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Main problem

Definition

A probability measure µ on
(
R2

+,B(R2
+)
)
belongs to W∗ if there

are a filtered probability space B = (Ω,F , (Ft)t>0,P) and a
locally integrable increasing process X = (Xt)t>0, X0 = 0 defined
on B such that

µ = Law(X∞,A∞),

where A = (At)t>0 is the compensator of X .

The main problem is to characterize the set W∗.
If µ ∈W+, then we have necessarily∫

x µ(dx , da) =

∫
aµ(dx , da). (1)

If the integrals in (1) are finite, we write µ ∈W. This case is called
integrable.
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A necessary condition

Let X be a nonnegative local submartingale with the Doob–Meyer
decomposition X = M + A, X0 = M0 = A0 = 0, on some
stochastic basis (Ω,F ,F,P); M is a local martingale, A is a
predictable integrable increasing process.

Proposition

Let X be a nonnegative local submartingale, X0 = 0. Then, for any
λ > 0, (X − A + λ)1{A<λ} is a nonnegative supermartingale. In
particular, P-a.s.

{A∞ <∞} ⊆ {X →} (2)

and, for any λ > 0,

EX∞1{A∞6λ} 6 E(A∞ ∧ λ). (3)
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Proof

Proof.
Fix λ > 0 and put H := 1{A<λ} = 1J0,SJ, where
S := inf {t > 0: At > λ} is a predictable stopping time. It is clear
that H is predictable and right-continuous. Then, for every
semimartingale Y ,

Y0 + H · Y = Y1J0,SJ + YS−1JS,∞J.

Applying this equality to Y = X − A + λ, we get

(X − A + λ)1{A<λ} = λ+ H ·M − XS−1JS ,∞J − (λ− AS−)1JS ,∞J.

Since all other processes in this formula are nonnegative, the local
martingale H ·M is bounded from below by −λ and hence is a
supermartingale.
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End of the proof

End of the proof.
Therefore, the nonnegative process Z := (X − A + λ)1{A<λ} on
the left, being the difference of a supermartingale and an increasing
process, is also a supermartingale. Since a nonnegative
supermartingale converges a.s., we obtain that X converges a.s. on
the set {A∞ < λ}, and (2) follows. Finally, it follows from the
supermartingale property of Z that EZ∞ 6 EZ0 = λ, i.e.
EX∞1{A∞<λ} 6 E(A∞ ∧ λ). Now, (3) follows because its
right-hand side is continuous in λ.
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Equality in (3)

It follows from the proof that, for a given λ > 0, equality in (3)
holds if and only if

E1J0,SJ ·M∞ = 0, (4)

XS−1{S<∞} = 0 a.s. (5)

(λ− AS−)1{S<∞} = 0 a.s. (6)
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Change of time

Let A = (At)t>0 be an adapted increasing process. For s > 0, define

Cs = inf {t > 0: At > s}.

Then Cs is a stopping time for every s and trajectories s  Cs are
nondecreasing and right-continuous. The process C = (Cs) is called
the change of time generated by A.
Recall that, if Y = (Yt)t>0 is a progressively measurable process,
then Y ◦ C =

(
YCt

)
t>0

is the transform of Y via the change of
time (Ct). This definition assumes implicitly that a random variable
Y∞ is defined on the set

⋃
t{Ct =∞} = {A∞ <∞}, and then

Y ◦ Ct = Y∞ for t > A∞. Since we have proved that X converges
a.s. on this set, the transforms of X , M, and A are well defined..
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Equality in (3) in terms of the time change

Proposition

Let X be a nonnegative local submartingale, X0 = 0. The following
assertions are equivalent:
(i) for any λ > 0,

EX∞1{A∞6λ} = E(A∞ ∧ λ);

(ii)
ACt = A∞ ∧ t, XCt = X∞1{t>A∞}, (7)(

MCt

)
t>0

is a martingale relative to the filtration
(
FCt

)
t>0

.

The proof is based on the analysis of relations (4)–(6).
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Equality in (3) for increasing X

If X is an increasing process, then necessary and sufficient
conditions for equality in (2) have a simple form.

