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Introduction

Important features of the market
(Possible) default on the underlying risky asset

The market is non-linear : the dynamics of the wealth process are
non-linear (the driver is non-linear). The non-linearity of the driver
can encode different lending and borrowing rates, repo rates,
impact of a large investor ...

The market is incomplete : not every contingent claim is replicable.
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Introduction

Goal
Study the pricing of an American option whose pay-off process is not
necessarily right-continuous.

dual characterization in terms of a non-linear mixed problem of
control and stopping

characterization of in terms of the minimal supersolution a
constrained reflected BSDE.

−→ passes through establishing a non-linear optional decomposition.
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The model

Non-linear incomplete market with default
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The model

Let T > 0 be a fixed terminal horizon.

Let (Ω,G ,P) be a complete probability space.

Let W be a one-dimensional Brownian motion.

ϑ is a random variable which models a default time.

We assume P(ϑ≥ t) > 0 for all t ≥ 0.

Let N be the process defined by Nt := 1ϑ≤t for all t ∈ [0,T ],

Let G = {Gt , t ≥ 0} be the (augmented) filtration generated by W
and N.

We assume that W is a G-Brownian motion.
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The model

Let (Λt) be the predictable compensator of the nondecreasing
process (Nt) = (1ϑ≤t).

We assume that Λt =
∫ t

0 λsds, t ≥ 0, where λs ≥ 0 is the intensity
process.

To simplify the presentation, we assume that λ is bounded.

Let M be the compensated martingale given by

Mt := Nt −Λt = Nt −
∫ t

0
λsds .
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The model

We consider a market with :

a risky asset S = (St)0≤t≤T

dSt = St−(µtdt + σtdWt + βtdMt) with S0 > 0.

The processes σ, µ, and β are predictable bounded
with σt > 0 and βϑ >−1.
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The model

An investor, endowed with an initial wealth x ∈ R.

At each time t , the investor chooses the amount ϕt of wealth
invested in the risky asset (where ϕ ∈H2).

The value of the associated portfolio (also called wealth) at time t
is denoted by V x ,ϕ

t (or simply Vt ).

The wealth process V x ,ϕ
t (or simply Vt ) satisfies the following

dynamics :

−dVt = f (t,Vt ,ϕtσt)dt−ϕtσtdWt −ϕtβtdMt ,

with V0 = x , where f is a nonlinear (non-convex) Lipschitz driver.
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The model

The model includes many examples :

f is a linear driver given by
f (t,y ,φtσt) =−rty− (µt − rt)ϕt =−rty− (µt − rt)ϕt , where rt is a
risk-free interest rate.

different borrowing and lending interest rates Rt and rt such
that Rt ≥ rt :
f (t,y ,ϕtσt) =−rtx−ϕt(µt − rt) + (Rt − rt)(y−ϕt)

−.
(cf. Korn , El Karoui and Quenez (1997))

a repo market on which the risky asset is traded
f (t,y ,ϕtσt) =−rty−ϕ(µt − rt)− ltϕ

−
t + btϕ

+
t ,

where bt (resp. lt ) the borrowing (resp. lending) repo rate.
(cf. Brigo)

large seller, ...
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The model

Remark : This nonlinear market is incomplete.
Indeed, let η ∈ L2(GT ) be the terminal pay-off of a European option.
Then, it might not be possible to find (x ,ϕ) in R×H2 such that
V x ,ϕ

T = η.

In other words, the BSDE

−dVt = f (t,Vt ,Zt)dt−ZtdWt −Ztσ
−1
t βtdMt ; VT = η,

might not be well-defined.
(Here, we have set as usual Zt := ϕtσt .)
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Seller’s and buyer’s superhedging price
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Seller’s and buyer’s superhedging price

T is the set of G-stopping times with values in [0,T ]

We consider an American option with maturity T and irregular
pay-off process ξ ∈ S2

S2 is the space of optional (not necessarily right-continuous)
processes X such that E [ess supτ∈T X 2

τ ] < +∞.

Example :
The pay-off is of the form ξt = h(St), where h is a Borel function such
that (h(St)) is in S2.

American digital call option (with strike K > 0), where
h(x) := 1[K ,+∞)(x).

American digital put option, where h(x) := 1(−∞,K )(x).
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Seller’s and buyer’s superhedging price

Definition (seller’s superhedging price at time 0)

u0 := inf{x ∈ R : ∃ϕ ∈ IH2 with V x ,ϕ
τ ≥ ξτ,∀τ ∈ T }.

