# Nonlinear pricing of American options in an incomplete market with default 

Miryana Grigorova ${ }^{1}$ Marie-Claire Quenez Agnès Sulem
${ }^{1}$ University of Leeds
Innovative Research in Mathematical Finance
In honour of Yuri Kabanov's 65th birthday
Luminy, 4 September 2018

## Important features of the market

- (Possible) default on the underlying risky asset
- The market is non-linear : the dynamics of the wealth process are non-linear (the driver is non-linear). The non-linearity of the driver can encode different lending and borrowing rates, repo rates, impact of a large investor ...
- The market is incomplete : not every contingent claim is replicable.


## Goal

Study the pricing of an American option whose pay-off process is not necessarily right-continuous.

## Goal

Study the pricing of an American option whose pay-off process is not necessarily right-continuous.

- dual characterization in terms of a non-linear mixed problem of control and stopping
- characterization of in terms of the minimal supersolution a constrained reflected BSDE.
$\longrightarrow$ passes through establishing a non-linear optional decomposition.

Non-linear incomplete market with default

- Let $T>0$ be a fixed terminal horizon.
- Let $(\Omega, \mathcal{G}, P)$ be a complete probability space.
- Let $W$ be a one-dimensional Brownian motion.
- $\vartheta$ is a random variable which models a default time.
- We assume $P(\vartheta \geq t)>0$ for all $t \geq 0$.
- Let $N$ be the process defined by $N_{t}:=\mathbf{1}_{\vartheta \leq t}$ for all $t \in[0, T]$,
- Let $\mathbb{G}=\left\{\mathcal{G}_{t}, t \geq 0\right\}$ be the (augmented) filtration generated by $W$ and $N$.
- We assume that $W$ is a $\mathbb{G}$-Brownian motion.
- Let $\left(\Lambda_{t}\right)$ be the predictable compensator of the nondecreasing process $\left(N_{t}\right)=\left(\mathbf{1}_{\vartheta \leq t}\right)$.
- We assume that $\Lambda_{t}=\int_{0}^{t} \lambda_{s} d s, t \geq 0$, where $\lambda_{s} \geq 0$ is the intensity process.
- To simplify the presentation, we assume that $\lambda$ is bounded.
- Let $M$ be the compensated martingale given by

$$
M_{t}:=N_{t}-\Lambda_{t}=N_{t}-\int_{0}^{t} \lambda_{s} d s
$$

We consider a market with :

- a risky asset $S=\left(S_{t}\right)_{0 \leq t \leq T}$

$$
d S_{t}=S_{t^{-}}\left(\mu_{t} d t+\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right) \text { with } S_{0}>0
$$

The processes $\sigma, \mu$, and $\beta$ are predictable bounded with $\sigma_{t}>0$ and $\beta_{\vartheta}>-1$.

- An investor, endowed with an initial wealth $x \in \mathbb{R}$.
- At each time $t$, the investor chooses the amount $\varphi_{t}$ of wealth invested in the risky asset (where $\varphi \in \mathbb{H}^{2}$ ).
- The value of the associated portfolio (also called wealth) at time $t$ is denoted by $V_{t}^{x, \varphi}$ (or simply $V_{t}$ ).
- The wealth process $V_{t}^{X, \varphi}$ (or simply $V_{t}$ ) satisfies the following dynamics:

$$
-d V_{t}=f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right) d t-\varphi_{t} \sigma_{t} d W_{t}-\varphi_{t} \beta_{t} d M_{t}
$$

with $V_{0}=x$, where $f$ is a nonlinear (non-convex) Lipschitz driver.

