From set-valued quantiles to risk measures: A set optimization approach to markets with frictions

> ANDREAS H. HAMEL, DANIEL KOSTNER Free University of Bozen-Bolzano

Innovative Research in Mathematical Finance Marseille, September 2018

Theorem (Fenchel–Moreau, Hamel 2009)

 $f: X \to \mathcal{G}(Z, C)$ proper closed convex, or identically \emptyset or Z

if, and only if, $f = f^{**}$.

Consequence. (Kabanov 1999, superhedging in discrete time).

$$\Gamma := \left\{ v \in \mathbb{R}^d \colon V_T^{v,L} \succeq C \text{ for some } L \in \mathfrak{A} \right\}$$
$$= \bigcap_{Z \in \mathfrak{P}_0} \left\{ v \in \mathbb{R}^d \colon \widehat{Z}_0 v \ge E \widehat{Z}_T C \right\} =: D.$$

Proof. Γ is the value of a set-valued proper closed sublinear risk measure at -C, and D is the value of its biconjugate at -C. (Note: C here corresponds to x in the general theory. The additional dual variable z^* is $\widehat{Z}_{0.}$)

What is a quantile of a multivariate random variable?

For example, its median?

A. Hamel

Set-valued quantiles

•
$$F_X(s) = P(X \le s) = P(X \in s - \mathbb{R}_+)$$
 is its cdf and

•
$$F_X(s) = P(X \le s) = P(X \in s - \mathbb{R}_+)$$
 is its cdf and

•
$$q_X^-(p) = \inf \{ s \in \mathbb{R} \mid F_X(s) \ge p \}$$
 its lower *p*-quantile,

Question. What about F_X , q_X^- , q_X^+ for $X \colon \Omega \to \mathbb{R}^d$, d > 1?

$$F_X, q_X^-$$
 for $X: \Omega \to \mathbb{R}^d, d > 1$?

$$F_X, q_X^-$$
 for $X: \Omega \to \mathbb{R}^d, d > 1$?

Well,

• $F_X(s) = P(X \le s) = P(X \in s - \mathbb{R}_+)$ depends on the order (in \mathbb{R}) and

$$F_X, q_X^-$$
 for $X: \Omega \to \mathbb{R}^d, d > 1$?

Well,

- $F_X(s) = P(X \le s) = P(X \in s \mathbb{R}_+)$ depends on the order (in \mathbb{R}) and
- inf $\{s \in \mathbb{R} \mid F_X(s) \ge p\}$ is hard to generalize to \mathbb{R}^d .

$$F_X, q_X^-$$
 for $X: \Omega \to \mathbb{R}^d, d > 1$?

Well,

- $F_X(s) = P(X \le s) = P(X \in s \mathbb{R}_+)$ depends on the order (in \mathbb{R}) and
- $\inf \{s \in \mathbb{R} \mid F_X(s) \ge p\}$ is hard to generalize to \mathbb{R}^d .

Question. What if \leq is replaced by \leq_C , $C \subseteq \mathbb{R}^d$ a closed convex cone?

Bad news.

• Even if $C = \mathbb{R}^d_+$, i.e., the case of joint distribution function $F_X^{jdf}(z) = P(X \leq_{\mathbb{R}^d_+} z)$, the formula

$$Q_X^-(p) = \inf\left\{z \in \mathbb{R}^d \mid F_X^{jdf}(z) \ge p\right\}$$

doesn't work.

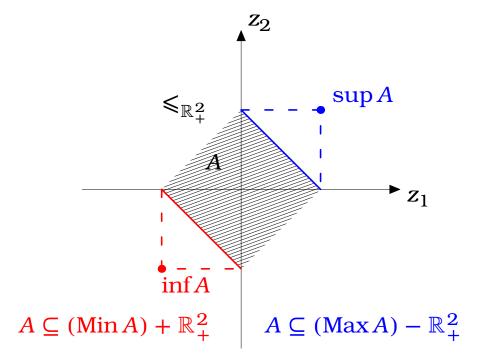
Bad news.

• Even if $C = \mathbb{R}^d_+$, i.e., the case of joint distribution function $F_X^{jdf}(z) = P(X \leq_{\mathbb{R}^d_+} z)$, the formula

$$Q_X^-(p) = \inf\left\{z \in \mathbb{R}^d \mid F_X^{jdf}(z) \ge p\right\}$$

doesn't work.

• Even worse, the joint distribution function is not very useful for statistical analysis: it 'does not mean much' (M. Hallin 2017). Instead, so-called *depth functions* are used.



Remaining question.

What is a quantile of a multivariate random variable in the presence of an order relation for its values?

Naturally, the quantiles of a multivariate random variable are also of interest, and the search for a multidimensional counterpart of the quantiles of a random variable has attracted considerable attention in the statistical literature.

The fundamental difficulty in reaching agreement on a suitable generalization of univariate quantiles is arguably the lack of a natural ordering in a multidimensional setting.

Belloni/Winkler 2011, The Annals of Statistics

Unlike the real line, the *d*-dimensional space \mathbb{R}^d , for $d \ge 2$, is not canonically ordered. As as a consequence, such fundamental and strongly order-related univariate concepts as quantile and distribution functions, and their empirical counterparts, involving ranks and signs, do not canonically extend to the multivariate context.