Definition (buyer’s superhedging price at time 0)

ũ0 := sup{z ∈ R : ∃(τ,ϕ) ∈ T × IH2 with V−z,ϕ
τ + ξτ ≥ 0 a.s. }.

References : Karatzas and Kou (1998), ...
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No arbitrage considerations
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No arbitrage considerations

We will see that :
The interval [ũ0,u0] is a no-arbitrage interval of prices for the
American option.

Definition (arbitrage opportunity for the seller)
Let x ∈ R be the initial price of the American option.
We say that (y ,ϕ) ∈ R×H2 is an arbitrage opportunity for the seller of
the American option with initial price x if

y < x and V y ,ϕ
τ −ξτ ≥ 0 a.s. for all τ ∈ T .
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No arbitrage considerations

Definition (arbitrage opportunity for the buyer)
Let x ∈ R be the initial price of the American option.
We say that (y ,τ,ϕ) is an arbitrage opportunity for the buyer of the
American option with initial price x , if

y > x and V−y ,ϕ
τ + ξτ ≥ 0 a.s.

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



No arbitrage considerations

Definition (arbitrage-free price)
A real number x ∈ R is called an arbitrage-free price for the American
option if, neither the seller nor the buyer have arbitrage opportunity.

Proposition
The set of all arbitrage-free prices for the American option is given by
[ũ0,u0].
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No arbitrage considerations

Proposition
The set of all arbitrage-free prices for the American option is given by
[ũ0,u0].

Remark :

It is possible that u0 < ũ0, and hence, that there does not exist an
arbitrage-free price for the American option.
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Dual characterization of the seller’s price
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Dual characterization of the seller’s price

Let V be the set of bounded predictable processes ν such that
νt >−1, for all t ∈ [0,T ], λtdP⊗dt-a.e.

Driver f ν

For ν ∈ V , we define

f ν(ω, t,y ,z,k) := f (ω, t,y ,z) + νt(ω)λt(ω)
(
k−βt(ω)σ

−1
t (ω)z

)
.

The mapping f ν is an example of a λ-admissible driver
(cf. Dumitrescu, M.G., Quenez, Sulem (2018)).

For such a driver and the corresponding BSDE (with default), we have :
existence and uniqueness of the solution ; representation result in the
linear case ; comparison theorem, strict comparison theorem,

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



Dual characterization of the seller’s price

E f ν

-expectation

Let T ′ ∈ [0,T ]. Let t ≤ T ′.
We define :

E f ν

t,T ′ : L2(Ω,FT ′,P)−→ L2(Ω,Ft ,P)

η 7→ X ν
t ,

where (X ν,Z ν,K ν) is the unique solution of the BSDE

−dX ν
s = f ν(s,X ν

s ,Z
ν
s ,K

ν
s )−Z ν

s dWs−K ν
s dMs;

X ν

T ′ = η.

With this notation, X ν
t = E f ν

t,T ′(η).
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Dual characterization of the seller’s price

Theorem (Dual characterization of the seller’s price)

u0 = sup
(τ,ν)∈T ×V

E f ν

0,τ(ξτ).
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Dual characterization of the seller’s price

Theorem (Dual characterization of the seller’s price)

u0 = sup
(τ,ν)∈T ×V

E f ν

0,τ(ξτ).

1 The particular linear case (f is linear)
−→ gain some intuition about the duality result

2 Sketch of the proof
−→ a non-linear optional decomposition and a non-linear
predictable decomposition

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



Dual characterization of the seller’s price

We consider the particular linear incomplete case, that is, the case
where

f (t,y ,z) =−rty−θtz

Here, θt :=
µt − rt

σt
is the risk premium at time t .

In this linear case the duality result for the seller’s superhedging price u0

for the American option with pay-off ξ ∈ S2 reduces to

(duality in the linear case)

u0 = sup
(τ,ν)∈T ×V

E f ν

0,τ(ξτ) = sup
(τ,ν)∈T ×V

ERν(e−
∫

τ

0 rsds
ξτ),

where {Rν,ν ∈ V } is the set of equivalent martingale measures.

Indeed, we notice the following :
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Dual characterization of the seller’s price

Proposition (martingale measure)
The following assertions are equivalent :

(i) R is a martingale measure.