- An investor, endowed with an initial wealth $x \in \mathbb{R}$.
- At each time $t$, the investor chooses the amount $\varphi_{t}$ of wealth invested in the risky asset (where $\varphi \in \mathbb{H}^{2}$ ).
- The value of the associated portfolio (also called wealth) at time $t$ is denoted by $V_{t}^{x, \varphi}$ (or simply $V_{t}$ ).
- The wealth process $V_{t}^{X, \varphi}$ (or simply $V_{t}$ ) satisfies the following dynamics:

$$
-d V_{t}=f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right) d t-\varphi_{t} \sigma_{t} d W_{t}-\varphi_{t} \beta_{t} d M_{t}
$$

with $V_{0}=x$, where $f$ is a nonlinear (non-convex) Lipschitz driver.

The model includes many examples:

- $f$ is a linear driver given by
$f\left(t, y, \phi_{t} \sigma_{t}\right)=-r_{t} y-\left(\mu_{t}-r_{t}\right) \varphi_{t}=-r_{t} y-\left(\mu_{t}-r_{t}\right) \varphi_{t}$, where $r_{t}$ is a risk-free interest rate.
- different borrowing and lending interest rates $R_{t}$ and $r_{t}$ such that $R_{t} \geq r_{t}$ :
$f\left(t, y, \varphi_{t} \sigma_{t}\right)=-r_{t} x-\varphi_{t}\left(\mu_{t}-r_{t}\right)+\left(R_{t}-r_{t}\right)\left(y-\varphi_{t}\right)^{-}$.
(cf. Korn , El Karoui and Quenez (1997))
- a repo market on which the risky asset is traded $f\left(t, y, \varphi_{t} \sigma_{t}\right)=-r_{t} y-\varphi\left(\mu_{t}-r_{t}\right)-I_{t} \varphi_{t}^{-}+b_{t} \varphi_{t}^{+}$, where $b_{t}$ (resp. $I_{t}$ ) the borrowing (resp. lending) repo rate. (cf. Brigo)
- large seller, ...

Remark : This nonlinear market is incomplete.
Indeed, let $\eta \in L^{2}\left(G_{T}\right)$ be the terminal pay-off of a European option. Then, it might not be possible to find $(x, \varphi)$ in $\mathbb{R} \times \mathbb{H}^{2}$ such that $V_{T}^{X, \varphi}=\eta$.

Remark: This nonlinear market is incomplete.
Indeed, let $\eta \in L^{2}\left(G_{T}\right)$ be the terminal pay-off of a European option. Then, it might not be possible to find $(x, \varphi)$ in $\mathbb{R} \times \mathbb{H}^{2}$ such that $V_{T}^{X, \varphi}=\eta$.
In other words, the BSDE

$$
-d V_{t}=f\left(t, V_{t}, Z_{t}\right) d t-Z_{t} d W_{t}-Z_{t} \sigma_{t}^{-1} \beta_{t} d M_{t} ; \quad V_{T}=\eta
$$

might not be well-defined.
(Here, we have set as usual $Z_{t}:=\varphi_{t} \sigma_{t}$.)

## Seller's and buyer's superhedging price

- $\mathcal{T}$ is the set of $\mathbb{G}$-stopping times with values in $[0, T]$
- We consider an American option with maturity $T$ and irregular pay-off process $\xi \in \mathbb{S}^{2}$
- $\mathbb{S}^{2}$ is the space of optional (not necessarily right-continuous) processes $X$ such that $E\left[\right.$ ess $\left.\sup _{\tau \in \mathcal{T}} X_{\tau}^{2}\right]<+\infty$.


## Example :

The pay-off is of the form $\xi_{t}=h\left(S_{t}\right)$, where $h$ is a Borel function such that $\left(h\left(S_{t}\right)\right)$ is in $\mathbb{S}^{2}$.

- American digital call option (with strike $K>0$ ), where $h(x):=\mathbf{1}_{[K,+\infty)}(x)$.
- American digital put option, where $h(x):=\mathbf{1}_{(-\infty, K)}(x)$.