Proposition

An increasing process X satisfies assertions (i)–(ii) in the first
proposition if and only if X is locally integrable and, up to
indistinguishability,

X = ξ1JT ,∞J,

where T is a totally inaccessible stopping time and ξ is a
nonnegative FT -measurable random variable.
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Predictability is important

Let N be a local martingale bounded from below by a uniformly
integrable martingale, N0 = 0. Put Nt = sup06s6t Ns , then
N =

(
Nt

)
t>0

is a locally integrable increasing process. Now put
X := N −N, M := −N, A := N. Then the triple (X ,M,A) satisfies
all the assumptions of the first proposition except predictability of
A. For λ > 0, define T := inf {t > 0: At > λ}. Then

0 > ENT > λP(N∞ > λ) +

∫
{N∞6λ}

N∞ dP

= λP(A∞ > λ) +

∫
{A∞6λ}

(A∞ − X∞) dP,

i.e. it holds
EX∞1{A∞6λ} > E(A∞ ∧ λ). (8)

This inequality is opposite to inequality(3).
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Equality in (8)

It follows from these arguments that we have equality in inequality
(8) for all λ > 0 if and only if N is a.s. continuous. Sufficiency
follows from the first proposition, and another explanation is that
continuity of N implies that NT is bounded from above for every λ.
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Rogers’ Theorem

A probability measure µ on
(
R2

+,B(R2
+)
)
belongs to W− if there

are a filtered probability space (Ω,F , (Ft)t>0,P) and a uniformly
integrable martingale N = (Nt)t>0, N0 = 0, on it such that

µ = Law(N∞ − N∞,N∞),

where Nt = sup06s6t Ns .

Theorem (Rogers (1993))

A probability measure µ on R2
+ belongs to W− if and only if∫

|x − a|µ(dx , da) <∞,
∫

(x − a)µ(dx , da) = 0,

and ∫
{a6λ}

x µ(dx , da) >
∫

(a ∧ λ)µ(dx , da) for any λ > 0.
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Rogers’ Theorem
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+)
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Equalities in (3) and (8)

If, for a local martingale N, there is equality in (8) for all λ > 0,
then N is continuous, i.e. a local submartingale X = N − N
satisfies A = N and, therefore, there is equality in (3) for all λ > 0.

Assume now that X is a local submartingale satisfying the
assumptions of the first proposition and such that there is equality
in (3) for all λ > 0. Put N := A− X . Then A = N and, therefore,
there is equality in (8) for all λ > 0.
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Conjecture

Conjecture

A probability measure µ on R2
+ belongs to W∗ if and only if∫

x µ(dx , da) =

∫
aµ(dx , da) (9)

and ∫
{a6λ}

x µ(dx , da) 6
∫

(a ∧ λ)µ(dx , da) for any λ > 0. (10)

We know that the conjecture is true, in particular, if
1 There is equality in (10) for any λ > 0.
2 We have∫

(x − a)+ µ(dx , da) >
∫

(a− x)+ µ(dx , da).

3 a = x + c µ-a.s. for some c > 0.
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Case 1

Proposition

Let V and W be random variables with values in R+ and R+

respectively on a probability space (Ω,F ,P), moreover,
{W =∞} ⊆ {V = 0} a.s. and

EV1{W6λ} = E(W ∧ λ) for any λ > 0. (11)

Define Ft as the σ-field of subsets in F whose intersection with
the set {W > t} is either empty or coincides with {W > t}. Put

Xt := V 1{t>W }, At := W ∧ t.

Then X = (Xt)t>0 is an (Ft)-adapted locally integrable increasing
process, A = (At)t>0 is its (Ft)-compensator, and
(X∞,A∞) = (V ,W ) a.s.

Alexander Gushchin The joint law of an increasing process and its compensator



Proof

Proof.
Trivially, X and A are adapted and increasing. Moreover, A is
continuous and hence predictable. In our terms equality (11) can be
rewritten as EXt = EAt for any t > 0, in particular, Xt is
integrable. Let s < t. Then Xs = Xt and As = At on the set
{W 6 s}. Therefore,∫
{W>s}

(
(Xt−At)−(Xs−As)

)
dP =

∫
Ω

(
(Xt−At)−(Xs−As)

)
dP = 0.

It follows from the definition of Fs that
E
(
(Xt − At)− (Xs − As)

∣∣Fs

)
= 0, i.e. X − A is a martingale.
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When is M a uniformly integrable martingale?