(ii) There exists ν ∈ V such that R = Rν,
where Rν is the probability measure with density process
ζν such that

dζ
ν
t = ζ

ν

t−[αν
t dWt + νtdMt ];ζ

ν
0 = 1.

Here, we have set αν
t = (−θt −νtλtβtσ

−1
t ).

Uses : G-martingale representation (Kusuoka (1999)).
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The general non-linear incomplete case : Sketch of the proof

The general non-linear incomplete case :
Main steps of the proof
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The general non-linear incomplete case : Sketch of the proof

We want to show :

Theorem (Dual characterization of the seller’s price)

u0 = sup
(τ,ν)∈T ×V

E f ν

0,τ(ξτ).

We consider the following non-linear problem of control and stopping :

Y (S) := ess sup
(τ,ν)∈TS×V

E ν
S,τ(ξτ).

where

E ν := E f ν

For S a stopping time in T0, we denote by TS the set of stopping
times τ such that τ ∈ [S,T ] a.s.
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The general non-linear incomplete case : Sketch of the proof

Definition (strong E ν-supermartingale)
Let ν ∈ V .
We say that a process X ∈ S2 is a strong E ν-supermartingale if
E ν

S,τ(Xτ)≤ XS, for all S,τ ∈ T such that S ≤ τ a.s.

Theorem (Aggregation and Snell-type characterization)
There exists an r.u.s.c. process (Yt) ∈ S2 which aggregates the
value family (Y (S)) of the problem of control and stopping.

The process (Yt) is a strong E ν-supermartingale for all ν ∈ V
and Yt ≥ ξt , for all t ∈ [0,T ], a.s.

Moreover, the process (Yt) is the smallest process in S2

satisfying these properties.

Remark : If the pay-off process ξ is right-continuous, then so is Y .
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Strong E ν-supermartingales for all ν ∈ V

Strong E ν-supermartingales for all ν ∈ V :
optional and predictable decomposition
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Strong E ν-supermartingales for all ν ∈ V

Theorem (Non-linear optional decomposition)
Let (Yt) ∈ S2 be a E ν-strong supermartingale for each ν ∈ V .
Then, there exists a unique Z ∈H2, a unique C ∈ C2 and a unique
nondecreasing optional RCLL process h, with h0 = 0 and E [h2

T ] < ∞

such that

−dYt = f (t,Yt ,Zt)dt−Ztσ
−1
t (σtdWt + βtdMt) + dCt− + dht .

C2 is the set of adapted non-decreasing RCLL purely discontinuous
processes (Xt) such that X0− = 0 and E [X 2

T ] < +∞.
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Strong E ν-supermartingales for all ν ∈ V

Remark
In the case where f is linear and X is right-continuous, the above
E -optional decomposition is reduced to the usual optional
decomposition of an RCLL process, which is a (right-continuous)
supermartingale under all martingale probability measures (up to a
discounting and a change of probability measure procedure).

References : El Karoui and Quenez (1995), Kramkov (1996), Föllmer
and Kabanov (1998).
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Strong E ν-supermartingales for all ν ∈ V

Theorem (Predictable decomposition)
Let (Xt) ∈ S2 be a strong E ν-supermartingale for all ν ∈ V . There
exists a unique process (Z ,K ,A,C) ∈H2×H2

λ
×A2×C2 such that

−dXt = f (t,Xt ,Zt)dt−ZtdWt −KtdMt + dAt + dCt−

A·+
∫ ·

0
(Ks−βsσ

−1
s Zs)λsds ∈ A2 and

(Kt −βtσ
−1
t Zt)λt ≤ 0, t ∈ [0,T ], dP⊗dt− a.e.

The set A2 is the set of
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Supersolution of a Constrained Reflected BSDEs

Characterization of the value process as the
minimal supersolution of a constrained reflected

BSDE
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Supersolution of a Constrained Reflected BSDEs

Definition

Let ξ ∈ S2. A process Y ′ ∈ S2 is said to be a supersolution of the
constrained reflected BSDE with driver f and obstacle ξ if there exists a
process (Z ′,K ′,A′,C′) ∈H2×H2

λ
×A2×C2 such that

−dY ′t = f (t,Y ′t ,Z
′
t )dt + dA′t + dC′t−−Z ′t dWt −K ′t dMt ;

Y ′T = ξT a.s. and Y ′t ≥ ξt for all t ∈ [0,T ] a.s. ;