## Definition (seller's superhedging price at time 0)

$$
u_{0}:=\inf \left\{x \in \mathbb{R}: \exists \varphi \in \boldsymbol{H}^{2} \text { with } V_{\tau}^{\chi, \varphi} \geq \xi_{\tau}, \forall \tau \in \mathcal{T}\right\} .
$$

Definition (seller's superhedging price at time 0)

$$
u_{0}:=\inf \left\{x \in \mathbb{R}: \exists \varphi \in \boldsymbol{H}^{2} \text { with } V_{\tau}^{x, \varphi} \geq \xi_{\tau}, \forall \tau \in \mathcal{T}\right\} .
$$

## Definition (buyer's superhedging price at time 0)

$\tilde{u}_{0}:=\sup \left\{z \in \mathbb{R}: \exists(\tau, \varphi) \in \mathcal{T} \times \boldsymbol{H}^{2}\right.$ with $V_{\tau}^{-z, \varphi}+\xi_{\tau} \geq 0$ a.s. $\}$.
References : Karatzas and Kou (1998), ...

## No arbitrage considerations

We will see that:
The interval $\left[\tilde{u}_{0}, u_{0}\right.$ ] is a no-arbitrage interval of prices for the American option.

## Definition (arbitrage opportunity for the seller)

Let $x \in \mathbb{R}$ be the initial price of the American option. We say that $(y, \varphi) \in \mathbb{R} \times \mathbb{H}^{2}$ is an arbitrage opportunity for the seller of the American option with initial price $x$ if

$$
y<x \text { and } V_{\tau}^{y, \varphi}-\xi_{\tau} \geq 0 \text { a.s. for all } \tau \in \mathcal{T}
$$

## Definition (arbitrage opportunity for the buyer)

Let $x \in \mathbb{R}$ be the initial price of the American option. We say that $(y, \tau, \varphi)$ is an arbitrage opportunity for the buyer of the American option with initial price $x$, if

$$
y>x \text { and } V_{\tau}^{-y, \varphi}+\xi_{\tau} \geq 0 \text { a.s. }
$$

## Definition (arbitrage-free price)

A real number $x \in \mathbb{R}$ is called an arbitrage-free price for the American option if, neither the seller nor the buyer have arbitrage opportunity.

## Proposition

The set of all arbitrage-free prices for the American option is given by $\left[\tilde{u}_{0}, u_{0}\right]$.

## Proposition

The set of all arbitrage-free prices for the American option is given by $\left[\tilde{u}_{0}, u_{0}\right]$.

## Remark :

- It is possible that $u_{0}<\tilde{u}_{0}$, and hence, that there does not exist an arbitrage-free price for the American option.


## Dual characterization of the seller's price

Let $\mathcal{V}$ be the set of bounded predictable processes $v$ such that $v_{t}>-1$, for all $t \in[0, T], \lambda_{t} d P \otimes d t$-a.e.

## Driver $f^{v}$

For $v \in \mathcal{V}$, we define

$$
f^{\nu}(\omega, t, y, z, k):=f(\omega, t, y, z)+v_{t}(\omega) \lambda_{t}(\omega)\left(k-\beta_{t}(\omega) \sigma_{t}^{-1}(\omega) z\right)
$$

The mapping $f^{\nu}$ is an example of a $\lambda$-admissible driver (cf. Dumitrescu, M.G., Quenez, Sulem (2018)).

For such a driver and the corresponding BSDE (with default), we have : existence and uniqueness of the solution ; representation result in the linear case ; comparison theorem, strict comparison theorem,

## $\mathscr{E}^{f{ }^{v}}$-expectation

Let $T^{\prime} \in[0, T]$. Let $t \leq T^{\prime}$.
We define :

$$
\begin{aligned}
\mathscr{E}_{t, T^{\prime}} f^{v}: L^{2}\left(\Omega, \mathcal{F}_{T^{\prime}}, P\right) & \longrightarrow L^{2}\left(\Omega, \mathcal{F}_{t}, P\right) \\
\eta & \mapsto X_{t}^{v}
\end{aligned}
$$

where $\left(X^{\nu}, Z^{\nu}, K^{\nu}\right)$ is the unique solution of the BSDE

$$
\begin{aligned}
& -d X_{s}^{\vee}=f^{\vee}\left(s, X_{s}^{\vee}, Z_{s}^{\vee}, K_{s}^{\vee}\right)-Z_{s}^{\vee} d W_{s}-K_{s}^{\vee} d M_{s} \\
& \quad X_{T^{\prime}}^{\vee}=\eta
\end{aligned}
$$

With this notation, $X_{t}^{\nu}=\mathscr{E}_{t, T^{\prime}}^{f^{\nu}}(\eta)$.

