m ≤ d:

z1 ≤K0 z
2 ⇔ z2 − z1 ∈ K0.

A linear operator T : IRm → L0
d(Ω,F , P ) which generates a

another cone TK0 ⊆ L0
d.
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V@R for the market.

Example. Z1, . . . , Zm ∈ L0
d linearly independent and

Tz =
∑
ziZ

i. In particular, Zi = bi1I with bi ∈ IRd (riskless
portfolios used as deposits).

Pointwise cones.

C(ω) = (TK0)(ω) +K(ω),

C+(ω) = [(TK0)(ω) +K(ω)]+ = (TK0)(ω)+ ∩K(ω)+.

This can be seen as a one-period market model with m eligible
assets.
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V@R for the market.

Definition

The composition of the function FX,Y : L0
d → [0, 1] with T which

is defined by

FX,Y (Tz) = Pr[Y >X ≤ Y >(Tz)]

is called the Y -distribution function of X with Y ∈ L0
d.

The composition of the function FX,C : L0
d → [0, 1] with T

defined by

FX,C(Tz) = inf{FX,Y (Tz) | Y ∈ C+}

is called the C-distribution function of X (with respect to T ).
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V@R for the market.

Definition

The lower Y -quantile of X is Q−X,Y : [0, 1)→ P(IRm) defined by

Q−X,Y (p) = {z ∈ IRm | FX,Y (Tz) ≥ p}.

The lower C-quantile of X is Q−X,C : [0, 1)→ P(IRm) defined by

Q−X,C (p) = {z ∈ IRm | FX,C(Tz) ≥ p}.

Note. Many (not all) properties carry over from the constant
cone case.
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V@R for the market.

Definition

The Value-at-Risk of X : Ω→ IRm at level α ∈ (0, 1) is

V@Rα,C(X) = Q−−X,C (1− α).

Perspective. stochastic dominance, AV@R, Kusuoka
representations ... data analysis etc.
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Coda.

Conclusion. There seems to be a canonical way to introduce
quantiles in the multivariate case in the presence of an in
general non-complete order relation for the values of random
variables.

Test question. Where is the infimum in
Q−X,C (p) =

{
z ∈ IRd | FX,C(z) ≥ p

}
?

Reference. Hamel/Kostner: Cone distribution functions and
quantiles for multivariate random variables

JMVA 167 (2018) 97-113 and follow-ups
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THANK YOU FOR FOLLOWING . . .

. . . INTO THE DEPTH OF STATISTICS.
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The future.

SET OPTIMIZATION for APPLICATIONS

4th International Conference on Set Optimization

and Set-Valued Variational Analysis

at Friedrich Schiller University Jena, Germany

February 11-15, 2019
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