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Motivation Model Solution Conclusion

The Problem

• Options:
Available on stocks, bonds, indices, futures, commodities.
Usually available on dozens of strikes and a handful of maturities.

• S&P 500 index options returns: approximately -3% a week.
• Potentially high returns from selling options. Certainly high risks.
• How to construct optimal portfolios?
• High dimensional problem.

Example: 10 assets × 20 strikes = 200 options. With a single maturity.
• Markowitz? Problematic.

Options with only a small strike difference are nearly collinear.
Nearly singular covariance matrix.
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Motivation Model Solution Conclusion

One Asset
• With one asset and one maturity, problem tractable.
• X underlying asset price at maturity.

cX (K ) price of a call option on X with strike price K .
pX (x) physical marginal density of X .

• Assume that continuum of strikes is available.
• Risk-neutral density qX (K ) is (Breeden and Litzenberger, 1978)

qX (K ) := c′′X (K ) (1)

• Thus, the unique SDF is the random variable mX (x) = c′′X (x)/pX (X ).
• If the function mX is regular enough, the payoff decomposes as a portfolio

of call and put options (Carr and Madan, 2001)

mX (K ) = mX (K0) + m′X (K0)(K − K0)

+

∫ K0

0
m′′X (κ)(κ− K )+dκ+

∫ ∞
K0

m′′X (κ)(K − κ)+dκ.

• Payoffs with maximal Sharpe of the form R = a + b mX (X ) with b < 0.
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Incompleteness with Multiple Assets

• Call and Put options available on all sorts of underlying assets.
• But each option depends only on one asset.
• Option prices identify risk-neutral marginals,

but not the risk-neutral dependence structure.
• Infinitely many risk-neutral laws consistent with market marginals.
• Market incomplete.
• High dimensional problem, but not high enough to complete market...
• Which risk neutral law to use?
• It depends on the investor’s objective.
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Literature

• Significant (negative) risk premia in options:
Coval and Shumway (2001), Bakshi and Kapadia (2003), Santa-Clara and
Saretto (2009), Schneider and Trojani (2015).

• Optimal payoff as weighted sum of calls and puts on all strikes.
Carr and Madan (2001), Carr, Jin, Madan (2001).

• Performance manipulation with options on one asset: Goetzmann,
Ingersoll, Spiegel, Welch (2007), Guasoni, Huberman, Wang (2011).

• Dynamic portfolio choice with options on one asset and one or two strikes:
Liu and Pan (2003), Eraker (2013), Faias and Stanta Clara (2011).

• “Greek efficient” portfolios with multiple assets: Malamud (2014).
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The Model

• Simplifications: one maturity, continuum of strikes.
Shortest maturity options are most liquid. Strikes very numerous.
Over 200 for the S&P 500 index, over 100 for large stocks.

• One period. Underlying asset prices at end of period X1, . . . ,Xn.
Random variables on a probability space (Ω,F ,P), F = σ(X1, . . . ,Xn).

• By Carr-Madan formula, any smooth function f of Xi corresponds to a
weighted average of options.

• Define options portfolio as a n-tuple (f1(x1), . . . , fn(xn)) of L2 functions with
finite price, defined as expecation under risk-neutral marginal.

• Optimal payoffs regular if densities regular.
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Portfolio Objective

• Assume zero safe rate to simplify notation.
• Payoff Z = f1(X1) + · · ·+ fn(Xn) and price π.
• Maximize the Sharpe ratio, i.e., find the returns that

max
R

E [Z − π]

σ(Z )

• Payoff identified up to scaling and price.
Z optimal iff a + bZ optimal, with b > 0.

• Ubiquitous objective in performance evaluation.
• And tractable.
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Duality
• Maximixing Sharpe ratio equivalent to minimizing variance of SDF.
• Convex R ⊂ L2(F ,P) space of payoffs.

• Assume some SDF M̂ > 0 characterizes prices, and denote all SDFs by

M = {M ∈ L2,E[RM] = E[RM̂] for all R ∈ R}.