## Theorem (Dual characterization of the seller's price)

$$
u_{0}=\sup _{(\tau, v) \in \mathcal{T} \times \mathcal{V}} \mathscr{E}_{0, \tau}^{f^{v}}\left(\xi_{\tau}\right) .
$$

## Theorem (Dual characterization of the seller's price)

$$
u_{0}=\sup _{(\tau, v) \in \mathcal{T} \times \mathcal{V}} \mathscr{E}_{0, \tau}^{f_{0}^{v}}\left(\xi_{\tau}\right) .
$$

(1) The particular linear case ( $f$ is linear)
$\longrightarrow$ gain some intuition about the duality result
(2) Sketch of the proof
$\longrightarrow$ a non-linear optional decomposition and a non-linear predictable decomposition

We consider the particular linear incomplete case, that is, the case where

$$
f(t, y, z)=-r_{t} y-\theta_{t} z
$$

Here, $\theta_{t}:=\frac{\mu_{t}-r_{t}}{\sigma_{t}}$ is the risk premium at time $t$.
In this linear case the duality result for the seller's superhedging price $u_{0}$ for the American option with pay-off $\xi \in \mathbb{S}^{2}$ reduces to

## (duality in the linear case)

$$
u_{0}=\sup _{(\tau, v) \in \mathcal{T} \times \mathcal{V}} \mathscr{E}_{0, \tau}^{f^{v}}\left(\xi_{\tau}\right)=\sup _{(\tau, v) \in \mathcal{T} \times \mathcal{V}} E_{R^{v}}\left(e^{-\int_{0}^{\tau} r_{s} d s} \xi_{\tau}\right)
$$

where $\left\{R^{v}, v \in \mathcal{V}\right\}$ is the set of equivalent martingale measures.
Indeed, we notice the following :

## Proposition (martingale measure)

The following assertions are equivalent :
(i) $R$ is a martingale measure.
(ii) There exists $v \in \mathcal{V}$ such that $R=R^{v}$, where $R^{\nu}$ is the probability measure with density process $\zeta^{v}$ such that

$$
d \zeta_{t}^{v}=\zeta_{t^{-}}^{v}\left[\alpha_{t}^{v} d W_{t}+v_{t} d M_{t}\right] ; \zeta_{0}^{v}=1
$$

Here, we have set $\alpha_{t}^{v}=\left(-\theta_{t}-v_{t} \lambda_{t} \beta_{t} \sigma_{t}^{-1}\right)$.
Uses: $\mathbb{G}$-martingale representation (Kusuoka (1999)).

## The general non-linear incomplete case : Main steps of the proof

## We want to show :

## Theorem (Dual characterization of the seller's price)

$$
u_{0}=\sup _{(\tau, v) \in \mathcal{T} \times \mathcal{V}} \mathscr{E}_{0, \tau}^{f^{v}}\left(\xi_{\tau}\right)
$$

We consider the following non-linear problem of control and stopping :

$$
Y(S):=e s s \sup _{(\tau, v) \in \mathcal{T}_{S} \times \mathcal{V}} \mathscr{E}_{S, \tau}^{V}\left(\xi_{\tau}\right)
$$

where

- $\mathscr{E}^{v}:=\mathscr{E}^{f^{v}}$
- For $S$ a stopping time in $\mathcal{T}_{0}$, we denote by $\mathcal{I}_{S}$ the set of stopping times $\tau$ such that $\tau \in[S, T]$ a.s.