Hallin 2017, ECARES Working Paper

If $X \colon \Omega \to \mathbb{R}$ is univariate, the set

$$LQ_X(p) = \{ r \in \mathbb{R} \mid P(X \le r) \ge p \}$$

is "directed upward," i.e.,

 $LQ_X(p) + \mathbb{R}_+ = LQ_X(p)$ and $q_X^-(p) = \inf LQ_X(p)$.

Observation.

On the other hand, the set

 $UQ_X(p) = \{ r \in \mathbb{R} \mid P(X < r) \le p \}$

is "directed downward," i.e.

 $UQ_X(p) - \mathbb{R}_+ = UQ_X(p)$ and $q_X^+(p) = \sup UQ_X(p)$.

Observation.

On the other hand, the set

 $UQ_X(p) = \{ r \in \mathbb{R} \mid P(X < r) \le p \}$

is "directed downward," i.e.

 $UQ_X(p) - \mathbb{R}_+ = UQ_X(p)$ and $q_X^+(p) = \sup UQ_X(p)$.

Note. (lower quantiles are sufficient)

 $q_X^+(p) = -q_{-X}^-(1-p).$

On the other hand, the set

 $UQ_X(p) = \{ r \in \mathbb{R} \mid P(X < r) \le p \}$

is "directed downward," i.e.

 $UQ_X(p) - \mathbb{R}_+ = UQ_X(p)$ and $q_X^+(p) = \sup UQ_X(p)$.

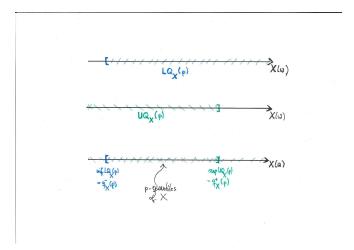
Note. (lower quantiles are sufficient)

$$q_X^+(p) = -q_{-X}^-(1-p).$$

Recall. (V@R is a quantile)

$$V@R_{\alpha}(X) = q_{-X}^{-}(1-\alpha) \quad \text{for} \quad \alpha \in (0,1).$$

 $LQ_X(p) \cap UQ_X(p) = \left[\inf LQ_X(p), \sup UQ_X(p)\right] = \left[q_X^-(p), q_X^+(p)\right].$



- \blacklozenge Lower (real-valued) C-distribution functions
- \blacklozenge Lower & upper (set-valued) C-quantiles
- \blacklozenge Set-valued V@R & first order stochastic dominance
- ♦ Multivariate V@R for conical market models

\blacklozenge Lower (real-valued) C-distribution functions

Some notation.

• $C \subseteq \mathbb{R}^d$ a closed convex cone,

Some notation.

- $C \subseteq \mathbb{R}^d$ a closed convex cone,
- its positive dual

$$C^+ = \left\{ w \in \mathbb{R}^d \mid \forall z \in C \colon w^T z \ge 0 \right\},$$

Some notation.

- $C \subseteq \mathbb{R}^d$ a closed convex cone,
- its positive dual

$$C^{+} = \left\{ w \in \mathbb{R}^{d} \mid \forall z \in C \colon w^{T} z \ge 0 \right\},\$$

• closed homogeneous halfspace with normal $w \in \mathbb{R}^d \setminus \{0\}$:

$$H^+(w) = \left\{ z \in \mathbb{R}^d \mid w^T z \ge 0 \right\}.$$

Some notation.

- $C \subseteq \mathbb{R}^d$ a closed convex cone,
- its positive dual

$$C^{+} = \left\{ w \in \mathbb{R}^{d} \mid \forall z \in C \colon w^{T} z \ge 0 \right\},\$$

• closed homogeneous halfspace with normal $w \in \mathbb{R}^d \setminus \{0\}$:

$$H^+(w) = \left\{ z \in \mathbb{R}^d \mid w^T z \ge 0 \right\}.$$

Bipolar theorem. $C = \bigcap_{w \in C^+} H^+(w)$.

Let (Ω, \mathcal{F}, P) be a probability space and $X \colon \Omega \to \mathbb{R}^d$ a random variable.

Definition

The w-distribution function $F_{X,w} \colon \mathbb{R}^d \to [0,1]$ of X is the composition of the cdf of $w^T X$ and $w \in \mathbb{R}^d \setminus \{0\}$, i.e.,

$$F_{X,w}(z) = F_{w^T X}(w^T z) = P(X \in z - H^+(w)).$$

Let (Ω, \mathcal{F}, P) be a probability space and $X \colon \Omega \to \mathbb{R}^d$ a random variable.

Definition

The w-distribution function $F_{X,w} \colon \mathbb{R}^d \to [0,1]$ of X is the composition of the cdf of $w^T X$ and $w \in \mathbb{R}^d \setminus \{0\}$, i.e.,

$$F_{X,w}(z) = F_{w^T X}(w^T z) = P(X \in z - H^+(w)).$$

The lower C-distribution function $F_{X,C}$: $\mathbb{R}^d \to [0,1]$ of X is

$$F_{X,C}(z) = \inf_{w \in C^+ \setminus \{0\}} F_{X,w}(z).$$

$$F_{X,C}(z) = \inf_{w \in C^+ \setminus \{0\}} F_{X,w}(z) = \inf_{w \in C^+ \setminus \{0\}} P\left(X \in z - H^+(w)\right).$$

Observation. (since $C \subseteq H^+(w)$ for all $w \in C^+ \setminus \{0\}$)

$$\forall z \in \mathbb{R}^d \colon F_{X,C}(z) \ge P(X \in z - C),$$

and this inequality is strict in general even for $C = \mathbb{R}^d_+$ (already for X bivariate normal and $z = 0 \in \mathbb{R}^2$).