Remark

If E|V −W | <∞ in the previous proposition, then X − A is a
uniformly integrable martingale if and only if any one of the
following two equivalent conditions holds:
(1) E(V −W ) = 0;
(2) limλ→∞ λP(W > λ) = 0.
Indeed, necessity of the first condition is obvious, and it implies
E
(
(X∞ − A∞)− (Xt − At)

∣∣Ft

)
= 0 for any t > 0 similarly to the

previous proof. Equivalence of the first and the second conditions
follows easily from (11) if one takes into account that W <∞ a.s.
under the current assumptions.
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Second key proposition

The proof in Case 2 is based on the following coupling-type
proposition.

Proposition

Let a probability measure µ on
(
R2

+,B(R2
+)
)
satisfy∫

(x − a)+ µ(dx , da) >
∫

(a− x)+ µ(dx , da), (12)

∫
{a6λ}

x µ(dx , da) 6
∫

(a ∧ λ)µ(dx , da) for any λ > 0. (13)

Then there exists a probability space (Ω,F ,P) and random
variables X , Y , Z on it such that Law(X ,Y ) = µ, 0 6 Z 6 X ∧Y ,
and ∫

{Y−Z6λ}

(X − Y + λ) dP = λ for any λ > 0.
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Two remarks

Remark

(14) and (16) imply∫
x µ(dx , da) =

∫
aµ(dx , da).

Remark

The statement of the proposition guarantees that the random
variables V := X − Z and W := Y − Z satisfy the assumptions of
the proposition from Case 1.

Alexander Gushchin The joint law of an increasing process and its compensator



Important corollary

The constructions in Cases 1 and 2 have important property: one
can always construct an increasing process X with a continuous
compensator A. Since Case 2 includes the integrable case, we have

Corollary
(i) If µ ∈W∗. there are a filtered probability space
B = (Ω,F , (Ft)t>0,P) and a locally integrable increasing process
X = (Xt)t>0, X0 = 0 defined on B such that

µ = Law(X∞,A∞),

where the compensator A of X is continuous.
(ii) If X is a nonnegative local submartingale with the Doob–Meyer
decomposition X = M + A, X0 = M0 = A0 = 0, T is a stopping
time, then Law(XT ,AT ) ∈W∗.
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Now it can be shown that W∗ is the set of all joint laws of
(XT ,AT ), T is a stopping time, or (X∞,A∞), where A is a
predictable increasing process in the Doob–Meyer decomposition of
X , X0 = 0, where X runs over any of the following classes:

all nonnegative local submartingales;
all locally integrable increasing processes;
all quasi-left continuous locally integrable increasing processes;
all processes of the form |M|p, p > 1 is fixed, where M is a
local martingale with M0 = 0 and M ∈ H

p
loc;

the quadratic variations [M,M] of locally square-integrable
martingales M with M0 = 0 (in this case the compensator of
[M,M] is the quadratic characteristic 〈M,M〉).
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Case 3

Theorem

Let µ be a probability measure on {y = x + 1, x > 0} and∫
x µ(dx , dy) =∞. Then there exists a stochastic basis

(Ω,F , (Ft)t>0,P), and a locally integrable increasing process
X = (Xt)t>0, X0 = 0 defined on it, such that Law(X∞,A∞) = µ,
where A = (At)t>0, A0 = 0, is the compensator of X .
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Idea of the proof

To prove Theorem 2, it is sufficient to construct, on the same
stochastic basis, a nonnegative martingale M = (Mn)n=0,1,2,...,
M0 = 1, and a r.v. Y with distribution P(Y ∈ B) = µ(B × R+)
satisfying the inequality S :=

∑∞
k=1 Mk 6 Y . If we define an

increasing process Xt :=
∑

16k6t Mk , then its compensator has the
form At = 1 +

∑
16k6t−1 Mk , t > 1. Thus,

A∞ = 1 +
∑∞

k=1 Mk = 1 + X∞ = S + 1. It is easy to check that
the increasing process, Xt/(1−t)1{t<1} + Y 1{t>1}, is as required. In
turn, for the desired construction, it is sufficient to prove a weaker
statement (see the last lemma below).
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Lemma 1