• Implies that for any excess return:

0 = E [RM] = cov(R,M) + E[R]E[M] ≥ −σ(R)σ(M) + E[R]

• Whence Hansen-Jagannathan bound:

sup
R∈R

σ(R) 6=0,E[MR]=0

E[R]

σ(R)
≤ inf

M∈M
σ(M)

• Morale: instead of looking for R, look for SDF M∗ with minimal variance.
• If M∗ is a payoff, R = −M∗ + E [(M∗)2] spans all optimal returns.
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Dual Problem

• To ease notation: two assets with payoffs X and Y . Solve

min
M∈M

E [M2]

subject to the restrictions

E [M|X ] =
qX (X )

pX (X )
, E [M|Y ] =

qY (Y )

pY (Y )
.

• To guess solution, consider SDF of the form M = m(X ,Y ).
(Intuitively, other sources of randomness would only increase variance.)

• Two families of infinitely many constraints: Lagrange multipliers?
• Reformulate problem in terms of densities.
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Densities
• Find m(x , y) that minimizes (interval (0,∞) used for concreteness)∫ ∞

0

∫ ∞
0

m(x , y)2p(x , y)dxdy

subject to the constraints∫ ∞
0

m(x , y)
p(x , y)

pX (x)
dy =

qX (x)

pX (x)

∫ ∞
0

m(x , y)
p(x , y)

pY (y)
dx =

qY (y)

pY (y)

• Formally, rewrite as unconstrained problem:

∞∫
0

∞∫
0

m(x , y)2p(x , y)dxdy −
∞∫

0

ΦX (x)

 ∞∫
0

m(x , y)p(x , y)dy − qX (x)

dx

−
∞∫

0

ΦY (y)

 ∞∫
0

m(x , y)p(x , y)dx − qY (y)

dy ,

• Functions ΦX (x) and ΦY (y) as infinite-dimensional Largrange multipliers.
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Integral Equations
• Eliminating constant terms, equivalent to:∫ ∞

0

∫ ∞
0

(m(x , y)− ΦX (x)− ΦY (y)) m(x , y)p(x , y)dxdy .

• Setting first-order variation to zero leads to candidate solution

m∗(x , y) =
1
2

(ΦX (x) + ΦY (y))

where ΦX (x) and ΦY (y) are identified by the system of equations

1
2

ΦX (x)pX (x) +
1
2

∫ ∞
0

ΦY (y)p(x , y)dy =qX (x) x > 0,

1
2

∫ ∞
0

ΦX (x)p(x , y)dx +
1
2

ΦY (y)pY (y) =qY (y) y > 0.

• Does this have a solution?
• If (ΦX ,ΦY ) works, then Φ′X (x) = Φ′X (x) + c,Φ′Y (y) = ΦY (y)−c also works.
• Eliminate degree of freedom by setting∫ ∞

0
ΦX (x)pX (x)dx =

∫ ∞
0

ΦY (y)pY (y)dy
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Main Result (1/2)

Theorem

Assume thatM 6= ∅ and
∥∥∥ pi pc

i
p

∥∥∥2

p
<∞,1 ≤ i ≤ n. Then:

• (Existence and Uniqueness) There exists a unique minimal SDF M∗ ∈M.

• (Linearity) There exist Φ := (Φ1, . . . ,Φn), where each Φi ∈ L2
p for

1 ≤ i ≤ n, such that the SDF is of the form M∗ = m∗(X ), where

m∗(ξ) = 1
n

∑n
i=1 Φi (ξi ).