## Definition (strong $\mathscr{E}^{V}$-supermartingale)

Let $v \in \mathcal{V}$.
We say that a process $X \in \mathbb{S}^{2}$ is a strong $\mathscr{E}^{v}$-supermartingale if $\mathscr{E}_{S, \tau}^{v}\left(X_{\tau}\right) \leq X_{S}$, for all $S, \tau \in \mathcal{T}$ such that $S \leq \tau$ a.s.

## Definition (strong $\mathscr{E}^{v}$-supermartingale)

Let $v \in \mathcal{V}$.
We say that a process $X \in \mathbb{S}^{2}$ is a strong $\mathscr{E}^{\mathrm{V}}$-supermartingale if $\mathscr{E}_{S, \tau}^{v}\left(X_{\tau}\right) \leq X_{S}$, for all $S, \tau \in \mathcal{T}$ such that $S \leq \tau$ a.s.

## Theorem (Aggregation and Snell-type characterization)

- There exists an r.u.s.c. process $\left(Y_{t}\right) \in \mathbb{S}^{2}$ which aggregates the value family $(Y(S))$ of the problem of control and stopping.
- The process $\left(Y_{t}\right)$ is a strong $\mathscr{E}^{v}$-supermartingale for all $v \in \mathcal{V}$ and $Y_{t} \geq \xi_{t}$, for all $t \in[0, T]$, a.s.
- Moreover, the process $\left(Y_{t}\right)$ is the smallest process in $\mathbb{S}^{2}$ satisfying these properties.

Remark : If the pay-off process $\xi$ is right-continuous, then so is $Y$.

## Strong $\mathscr{E}^{v}$-supermartingales for all $v \in \mathcal{V}$ : optional and predictable decomposition

## Theorem (Non-linear optional decomposition)

Let $\left(Y_{t}\right) \in \mathbb{S}^{2}$ be a $\mathscr{E}^{v}$-strong supermartingale for each $v \in \mathcal{V}$. Then, there exists a unique $Z \in \mathbb{H}^{2}$, a unique $C \in \mathbb{C}^{2}$ and a unique nondecreasing optional RCLL process $h$, with $h_{0}=0$ and $E\left[h_{T}^{2}\right]<\infty$ such that

$$
-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t-Z_{t} \sigma_{t}^{-1}\left(\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right)+d C_{t^{-}}+d h_{t} .
$$

$\mathbb{C}^{2}$ is the set of adapted non-decreasing RCLL purely discontinuous processes $\left(X_{t}\right)$ such that $X_{0-}=0$ and $E\left[X_{T}^{2}\right]<+\infty$.

## Remark

In the case where $f$ is linear and $X$ is right-continuous, the above
$\mathscr{E}$-optional decomposition is reduced to the usual optional decomposition of an RCLL process, which is a (right-continuous) supermartingale under all martingale probability measures (up to a discounting and a change of probability measure procedure).

References : El Karoui and Quenez (1995), Kramkov (1996), Föllmer and Kabanov (1998).

## Theorem (Predictable decomposition)

Let $\left(X_{t}\right) \in \mathbb{S}^{2}$ be a strong $\mathscr{E}^{\boldsymbol{v}}$-supermartingale for all $v \in \mathcal{V}$. There exists a unique process $(Z, K, A, C) \in \mathbb{H}^{2} \times \mathbb{H}_{\lambda}^{2} \times \mathscr{A}^{2} \times \mathbb{C}^{2}$ such that

$$
\begin{gathered}
-d X_{t}=f\left(t, X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}-K_{t} d M_{t}+d A_{t}+d C_{t-} \\
A .+\int_{0}\left(K_{s}-\beta_{s} \sigma_{s}^{-1} Z_{s}\right) \lambda_{s} d s \in \mathscr{A}^{2} \text { and } \\
\left(K_{t}-\beta_{t} \sigma_{t}^{-1} Z_{t}\right) \lambda_{t} \leq 0, t \in[0, T], d P \otimes d t-\text { a.e. }
\end{gathered}
$$