Proposition

(a) Affine invariance: if $b \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$ invertible, then

$$\forall z \in \mathrm{I\!R}^{d} \colon F_{AX+b,A^{T}C}\left(Az+b\right) = F_{X,C}\left(z\right).$$

Proposition

(a) Affine invariance: if $b \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$ invertible, then

$$\forall z \in \mathrm{I\!R}^d \colon F_{AX+b,A^TC}\left(Az+b\right) = F_{X,C}\left(z\right).$$

(b) Monotonicity in z: if $y \leq_C z$, then $F_{X,C}(y) \leq F_{X,C}(z)$.

Proposition

(a) Affine invariance: if $b \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$ invertible, then

$$\forall z \in \mathrm{I\!R}^d \colon F_{AX+b,A^TC} \left(Az + b \right) = F_{X,C} \left(z \right).$$

(b) Monotonicity in z: if $y \leq_C z$, then $F_{X,C}(y) \leq F_{X,C}(z)$. (c) Monotonicity in X:

$$X \leq_{C} Y \quad \Rightarrow \quad \forall z \in \mathbb{R}^{d} \colon F_{X,C}(z) \geq F_{Y,C}(z).$$

Proposition

(a) Affine invariance: if $b \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$ invertible, then

$$\forall z \in \mathbb{R}^{d} \colon F_{AX+b,A^{T}C}\left(Az+b\right) = F_{X,C}\left(z\right).$$

(b) Monotonicity in z: if $y \leq_C z$, then $F_{X,C}(y) \leq F_{X,C}(z)$. (c) Monotonicity in X:

$$X \leq_{C} Y \quad \Rightarrow \quad \forall z \in \mathbb{R}^{d} \colon F_{X,C}(z) \geq F_{Y,C}(z).$$

(d) Right-continuity: if $\{z_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}^d$ with $\lim_{n \to \infty} z_n = \overline{z} \in \mathbb{R}^d$ and $z_{n+1} \leq_C z_n$ for all $n \in \{1, 2, \ldots\}$, then

$$\lim_{n \to \infty} F_{X,C}\left(z_n\right) = F_{X,C}\left(\overline{z}\right).$$

Set-valued quantiles

Proposition

(e) Behavior at infinity: If $L^+(z) = \{ w \in C^+ \mid w^T z = 0 \}$, then

$$\lim_{t \to \infty} F_{X,C}(tz) = \begin{cases} \min\{a, b\} & \text{if } z \in C \\ 0 & \text{if } z \notin C \end{cases}$$

where
$$a = \inf_{w \in L^+(z) \setminus \{0\}} F_{X,w}(0), \ b = \lim_{t \to \infty} \inf_{w \in C^+ \setminus L^+(z)} F_{X,w}(z)$$
 and

Proposition

(e) Behavior at infinity: If $L^+(z) = \{w \in C^+ \mid w^T z = 0\}$, then

$$\lim_{t \to \infty} F_{X,C}(tz) = \begin{cases} \min\{a, b\} & \text{if } z \in C \\ 0 & \text{if } z \notin C \end{cases}$$

where
$$a = \inf_{w \in L^+(z) \setminus \{0\}} F_{X,w}(0), b = \lim_{t \to \infty} \inf_{w \in C^+ \setminus L^+(z)} F_{X,w}(z)$$
 and

$$\lim_{t \to -\infty} F_{X,C}(tz) = \begin{cases} 0 & \text{if } z \notin -C \\ \min\{a,c\} & \text{if } z \in -C \end{cases}$$
where $c = \lim_{t \to -\infty} \inf_{w \in C^+ \setminus L^+(z)} F_{X,w}(z).$

Summary.

- The lower C-distribution function $F_{X,C}$ almost behaves like a (univariate) cdf.
- It is, however, different from the joint distribution function even if $C = \mathbb{R}^d_+$.
- For d = 1, $C = \mathbb{R}_+$, one gets back the univariate cdf.

\blacklozenge Lower & upper C-quantiles

$$\mathcal{P}(\mathbb{R}^d) = \left\{ D \mid D \subseteq \mathbb{R}^d \right\} \quad \text{power set}$$

Definition

The lower w-quantile of X is $Q_{X,w}^- \colon [0,1) \to \mathcal{P}(\mathbb{R}^d)$ defined by

$$Q_{X,w}^{-}(p) = \left\{ z \in \mathbb{R}^d \mid F_{X,w}(z) \ge p \right\}.$$

$$\mathcal{P}(\mathbb{R}^d) = \left\{ D \mid D \subseteq \mathbb{R}^d \right\} \quad \text{power set}$$

Definition

The lower w-quantile of X is $Q_{X,w}^- \colon [0,1) \to \mathcal{P}(\mathbb{R}^d)$ defined by

$$Q_{X,w}^{-}(p) = \left\{ z \in \mathbb{R}^d \mid F_{X,w}(z) \ge p \right\}.$$

The lower *C*-quantile of *X* is $Q_{X,C}^-$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ defined by $Q_{X,C}^-(p) = \Big\{ z \in \mathbb{R}^d \mid F_{X,C}(z) \ge p \Big\}.$ Straightforward results.

$$\forall p \in [0,1) \colon Q_{X,C}^{-}\left(p\right) = \bigcap_{w \in C^{+} \setminus \{0\}} Q_{X,w}^{-}\left(p\right).$$

Straightforward results.

$$\forall p \in [0,1) \colon Q_{X,C}^{-}\left(p\right) = \bigcap_{w \in C^{+} \setminus \{0\}} Q_{X,w}^{-}\left(p\right).$$

$$\forall z \in \mathbb{R}^d \colon F_{X,C}(z) = \sup\left\{p \in [0,1) \mid z \in Q^-_{X,C}(p)\right\}$$

 $(F_{X,C}$ can be reconstructed from the quantile function.)