• (Identification) Φ is the unique solution to the system of integral equations

pi (ξi )Φi (ξi ) +
∑
j 6=i

∫
Dc

i

Φj (ξj )p(ξ)dξc
i = nqi (ξi )

with the uniqueness constraints
∫

Ii
Φi (ξi )pi (ξi )dξi = 1,1 ≤ i ≤ n.
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Main Result (2/2)
Theorem

• (Performance) Optimal excess returns are of the form a(m∗ − E[(m∗)2])
for a < 0, and their common maximum Sharpe ratio is

SR =

√√√√1
n

n∑
i=1

∫
Ii

Φi (ξi )qi (ξi )dξi − 1. (2)

• (Regularity) Let (qi )
n
i=1 ⊂ Ck (R) with k ≥ 0. Denoting the continuous

partial derivatives by ∂βξi
p(ξ), 0 ≤ β ≤ k, if for any R > 0 there exists

α ∈ (1/2,1] such that

sup
ξ:‖ξi‖≤R

∣∣∣∣∣ ∂
β
ξi

p(ξ)

(pc
i (ξc

i ))α

∣∣∣∣∣ <∞
∫
Dc

i

(pc
i (ξc

i ))2α−1dξc
i <∞,

then m∗(ξ) = 1
n

∑n
i=1 Φi (ξi ) is also in Ck (R).
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Motivation Model Solution Conclusion

Sanity Checks
• Risk-Neutrality:

If options prices reflect zero risk premium qX/pX = qY/pY = 1, then we
should neither buy nor sell them.

• Indeed, in this case ΦX = ΦY = 1, whence m∗ = 1, which has zero
variance.

• Independence:
If X and Y are independent under p, then the optimization problem should
separate across assets.

• Indeed, ΦX (x) = 2 qX (x)
pX (x)

− 1, ΦY (y) = 2 qY (y)
pY (y)

− 1. No interaction.

m∗(x , y) = qX (x)
pX (x)

+ qY (y)
pY (y)

− 1.
• Trivial example, nontrivial message.

If options on multiple underlyings are not traded, the risk-neutral density
consistent with independence and the maximization of the Sharpe ratio is
qX ,Y (x , y) = qX (x)pY (y) + qY (y)pX (x)− pX (x)pY (y). It does not
correspond to any particular copula...

• Nontrivial explicit solutions with dependence?
• Tractability?
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Motivation Model Solution Conclusion

Mixture Distributions (1/2)
• Solving integral equations is nontrivial. To break the spell, discretize.
• (pi

X )1≤i≤k , (pi
Y )1≤i≤k strictly positive probability densities on (0,∞).

p(x , y) :=
1
k

k∑
i=1

pi
X (x)pi

Y (y).

(Remember the proof of Fubini-Tonelli theorem?)
• Plug into integral equations. They become

pX (x)

2
ΦX (x) = qX (x)−

k∑
i=1

c i
Y pi

X (x),
pY (y)

2
ΦY (y) = qY (y)−

k∑
i=1

c i
X pi

Y (y),

where the 2k constants (c i
X )1≤i≤k , (c i

Y )1≤i≤k are

c i
X =

1
2k

∫ ∞
0

ΦX (x)pi
X (x)dx , c i

Y =
1

2k

∫ ∞
0

ΦY (y)pi
Y (y)dy .

• Plug formulas for ΦX and ΦY again.
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Motivation Model Solution Conclusion

Mixture Distributions (2/2)
• Obtain system of 2k equations in 2k unknowns

c i
Y =

1
k

∫ ∞
0

qY (y)
pi

Y (y)

pY (y)
dy − 1

k

k∑
j=1

c j
X

∫ ∞
0

pY (y)jpi
Y (y)

pY (y)
dy 1 ≤ i ≤ k

c i
X =

1
k

∫ ∞
0

qX (x)
pi

X (x)

pX (x)
dx − 1

k

n∑
j=1

c j
Y

∫ ∞
0

pj
X (x)pi

X (x)

pX (x)
dx 1 ≤ i ≤ k .

• But the rank is 2k − 1.
• Drop one equation and replace it with the uniqueness constraint

k∑
i=1

c i
X −

k∑
i=1

c i
Y = 0.