(Y ′τ−ξτ)(C′τ−C′τ−) = 0 a.s. for all τ ∈ T ;

A′·+
∫ ·

0
(K ′s−βsσ

−1
s Z ′s)λsds ∈ A2 and

(K ′t −βtσ
−1
t Z ′t )λt ≤ 0, t ∈ [0,T ], dP⊗dt-a.e. ;
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Supersolution of a Constrained Reflected BSDEs

Proposition (Characterization of the seller’s price process)
The seller’s price process (Yt) is a supersolution of the constrained
reflected BSDE from the previous definition.
Moreover, it is the minimal one, that is, if (Y ′t ) is another supersolution,
then Y ′t ≥ Yt for all t ∈ [0,T ] a.s.
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BSDE with default

BSDE with default
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BSDE with default

(Definition) λ-admissible driver

A function g : [0,T ]×Ω×R3→ R ; (ω, t,y ,z,k) 7→ g(ω, t,y ,z,k)
is said to be a λ-admissible driver if

(measurability) g is P ⊗B(R3)− measurable

(integrability) g(.,0,0,0) ∈H2.

there exists C ≥ 0 such that dP⊗dt-a.e. , for each (y1,z1,k1),
(y2,z2,k2),

|g(t,y1,z1,k1)−g(t,y2,z2,k2)| ≤C(|y1−y2|+|z1−z2|+
√

λt |k1−k2|).
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BSDE with default

Definition (BSDE with λ-admissible driver)
Let g be a λ-admissible driver. Let η ∈ L2(GT ).

A process (Y ,Z ,K ) in S 2×H2×H2
λ

is said to be a solution of the
BSDE with default jump associated with (T , g, η) if it satisfies :

−dYt = g(t,Yt ,Zt ,Kt)dt−ZtdWt −KtdMt ; YT = η.

comment upon the comparison with Poisson
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BSDE with default

BSDE theory in the case of a λ-admissible driver
(cf. , )

existence and uniqueness of the solution for (non-linear) BSDE
with default jump.
representation result in the case of a linear λ-admissible driver,
that is, the case where g(t,y ,z,k) = aty + btz + ct λtk + dt .
comparison theorem for (non-linear) BSDEs with default under the
additional assumption
(A) There exists a predictable process (γt) with

(γt

√
λt) bounded and γt ≥−1, dt⊗dP− a.s.

such that

g(t,y ,z,k1)−g(t,y ,z,k2)≥ γt(k1−k2)λt , t ∈ [0,T ], dt⊗dP− a.e.

strict comparison theorem if the inequality is strict in assumption
(A), that is if γt >−1.
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BSDE with default

Definition : A process (Xt) in S 2 is called a strong
supermartingale if XS ≥ E [Xτ | FS] a.s., for all S,τ ∈ T0 such that
S ≤ τ a.s.

A strong supermartingale (Xt) in S 2 has the following
Mertens decomposition

Xt = X0 + Mt −At −Ct−, 0≤ t ≤ T a.s.,

where
I M is a square-integrable martingale

(Mt =
∫ t

0 ZsdWs, with Z ∈H2)
I A is a non-decreasing right-continuous predictable process such

that A0 = 0 and E(A2
T )< ∞

I C is a non-decreasing right-continuous optional process purely
discontinuous with C0− = 0 and E[C2

T ]< ∞.

A pair of processes (A,C) satisfying the above properties will be
called a Mertens process.
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BSDE with default

We use also

Gal’chouk-Lenglart formula for optional semimartingales
(a generalization of Itô’s formula)

some results from our previous work
(the case of one barrier)

G.M., Imkeller P., Offen E., Ouknine Y. and M.-C. Quenez : Reflected
BSDEs when the obstacle is not right-continuous and optimal
stopping, (2017), Annals of Applied Probability.

G.M., Imkeller P., Ouknine Y. and M.-C. Quenez : Optimal stopping
with f -expectations : the irregular case, (2017), submitted.

This talk :
G.M., Imkeller P., Ouknine Y. and M.-C. Quenez : Doubly Reflected
BSDEs and E f -Dynkin games : beyond the right-continuous case,
(2017), submitted.
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BSDE with default

Definition
Let (ξt)t∈[0,T ] and (ζt)t∈[0,T ] be two (irregular) processes in S 2 such
that

ξt ≤ ζt for all t a.s.