Proposition

(a) $Q^-_{X,C}$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ has closed convex values and satisfies

$$\operatorname{cl}\operatorname{co}\left(Q_{X,C}^{-}\left(p\right)+C\right)=Q_{X,C}^{-}\left(p\right).$$

Proposition

(a) $Q^-_{X,C}$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ has closed convex values and satisfies

$$cl co \left(Q_{X,C}^{-}(p) + C\right) = Q_{X,C}^{-}(p).$$

(b) For all $b \in \mathbb{R}^d$ and all invertible $A \in \mathbb{R}^{d \times d}$,

 $Q_{X+b,C}^{-}\left(p\right)=Q_{X,C}^{-}\left(z\right)+b\quad and\quad Q_{AX,A^{T}C}^{-}\left(p\right)=AQ_{X,C}^{-}\left(p\right).$

Proposition

(a) $Q^-_{X,C}$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ has closed convex values and satisfies

$$cl co \left(Q_{X,C}^{-}(p) + C\right) = Q_{X,C}^{-}(p).$$

(b) For all $b \in \mathbb{R}^d$ and all invertible $A \in \mathbb{R}^{d \times d}$,

 $Q_{X+b,C}^{-}\left(p\right)=Q_{X,C}^{-}\left(z\right)+b\quad and\quad Q_{AX,A^{T}C}^{-}\left(p\right)=AQ_{X,C}^{-}\left(p\right).$

(c) If $p_1 \ge p_2$ then $Q_{X,C}^-(p_1) \subseteq Q_{X,C}^-(p_2)$.

Proposition

(a) $Q^-_{X,C}$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ has closed convex values and satisfies

$$cl co \left(Q_{X,C}^{-}(p) + C\right) = Q_{X,C}^{-}(p).$$

(b) For all $b \in \mathbb{R}^d$ and all invertible $A \in \mathbb{R}^{d \times d}$,

 $Q_{X+b,C}^{-}\left(p\right)=Q_{X,C}^{-}\left(z\right)+b\quad and\quad Q_{AX,A^{T}C}^{-}\left(p\right)=AQ_{X,C}^{-}\left(p\right).$

(c) If $p_1 \ge p_2$ then $Q_{X,C}^-(p_1) \subseteq Q_{X,C}^-(p_2)$. (d) If $X \le_C Y$ then $Q_{X,C}^-(p) \supseteq Q_{Y,C}^-(p)$ for all $p \in [0,1)$.

Proposition

(a) $Q^-_{X,C}$: $[0,1) \to \mathcal{P}(\mathbb{R}^d)$ has closed convex values and satisfies

$$cl co \left(Q_{X,C}^{-}(p) + C\right) = Q_{X,C}^{-}(p).$$

(b) For all $b \in \mathbb{R}^d$ and all invertible $A \in \mathbb{R}^{d \times d}$,

 $Q_{X+b,C}^{-}\left(p\right)=Q_{X,C}^{-}\left(z\right)+b\quad and\quad Q_{AX,A^{T}C}^{-}\left(p\right)=AQ_{X,C}^{-}\left(p\right).$

(c) If $p_1 \ge p_2$ then $Q_{X,C}^-(p_1) \subseteq Q_{X,C}^-(p_2)$. (d) If $X \le_C Y$ then $Q_{X,C}^-(p) \supseteq Q_{Y,C}^-(p)$ for all $p \in [0,1)$.

Note. (a): $Q_{X,C}^-$ maps into the complete lattice ordered by \supseteq :

$$\mathcal{G}(\mathbb{R}^d, C) := \Big\{ D \subseteq \mathbb{R}^d \mid D = \operatorname{cl} \operatorname{co} \left(D + C \right) \Big\}.$$

Set-valued quantiles

Lower C-quantiles and Tukey depth.

Tukey depth function.

$$HD_X(z) = \inf_{w \in \mathbb{R}^d \setminus \{0\}} P\left(X \in z - H^+(w)\right), \ z \in \mathbb{R}^d.$$

Lower C-quantiles and Tukey depth.

Tukey depth function.

$$HD_X(z) = \inf_{w \in \mathbb{R}^d \setminus \{0\}} P\left(X \in z - H^+(w)\right), \ z \in \mathbb{R}^d.$$

Tukey depth region.

$$D_X(p) = \left\{ z \in \mathbb{R}^d \mid HD_X(z) \ge p \right\}, \ p \in [0, 1/2].$$

Tukey depth function.

$$HD_X(z) = \inf_{w \in \mathbb{R}^d \setminus \{0\}} P\left(X \in z - H^+(w)\right), \ z \in \mathbb{R}^d.$$

Tukey depth region.

$$D_X(p) = \left\{ z \in \mathbb{R}^d \mid HD_X(z) \ge p \right\}, \ p \in [0, 1/2].$$

Observation. Special cases of $F_{X,C}$ and $Q^-_{X,C}$, respectively, for $C = \{0\}, C^+ = \mathbb{R}^d$: one looks for "deepest points."