• Now system is invertible.
• Note: k in mixture representation independent of number of assets n.

(Independence corresponds to a minimal k = 1 regardless of n.)
• No curse of dimensionality.
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Motivation Model Solution Conclusion

Discrete Densities
• Another tractable discretization is with piecewise constant densities.
• Two increasing finite sequences (xi )0≤i≤k and (yj )0≤j≤l .
• Assume P(X ∈ [x0, xk ),Y ∈ [y0, yl )) = Q(X ∈ [x0, xk ),Y ∈ [y0, yl )) = 1.
• Assume joint probability density p constant on each rectangle Ix

i × Iy
j ,

where Ix
i = [xi−1, xi ), 1 ≤ i ≤ k , and Iy

j = [yj−1, yj ), 1 ≤ j ≤ l .

• Denote p̃ij = P(X ∈ Ix
i ,Y ∈ Iy

j ), p̃i
X = P(X ∈ Ix

i ), p̃j
Y = P(Y ∈ Iy

j ), and

q̃ i
X = Q(X ∈ Ix

i ), q̃ j
Y = Q(Y ∈ Iy

j ), 1 ≤ i ≤ k ,1 ≤ j ≤ l .

• Any solution ΦX ,ΦY piecewise constant on (Ix
i )1≤i≤n and (Iy

j )1≤j≤m.
Set Φi

X = ΦX (xi ) and Φi
Y = ΦY (xj ).

• Integral equations reduce to:

Φi
X p̃i

X +
k∑

j=1

Φj
Y p̃ij = 2q̃ i

X , 1 ≤ i ≤ k ,Φj
Y p̃j

Y +
l∑

i=1

Φi
X p̃ij = 2q̃ j

Y , 1 ≤ j ≤ l .

• Uniqueness constraint
∑n

i=1 Φi
X p̃i

X −
∑m

j=1 Φj
Y p̃j

Y = 0.
• Curse of dimensionality.
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Example: Variance Gamma Model
• Common wisdom on option portfolios:

Writing options profitable but risky. Diversify over many assets.
• Which strikes to write more? Impact of correlation?
• Example: Variance-Gamma model.

Combines no-arbitrage with different realized and implied volatilities.
Important to separate options’ risk-premia from assets’ risk premia.

• Two risky asset prices, both distributed as

Xt = X0eωt+Zt (σ,ν,θ),

where Zt has the characteristic function

E[eiuZt ] = (1− iθνu +
σ2

2
u2ν)−t/ν , u ∈ R

• Marginal of a Levy process with jump measure kZ (x) = eθx/σ2

ν|x| e−
√

2
ν

+ θ
2
σ2

σ |x|.
• Dependence modeled through bivariate t-copula.
• Assets’ risk premia both zero.
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Performance

Figure 1 Figure 2
Correlation (annual) (monthly) (annual) (monthly)

0% 0.29 0.68 0.62 1.71
60% 0.31 0.74 0.58 1.63
75% 0.33 0.84 0.58 1.67
90% 0.43 1.17 0.63 1.99

• Annualized Sharpe ratios of optimal portfolios.
• Trade annually (left) or monthly (right).
• Higher correlation? Higher Sharpe ratio.

Against intuition on diversification.
• Reason: correlation is among assets, not all options.
• Keeping the same marginals while increasing correlation increases the

diversification and hedging opportunities among individual options.
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Conclusion

• Options portfolio selection.
• Each option on one underlying asset.

Market incomplete with multiple assets.
• Maximize Sharpe ratio:

system of linear integral equations.
• Integral equations intractable virtually all nontrivial cases.

Discretizations tractable in virtually all cases.
• Optimal payoffs in one asset depend on options prices in all other assets.

Except with independence.
• It may be optimal to buy options in one asset, expecting to lose.

Just to hedge more profitable options in another asset.
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Happy Birthday, Yuri!
Questions?

http://ssrn.com/abstract=3075945

http://ssrn.com/abstract=3075945
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