Lemma

Let p > 0, c > 0, and a nonnegative r.v. Z with EZ =∞ be given.
Then there exist d > c and a r.v. L taking values in {0} ∪ [c , d ]
such that P(L > 0) 6 p, EL = 1, and

inf
x6d

[
P(Z > x)− P(L > x)

]
> 0. (14)
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Proof of Lemma 1

Proof. Denote G (x) := 1
2 P(Z > x). Since EZ =∞, we have∫∞

0 [δ ∧ G (x)] dx =∞ for every δ := p ∧ c−1 ∧ G (c). Then there
exists d > c such that

∫ d
0 [δ ∧ G (x)] dx = 1. A r.v. L > 0 with

P(L > x) = [δ ∧ G (x)]1{x<d}, x > 0, (which clearly exists) satisfies
all the requirements; in particular,
P(Z > x)− P(L > x) > G (x) > G (d) > 0 for x 6 d . This proves
the lemma.
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Lemma 2

Lemma

Let a r.v. Li , i = 1, 2, take values in {0} ∪ [ci−1, ci ], where
0 < c0 6 c1 6 c2, and EL1 = EL2. Then L2 is greater than L1 in
convex order, i.e. Ef (L1) 6 Ef (L2) for any convex function f .
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Proof of Lemma 2

Proof. The statement is evident for a convex function f satisfying
f (0) = f (c1) = 0. The general case follows from this by subtracting
a linear function from f .
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Lemma 3

Lemma

Let Y be a nonnegative r.v. with EY =∞. Then there exists a
nonnegative martingale M = (Mn)n=0,1,2,..., M0 = 1, such that

P(S > x) 6 P(Y > x) for any x > 0, where S :=
∞∑
n=1

Mn.

(15)
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Proof of Lemma 3

Proof. We proceed by induction. Suppose that for some
n ∈ {0, 1, 2, . . . } we have constructed numbers
1 = c0 6 c1 6 . . . 6 cn and r.v.’s M1, . . . ,Mn with the following
properties: Mk , k = 1, . . . , n, takes values in {0} ∪ [ck−1, ck ], the
sequence 1,M1, . . . ,Mn is a martingale, and

εn := inf
x6Cn

[
P(Y > x)− P(Sn > x)

]
> 0, (16)

where Sn :=
∑n

k=1 Mk and Cn :=
∑n

k=1 ck . We need to construct
a number cn+1, and a r.v. Mn+1, such that the aforementioned
properties hold when n is replaced by n + 1.
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Continuation of the proof

To achieve this, we apply Lemma 1 with (Y − Cn)+ as Z , a
positive p < P(Mn > 0) ∧ εn, and c = cn. Then we obtain a r.v. L
with mean 1, with P(L > 0) 6 p, which takes values in
{0} ∪ [cn, cn+1], where cn+1 := d , and which satisfies (14). Denote
by qn the value of the expression on the left in (14). By Lemma 2,
L is greater than Mn in convex order. It is well known that, under
this condition, we can construct (on the same space or on its
extension) a r.v. Mn+1 such that Law(Mn+1) = Law(L) and
E(Mn+1|M1, . . . ,Mn) = Mn. The martingale property implies that
{Mk = 0} ⊆ {Mk+1 = 0} a.s., k = 1, . . . , n. Therefore,
{Mk > 0} ⊆ {Sk ∈ [1 + Ck−1,Ck ]} a.s. Since the intervals
[1 + Ck−1,Ck ] do not intersect, the last inclusion is equality a.s.
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End of the proof

To check (16) with n replaced by n + 1, we consider 3 cases for the
location of x . If x < 1 + Cn−1, then
{Sn 6 x} ⊆ {Mn = 0} ⊆ {Sn+1 = Sn} a.s. And hence
P(Sn > x) = P(Sn+1 > x). For x ∈ [1 + Cn−1,Cn], we have that
P(Sn+1 > x) 6 P(Sn > x) + P(Mn+1 > 0) and hence that
P(Y > x)− P(Sn+1 > x) > εn − P(Mn+1 > 0) > 0. Finally, since
Sn 6 Cn, we have that
P(Sn+1 > x) 6 P(L > x − Cn) 6 P(Y > x)− qn for
x ∈ (Cn,Cn+1]. The induction step has been proved. Since
P(S > x) = limn P(Sn > x), this proves the lemma.
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Thank you for the attention!
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