Tukey depth function.

$$HD_X(z) = \inf_{w \in \mathbb{R}^d \setminus \{0\}} P\left(X \in z - H^+(w)\right), \ z \in \mathbb{R}^d.$$

Tukey depth region.

$$D_X(p) = \left\{ z \in \mathbb{R}^d \mid HD_X(z) \ge p \right\}, \ p \in [0, 1/2].$$

Observation. Special cases of $F_{X,C}$ and $Q^-_{X,C}$, respectively, for $C = \{0\}, C^+ = \mathbb{R}^d$: one looks for "deepest points."

Observation. Univariate quantile: d = 1, $C = C^+ = \mathbb{R}_+$.

Definition

For $w \in C^+ \setminus \{0\}$, the function $Q_{X,w}^+ \colon (0,1] \to \mathcal{P}(\mathbb{R}^d)$ defined by

$$Q_{X,w}^+(p) = \left\{ z \in \mathbb{R}^d \mid P(w^T X < w^T z) \le p \right\}$$

is called the *upper w-quantile function* of X. The function $Q_{X,C}^+$: $(0,1] \to \mathcal{P}(\mathbb{R}^d)$ defined by

$$Q_{X,C}^{+}\left(p\right) = \bigcap_{w \in C^{+} \setminus \{0\}} Q_{X,w}^{+}\left(p\right)$$

is called the *upper C-quantile function* of X.

Remark. $Q_{X,C}^+ \colon \mathbb{R}^d \to \mathcal{G}(\mathbb{R}^d, -C)$ (opposite to $Q_{X,C}^-$).

Surprising result. (no other concept known with this type of property)

 $Q_{X,C}^+(p) = Q_{X,-C}^-(1-p).$

Surprising result. (no other concept known with this type of property) O^+ (1) O^- (1)

$$Q_{X,C}^{+}(p) = Q_{X,-C}^{-}(1-p).$$

Compare this to

$$q_X^+(p) = -q_{-X}^-(1-p).$$

Summary.

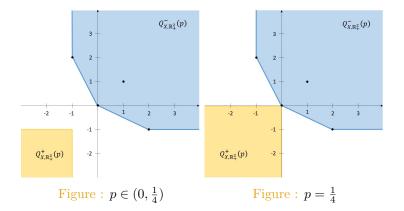
- The lower C-quantile $Q_{X,C}^-$ is a set-valued inverse of $F_{X,C}$.
- It shares most properties with scalar quantiles.
- It also generalizes the Tukey (halfspace) depth function as well as the univariate quantile.

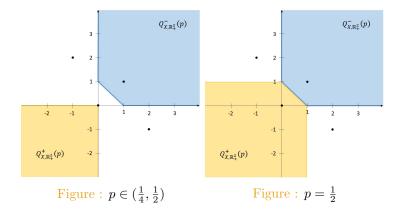
Example. (a four point uniform distribution)

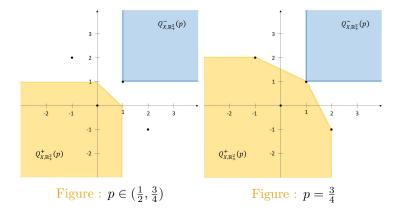
- $\Omega = \left\{ (-1,2)^T, (0,0)^T, (1,1)^T, (2,-1)^T \right\} \subseteq \mathbb{R}^2,$
- X uniformly distributed over Ω .

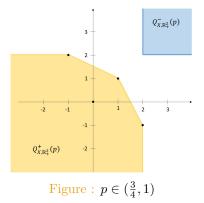
Lower and upper quantile sets for the seven cases

$$p \in (0, \frac{1}{4}), \ p = \frac{1}{4}, \ p \in (\frac{1}{4}, \frac{1}{2}), \ p = \frac{1}{2}, \ p \in (\frac{1}{2}, \frac{3}{4}), \ p = \frac{3}{4}, \ p \in (\frac{3}{4}, 1).$$









Remark. In general,

$$Q_{X,C}^{-}\left(p\right)\bigcap\,Q_{X,C}^{+}\left(p\right)=\emptyset.$$

Compare this to

 $LQ_X(p) \cap UQ_X(p) = \left[\inf LQ_X(p), \sup UQ_X(p)\right] = \left[q_X^-(p), q_X^+(p)\right].$

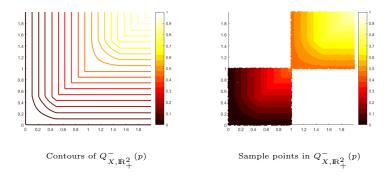


Figure : Lower *C*-quantiles in 5% increments for $C = \mathbb{R}^2_+$ and $X \sim \text{Uniform}((0,1) \times (0,1) \cup (1,2) \times (1,2)).$