ξT = ζT a.s.

A pair of such processes will be called an admissible pair.
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DRBSDE with completely irregular barriers

DRBSDE with irregular barriers
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DRBSDE with completely irregular barriers

Some literature : Cvitanić and Karatzas (’96), Hamadène and Lepeltier
(’00), Lepeltier and Xu (’07), Crépey and Matoussi (’08), ...

Definition
A process (Y ,Z ,A,C,A′,C′) is said to be a solution to the DRBSDE
with parameters (g,ξ,ζ), where (ξ,ζ) is an admissible pair and g is a
Lipschitz driver if

(Y ,Z ,A,C,A′,C′) ∈ S 2× IH2× (S 2)4

Yt = ξT +
∫ T

t
g(s,Ys,Zs)ds−

∫ T

t
ZsdWs + AT −At + CT−−Ct−

− (A′T −A′t)− (C′T−−C′t−) for all t ∈ [0,T ] a.s.

ζt ≥ Yt ≥ ξt for all t ∈ [0,T ] a.s.

(A,C) is a Mertens process,(A′,C′) is a Mertens process

(A,C) and (A′,C′) satisfy conditions of minimality ...

dAt ⊥ dA′t and dCt ⊥ dC′t (mutual singularity)

Remark : If there is a solution, Yt− (and Yt+) exist.
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DRBSDE with completely irregular barriers

...Minimality conditions (Skorokhod conditions)∫ T

0
1{Yt−>ξt−}dAt = 0 a.s.

(Yt −ξt)(Ct −Ct−) = 0 for all t a.s.

∫ T

0
1{Yt−<ζt−}dA′t = 0 a.s.

(Yt −ζt)(C′t −C′t−) = 0 for all t a.s.

Remark : We have assumed that ξt− and ζt− exist. This assumption
can be relaxed.
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DRBSDE with completely irregular barriers

We introduce the following condition

Mokobodzki’s condition
There exist two nonnegative strong supermartingales H and H ′ in S 2

such that
ξt ≤ Ht −H ′t ≤ ζt , 0≤ t ≤ T a.s.

Theorem (existence)
The following assertions are equivalent :

The DRBSDE(g,ξ,ζ) has a solution.

The pair (ξ,ζ) satisfies Mokobodzki’s condition.
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DRBSDE with completely irregular barriers

Theorem (uniqueness)
If (ξ,ζ) satisfies Mokobodzki’s condition, the solution of
DRBSDE(g,ξ,ζ) is unique.
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Links with non-linear games

Links with
non-linear Dynkin games

and non-linear extended Dynkin games

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



Links with non-linear games

g-expectation and g-conditional expectation
Let g be a Lipschitz driver
Let t ∈ [0,T ]. Let s ≤ t .
The g-conditional expectation at time s is defined by

E g
s,t : L2(Ω,Ft ,P)−→ L2(Ω,Fs,P)

η 7→ Xs,

where the pair (X ,π) is the unique solution (in S 2× IH2) of the BSDE

Xs = η +
∫ t

s
g(u,Xu,πu)du−

∫ t

s
πudWu, s ∈ [0, t].

particular case : if g ≡ 0, then E g
s,t(·) = E(·|Fs).
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Links with non-linear games Non-linear Dynkin game

We consider the following non-linear Dynkin game (over stopping times)

Two players A and B

Each of the players chooses a strategy in T0.

If agent A chooses a strategy τ ∈ T0 and agent B chooses a
strategy σ ∈ T0, the pay-off at time τ∧σ (when the game ends) is
I(τ,σ), where

I(τ,σ) := ξτ1τ≤σ + ζσ1σ<τ.

The pay-off is assessed by a (non-linear) g-expectation.
At time 0, player A receives E

g

0,τ∧σ
[I(τ,σ)]

and player B receives −E
g

0,τ∧σ
[I(τ,σ)]
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Links with non-linear games Non-linear Dynkin game

The upper value V (0) and the lower value V (0) at time 0 are
defined by

V (0) := inf
σ∈T0

sup
τ∈T0

E
g

0,τ∧σ
[I(τ,σ)]

V (0) := sup
τ∈T0

inf
σ∈T0

E
g

0,τ∧σ
[I(τ,σ)].