The set $\mathfrak{A}^{2}$ is the set of

## Characterization of the value process as the minimal supersolution of a constrained reflected BSDE

## Definition

Let $\xi \in \mathbb{S}^{2}$. A process $Y^{\prime} \in \mathbb{S}^{2}$ is said to be a supersolution of the constrained reflected BSDE with driver $f$ and obstacle $\xi$ if there exists a process $\left(Z^{\prime}, K^{\prime}, A^{\prime}, C^{\prime}\right) \in \mathbb{H}^{2} \times \mathbb{H}_{\lambda}^{2} \times \mathcal{A}^{2} \times \mathbb{C}^{2}$ such that

$$
\begin{aligned}
& -d Y_{t}^{\prime}=f\left(t, Y_{t}^{\prime}, Z_{t}^{\prime}\right) d t+d A_{t}^{\prime}+d C_{t-}^{\prime}-Z_{t}^{\prime} d W_{t}-K_{t}^{\prime} d M_{t} ; \\
& Y_{T}^{\prime}=\xi_{T} \text { a.s. and } \quad Y_{t}^{\prime} \geq \xi_{t} \text { for all } t \in[0, T] \text { a.s.; } \\
& \left(Y_{\tau}^{\prime}-\xi_{\tau}\right)\left(C_{\tau}^{\prime}-C_{\tau-}^{\prime}\right)=0 \text { a.s. for all } \tau \in \mathcal{T} ; \\
& A^{\prime}+\int_{0}^{\prime}\left(K_{s}^{\prime}-\beta_{s} \sigma_{s}^{-1} Z_{s}^{\prime}\right) \lambda_{s} d s \in \mathcal{A}^{2} \quad \text { and } \\
& \left(K_{t}^{\prime}-\beta_{t} \sigma_{t}^{-1} Z_{t}^{\prime}\right) \lambda_{t} \leq 0, t \in[0, T], d P \otimes d t \text {-a.e.; }
\end{aligned}
$$

## Proposition (Characterization of the seller's price process)

The seller's price process $\left(Y_{t}\right)$ is a supersolution of the constrained reflected $B S D E$ from the previous definition.
Moreover, it is the minimal one, that is, if $\left(Y_{t}^{\prime}\right)$ is another supersolution, then $Y_{t}^{\prime} \geq Y_{t}$ for all $t \in[0, T]$ a.s.

## BSDE with default

## (Definition) $\lambda$-admissible driver

A function $g:[0, T] \times \Omega \times \mathbb{R}^{3} \rightarrow \mathbb{R} ;(\omega, t, y, z, k) \mapsto g(\omega, t, y, z, k)$ is said to be a $\lambda$-admissible driver if

- (measurability) $g$ is $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{3}\right)$ - measurable
- (integrability) $g(., 0,0,0) \in \mathbb{H}^{2}$.
- there exists $C \geq 0$ such that $d P \otimes d t$-a.e., for each $\left(y_{1}, z_{1}, k_{1}\right)$, $\left(y_{2}, z_{2}, k_{2}\right)$,
$\left|g\left(t, y_{1}, z_{1}, k_{1}\right)-g\left(t, y_{2}, z_{2}, k_{2}\right)\right| \leq C\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|+\sqrt{\lambda_{t}}\left|k_{1}-k_{2}\right|\right)$.


## Definition (BSDE with $\lambda$-admissible driver)

Let $g$ be a $\lambda$-admissible driver. Let $\eta \in L^{2}\left(\mathcal{G}_{\mathcal{T}}\right)$.