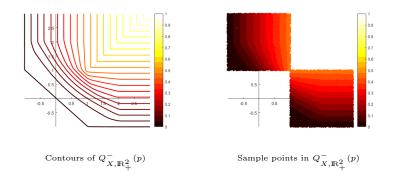


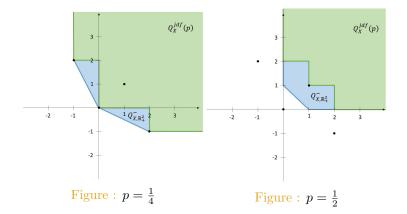
Figure : Lower *C*-quantiles in 5% increments for $C = \mathbb{R}^2_+$ and $X \sim \text{Uniform}((-1,1) \times (1,3) \cup (1,3) \times (-1,1)).$

The joint distribution lower quantile.

$$Q_{X}^{jd\!f}\left(p\right):=\left\{z\in\mathrm{I\!R}^{2}\mid F_{X}^{jd\!f}(z)\geq p\right\}$$

Example. (same as before)

- Q_X^{jdf} (p) is different from lower C-quantile in general.
 Q_X^{jdf} (p) is non-convex in general.
- $Q_{X,C}^{-}(p)$ is also different from the convex hull of $Q_{X}^{jdf}(p)$.



\blacklozenge Set-valued V@R & first order stochastic dominance

Definition

The Value-at-Risk of $X: \Omega \to \mathbb{R}^d$ at level $\alpha \in (0, 1)$ is

 $V@R_{\alpha,C}(X) = Q^{-}_{-X,C}(1-\alpha).$

Definition

The Value-at-Risk of $X: \Omega \to \mathbb{R}^d$ at level $\alpha \in (0, 1)$ is

 $V@R_{\alpha,C}(X) = Q^{-}_{-X,C}(1-\alpha).$

Recall. (univariate V@R)

 $V@R_{\alpha}(X) = q_{-X}^{-}(1-\alpha) \quad \text{for} \quad \alpha \in (0,1).$

A. Hamel

Basic formula.

$$V@R_{\alpha,C}(X) = \left\{ z \in \mathbb{R}^d \mid \sup_{w \in C^+ \setminus \{0\}} P\left(X + z \in -\operatorname{int} H^+(w)\right) \le \alpha \right\}$$
$$= \bigcap_{w \in C^+ \setminus \{0\}} \left\{ z \in \mathbb{R}^d \mid P\left(X + z \in -\operatorname{int} H^+(w)\right) \le \alpha \right\}$$

Basic formula.

$$V@R_{\alpha,C}(X) = \left\{ z \in \mathbb{R}^d \mid \sup_{w \in C^+ \setminus \{0\}} P\left(X + z \in -\operatorname{int} H^+(w)\right) \le \alpha \right\}$$
$$= \bigcap_{w \in C^+ \setminus \{0\}} \left\{ z \in \mathbb{R}^d \mid P\left(X + z \in -\operatorname{int} H^+(w)\right) \le \alpha \right\}$$

Interpretation. $V@R_{\alpha,C}(X)$ includes all deterministic portfolios z (= deposits) which keep the probability of bankruptcy $\leq \alpha$ when added to the random position X – for all "price" vectors $w \in C^+$ since

$$X + z \in -\operatorname{int} H^+(w) \quad \Leftrightarrow \quad w^T(X + z) < 0.$$

Proposition

(1) The function $X \mapsto V@R_{\alpha,C}(X)$ maps into $\mathcal{G}(\mathbb{R}^d, C)$ and is positively homogeneous. In particular, $V@R_{\alpha,C}(0) = C$.

Proposition

(1) The function $X \mapsto V@R_{\alpha,C}(X)$ maps into $\mathcal{G}(\mathbb{R}^d, C)$ and is positively homogeneous. In particular, $V@R_{\alpha,C}(0) = C$. (2) $X \mapsto V@R_{\alpha,C}(X)$ is \mathbb{R}^d -translative, i.e., $\forall y \in \mathbb{R}^d \colon V@R_{\alpha,C}(X+y\mathbb{I}) = V@R_{\alpha,C}(X) - y$.

Proposition

(1) The function $X \mapsto V@R_{\alpha,C}(X)$ maps into $\mathcal{G}(\mathbb{R}^d, C)$ and is positively homogeneous. In particular, $V@R_{\alpha,C}(0) = C$. (2) $X \mapsto V@R_{\alpha,C}(X)$ is \mathbb{R}^d -translative, i.e., $\forall y \in \mathbb{R}^d \colon V@R_{\alpha,C}(X+y1) = V@R_{\alpha,C}(X) - y$.

(3) $X \mapsto V@R_{\alpha,C}(X)$ is monotone non-increasing w.r.t. \leq_C , i.e., $X \leq_C Y$ implies $V@R_{\alpha,C}(X) \subseteq V@R_{\alpha,C}(Y)$.

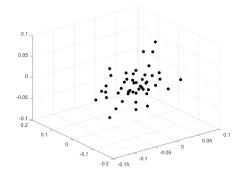
Proposition

(1) The function $X \mapsto V@R_{\alpha,C}(X)$ maps into $\mathcal{G}(\mathbb{R}^d, C)$ and is positively homogeneous. In particular, $V@R_{\alpha,C}(0) = C$. (2) $X \mapsto V@R_{\alpha,C}(X)$ is \mathbb{R}^d -translative, i.e., $\forall y \in \mathbb{R}^d \colon V@R_{\alpha,C}(X+y1) = V@R_{\alpha,C}(X) - y$.