More generally, the upper value V (S) and the lower value V (S) at
time S (where S ∈ T0) are defined by

V (S) := ess infσ∈TS
ess supτ∈TS

E
g

S,τ∧σ
[I(τ,σ)]

V (S) := ess supτ∈TS
ess infσ∈TS

E
g

S,τ∧σ
[I(τ,σ)].

As usual, V (S)≤ V (S) a.s.
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Links with non-linear games Non-linear Dynkin game

Theorem (Existence and characterization of the value)
Let (ξ,ζ) be an admissible pair of processes satisfying Mokobodzki
condition and such that ξ and −ζ are right u.s.c. Then, for all S ∈ T0,
we have

YS = V (S) = V (S) a.s.

In the linear case, that is, g = 0, the equality V (S) = V (S) has
been proven by Alario-Nazaret, Lepeltier and Marchal (1982).

When ξ and −ζ are right-continuous, we recover well-known
results

I for the case g = 0 : Cvitanić and Karatzas (1996), Hamadène and
Lepeltier (2000), Lepeltier and Xu (2007), ...

I for the case g non-linear : Dumitrescu, Quenez and Sulem (2016).
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Links with non-linear games Non-linear Dynkin game

Theorem (Existence and characterization of the value)
Let (ξ,ζ) be an admissible pair of processes satisfying Mokobodzki
condition and such that ξ and −ζ are right u.s.c. Then, for all S ∈ T0,
we have

YS = V (S) = V (S) a.s.

Application in financial mathematics :
superhedging price of a game option
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Links with non-linear games Non-linear extended Dynkin game

The case where ξ and −ζ are completely
irregular :

Non-linear extended Dynkin game
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Links with non-linear games Non-linear extended Dynkin game

Two players A and B

Agent A chooses a strategy ρ = (τ,H) where τ ∈ T0 and H ∈ Fτ.
Agent B chooses a strategy δ = (σ,G), where σ ∈ T0 and G ∈ Fσ.

The game ends at time τ∧σ

The pay-off at time τ∧σ is

I(ρ,δ) := ξ
u

ρ1τ≤σ + ζ
l

δ
1σ<τ,

where
ξ

u

ρ := ξτ1H + ξ̄τ1Hc and ζ
l

δ
:= ζσ1G + ζ

σ
1Gc ,

with ξ̄t := limsups↓t,s>t ξs (right upper- semicontinuous envelope)
and ζ

t
:= lim infs↓t,s>t ζs (right lower- semicontinuous envelope)

The pay-off is assessed by a (non-linear) g-expectation.
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Links with non-linear games Non-linear extended Dynkin game

Upper and Lower Value at time 0

V (0) := inf
δ=(σ,G)

sup
ρ=(τ,H)

E
g

0,τ∧σ
[I(ρ,δ)]

V (0) := sup
ρ=(τ,H)

inf
δ=(σ,G)

E
g

0,τ∧σ
[I(ρ,δ)].

Upper and Lower Value at time S (where S ∈ T0) ...
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Links with non-linear games Non-linear extended Dynkin game

Theorem (Existence and characterization of the value)
Let (ξ,ζ) be an admissible pair of completely irregular processes
satisfying Mokobodzki condition. Then, for all S ∈ T0, we have

YS = V (S) = V (S) a.s.

This theorem is useful in showing
a comparison theorem and a priori estimates with universal
constants (i.e. depending only on the terminal time T and the
common Lipschitz constant K ) for DRBSDEs with completely
irregular barriers.
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Links with non-linear games Non-linear extended Dynkin game

Theorem (Gal’chouk-Lenglart)
Let X be a 1-dimensional optional semimartingale with decomposition
X = X0 + M + A + B, where M and A are as in the right-continuous
case, and B is an adapted left-continuous process of finite variation
which is purely discontinuous and such that B0 = 0. Let F ∈ C2(R).
Then, a.s, for all t ≥ 0,

F(Xt) = F(X0) +
∫
]0,t]

F ′(Xs−)d(A + M)s +
1
2

∫
]0,t]

F ′′(Xs−)d〈Mc〉s

+ ∑
0<s≤t

[
F(Xs)−F(Xs−)−F ′(Xs−)∆Xs

]
+

∫
[0,t[

F ′(Xs)dBs+ + ∑
0≤s<t

[
F(Xs+)−F(Xs)−F ′(Xs)∆+Xs

]
.

Notation : ∆Xs = Xs−Xs− and ∆+Xs = Xs+−Xs.
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