(3) $X \mapsto V@R_{\alpha,C}(X)$ is monotone non-increasing w.r.t. \leq_C , i.e., $X \leq_C Y$ implies $V@R_{\alpha,C}(X) \subseteq V@R_{\alpha,C}(Y)$.

Note. This qualifies V@R as a set-valued risk measure in the sense of Hamel/Heyde 2010 SIFIN.

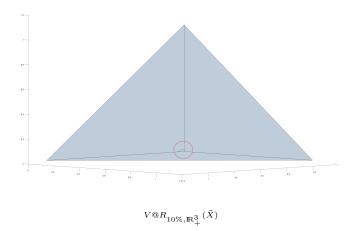
Value-at-Risk.

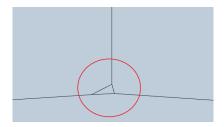


 $\tilde{X} = (R_{DAX} \mid R_{HSI} \mid R_{S\&P})$

Set-valued quantiles

Value-at-Risk.





Vertices of V@R

Figure : Value-at-Risk with $C = \mathbb{R}^3_+$ for the monthly return of three major stock indexes.

Scalarization formula.

$$V@R_{\alpha,C}(X) = \bigcap_{w \in C^+ \setminus \{0\}} \left\{ z \in \mathbb{R}^d \mid w^T z \ge V@R_{\alpha}^{sca}(w^T X) \right\}$$

Scalarization formula.

$$V@R_{\alpha,C}(X) = \bigcap_{w \in C^+ \setminus \{0\}} \left\{ z \in \mathbb{R}^d \mid w^T z \ge V@R_{\alpha}^{sca}(w^T X) \right\}$$

Special case. $C = \mathbb{R}^d_+$

$$V@R_{\alpha,\mathbb{R}^d_+}(X) = \bigcap_{w \in \mathbb{R}^d_+ \setminus \{0\}} \left\{ z \in \mathbb{R}^d \mid w^T z \ge V@R_{\alpha}^{sca}(w^T X) \right\}$$
$$\subseteq \bigcap_{i \in \{1,\dots,d\}} \left\{ z \in \mathbb{R}^d \mid z_i \ge V@R_{\alpha}^{sca}(X_i) \right\},$$

i.e., $V@R_{\alpha,\mathbb{R}^d_+}$ is "more conservative" than the component-wise Value-at-Risk.

Embrechts/Puccetti 06. F_X^{jdf} jdf and

$$V@R^{jdf}_{\alpha}(X) = \partial \left\{ z \in \mathbb{R}^d \mid F^{jdf}_X(z) \ge \alpha \right\}.$$

Embrechts/Puccetti 06. F_X^{jdf} jdf and

$$V@R^{jdf}_{\alpha}(X) = \partial \left\{ z \in \mathbb{R}^d \mid F^{jdf}_X(z) \ge \alpha \right\}.$$

Associated to order generated by \mathbb{R}^d_+ ; even if it is replaced by C and ∂ is dropped,

$$V@R_{\alpha,C}(X) = Q^{-}_{-X,C}(1-\alpha) = \left\{ z \in \mathbb{R}^d \mid F_{-X,C}(z) \ge 1-\alpha \right\}$$
$$\supseteq \left\{ z \in \mathbb{R}^d \mid P(-X \in z-C) \ge 1-\alpha \right\}$$

since

$$\forall z \in \mathbb{R}^d \colon F_{-X,C}(z) \ge P(-X \in z - C).$$

Note. $V@R_{\alpha,C}$ is "less conservative" than the E/P version.

The random variable $Y \in L^0_d(\Omega, \mathcal{F}, P)$ is said to C-stochastically dominate $X \in L^0_d(\Omega, \mathcal{F}, P)$, written as $Y \succeq^C_{FSD} X$, iff

 $\forall z \in \mathbb{R}^{d} \colon F_{Y,C}\left(z\right) \leq F_{X,C}\left(z\right).$

The random variable $Y \in L^0_d(\Omega, \mathcal{F}, P)$ is said to C-stochastically dominate $X \in L^0_d(\Omega, \mathcal{F}, P)$, written as $Y \succeq^C_{FSD} X$, iff

$$\forall z \in \mathbb{R}^{d} \colon F_{Y,C}(z) \leq F_{X,C}(z) \,.$$

Proposition

For $X, Y \in L^0_d(\Omega, \mathcal{F}, P)$, $Y \succeq^C_{FSD} X$ is true if, and only if,

$$\forall p \in (0,1) \colon Q_{Y,C}^{-}(p) \subseteq Q_{X,C}^{-}(p),$$

and if, and only if,

$$\forall \alpha \in (0,1) \colon V@R_{\alpha,C}(X) \subseteq V@R_{\alpha,C}(Y).$$

\blacklozenge Multivariate V@R for conical market models

Obvious idea. Make the cone C random.

Motivation (from finance). Conical market models.

Motivation (from statistics). I hardly have a clue, just ideas. Ilya, would it make sense to analyse data with an order relation which changes with the data point?

V@R for the market.

The model.

• $K(\omega) \subseteq \mathbb{R}^d$ closed convex cones (measurable) generating on L^0_d the order

$$X^1 \leq_K X^2 \quad \Leftrightarrow \quad X^2 - X^1 \in K \ (P - a.s.)$$

V@R for the market.

The model.

• $K(\omega) \subseteq \mathbb{R}^d$ closed convex cones (measurable) generating on L^0_d the order

$$X^1 \leq_K X^2 \quad \Leftrightarrow \quad X^2 - X^1 \in K \ (P - a.s.)$$

• Potential quantiles: $z \in \mathbb{R}^m$ ordered via closed convex cone $K_0 \subseteq \mathbb{R}^m$ with $1 \le m \le d$:

$$z^1 \leq_{K_0} z^2 \quad \Leftrightarrow \quad z^2 - z^1 \in K_0.$$

V@R for the market.

The model.

• $K(\omega) \subseteq \mathbb{R}^d$ closed convex cones (measurable) generating on L^0_d the order

$$X^1 \leq_K X^2 \quad \Leftrightarrow \quad X^2 - X^1 \in K (P - a.s.)$$

• Potential quantiles: $z \in \mathbb{R}^m$ ordered via closed convex cone $K_0 \subseteq \mathbb{R}^m$ with $1 \le m \le d$:

$$z^1 \leq_{K_0} z^2 \quad \Leftrightarrow \quad z^2 - z^1 \in K_0.$$

• A linear operator $T: \mathbb{R}^m \to L^0_d(\Omega, \mathcal{F}, P)$ which generates a another cone $TK_0 \subseteq L^0_d$.

Example. $Z^1, \ldots, Z^m \in L^0_d$ linearly independent and $Tz = \sum z_i Z^i$. In particular, $Z^i = b^i \mathbb{1}$ with $b^i \in \mathbb{R}^d$ (riskless portfolios used as deposits).

Example. $Z^1, \ldots, Z^m \in L^0_d$ linearly independent and $Tz = \sum z_i Z^i$. In particular, $Z^i = b^i \mathbb{1}$ with $b^i \in \mathbb{R}^d$ (riskless portfolios used as deposits).

Pointwise cones.

•
$$C(\omega) = (TK_0)(\omega) + K(\omega),$$

• $C^+(\omega) = [(TK_0)(\omega) + K(\omega)]^+ = (TK_0)(\omega)^+ \cap K(\omega)^+.$

This can be seen as a one-period market model with m eligible assets.

The composition of the function $F_{X,Y}: L^0_d \to [0,1]$ with T which is defined by

$$F_{X,Y}(Tz) = \Pr[Y^{\top}X \le Y^{\top}(Tz)]$$

is called the Y-distribution function of X with $Y \in L^0_d$.

The composition of the function $F_{X,Y}: L^0_d \to [0,1]$ with T which is defined by

$$F_{X,Y}(Tz) = \Pr[Y^{\top}X \le Y^{\top}(Tz)]$$

is called the Y-distribution function of X with $Y \in L^0_d$. The composition of the function $F_{X,C} \colon L^0_d \to [0,1]$ with T defined by

 $F_{X,C}(Tz) = \inf\{F_{X,Y}(Tz) \mid Y \in C^+\}$

is called the C-distribution function of X (with respect to T).

The lower Y-quantile of X is $Q_{X,Y}^-$: $[0,1) \to \mathcal{P}(\mathbb{R}^m)$ defined by $Q_{X,Y}^-(p) = \{z \in \mathbb{R}^m \mid F_{X,Y}(Tz) \ge p\}.$ The lower C-quantile of X is $Q_{X,C}^-$: $[0,1) \to \mathcal{P}(\mathbb{R}^m)$ defined by $Q_{X,C}^-(p) = \{z \in \mathbb{R}^m \mid F_{X,C}(Tz) \ge p\}.$

Note. Many (not all) properties carry over from the constant cone case.

The Value-at-Risk of $X: \Omega \to \mathbb{R}^m$ at level $\alpha \in (0, 1)$ is

 $V@R_{\alpha,C}(X) = Q^{-}_{-X,C}(1-\alpha).$

The Value-at-Risk of $X: \Omega \to \mathbb{R}^m$ at level $\alpha \in (0, 1)$ is

$$V@R_{\alpha,C}(X) = Q^{-}_{-X,C}(1-\alpha).$$

Perspective. stochastic dominance, AV@R, Kusuoka representations ... data analysis etc.

Conclusion. There seems to be a canonical way to introduce quantiles in the multivariate case in the presence of an in general non-complete order relation for the values of random variables.

Conclusion. There seems to be a canonical way to introduce quantiles in the multivariate case in the presence of an in general non-complete order relation for the values of random variables.

Test question. Where is the infimum in $Q_{X,C}^{-}(p) = \{z \in \mathbb{R}^d \mid F_{X,C}(z) \ge p\}?$ **Conclusion.** There seems to be a canonical way to introduce quantiles in the multivariate case in the presence of an in general non-complete order relation for the values of random variables.

Test question. Where is the infimum in $Q_{X,C}^{-}(p) = \left\{ z \in \mathbb{R}^{d} \mid F_{X,C}(z) \geq p \right\}?$

Reference. Hamel/Kostner: Cone distribution functions and quantiles for multivariate random variables JMVA 167 (2018) 97-113 and follow-ups

THANK YOU FOR FOLLOWING ...

... INTO THE DEPTH OF STATISTICS.

A. Hamel

Set-valued quantiles

SET OPTIMIZATION for APPLICATIONS

4th International Conference on Set Optimization and Set-Valued Variational Analysis

at Friedrich Schiller University Jena, Germany

February 11-15, 2019