- A process $(Y, Z, K)$ in $S^{2} \times \mathbb{H}^{2} \times \mathbb{H}_{\lambda}^{2}$ is said to be a solution of the BSDE with default jump associated with $(T, g, \eta)$ if it satisfies :

$$
-d Y_{t}=g\left(t, Y_{t}, Z_{t}, K_{t}\right) d t-Z_{t} d W_{t}-K_{t} d M_{t} ; \quad Y_{T}=\eta
$$

comment upon the comparison with Poisson

BSDE theory in the case of a $\lambda$-admissible driver (cf. , )

- existence and uniqueness of the solution for (non-linear) BSDE with default jump.
- representation result in the case of a linear $\lambda$-admissible driver, that is, the case where $g(t, y, z, k)=a_{t} y+b_{t} z+c_{t} \lambda_{t} k+d_{t}$.
- comparison theorem for (non-linear) BSDEs with default under the additional assumption
(A) There exists a predictable process $\left(\gamma_{t}\right)$ with

$$
\left(\gamma_{t} \sqrt{\lambda_{t}}\right) \text { bounded and } \quad \gamma_{t} \geq-1, \quad d t \otimes d P-\text { a.s. }
$$

such that
$g\left(t, y, z, k_{1}\right)-g\left(t, y, z, k_{2}\right) \geq \gamma_{t}\left(k_{1}-k_{2}\right) \lambda_{t}, t \in[0, T], d t \otimes d P-$ a.e.

- strict comparison theorem if the inequality is strict in assumption (A), that is if $\gamma_{t}>-1$.
- Definition : A process $\left(X_{t}\right)$ in $S^{2}$ is called a strong supermartingale if $X_{S} \geq E\left[X_{\tau} \mid \mathcal{F}_{S}\right]$ a.s., for all $S, \tau \in \mathcal{T}_{0}$ such that $S \leq \tau$ a.s.
- Definition : A process $\left(X_{t}\right)$ in $S^{2}$ is called a strong supermartingale if $X_{S} \geq E\left[X_{\tau} \mid \mathcal{F}_{S}\right]$ a.s., for all $S, \tau \in \mathcal{T}_{0}$ such that $S \leq \tau$ a.s.
- A strong supermartingale $\left(X_{t}\right)$ in $S^{2}$ has the following Mertens decomposition

$$
X_{t}=X_{0}+M_{t}-A_{t}-C_{t-}, \quad 0 \leq t \leq T \text { a.s. }
$$

where

- $M$ is a square-integrable martingale

$$
\left(M_{t}=\int_{0}^{t} Z_{s} d W_{s}, \text { with } Z \in \mathbb{H}^{2}\right)
$$

- $A$ is a non-decreasing right-continuous predictable process such that $A_{0}=0$ and $E\left(A_{T}^{2}\right)<\infty$
- $C$ is a non-decreasing right-continuous optional process purely discontinuous with $C_{0-}=0$ and $E\left[C_{T}^{2}\right]<\infty$.
A pair of processes $(A, C)$ satisfying the above properties will be called a Mertens process.


## We use also

- Gal'chouk-Lenglart formula for optional semimartingales (a generalization of Itô's formula)

We use also

- Gal'chouk-Lenglart formula for optional semimartingales (a generalization of Itô's formula)
- some results from our previous work (the case of one barrier)
園 G.M., Imkeller P., Offen E., Ouknine Y. and M.-C. Quenez : Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, (2017), Annals of Applied Probability.
(R.M. G. Imkeller P., Ouknine Y. and M.-C. Quenez : Optimal stopping with $f$-expectations : the irregular case, (2017), submitted.
This talk:
G.M., Imkeller P., Ouknine Y. and M.-C. Quenez : Doubly Reflected BSDEs and $\mathscr{E}^{f}$-Dynkin games : beyond the right-continuous case, (2017), submitted.


## Definition

Let $\left(\xi_{t}\right)_{t \in[0, T]}$ and $\left(\zeta_{t}\right)_{t \in[0, T]}$ be two (irregular) processes in $S^{2}$ such that

- $\xi_{t} \leq \zeta_{t}$ for all $t$ a.s.
- $\xi_{T}=\zeta_{T}$ a.s.

A pair of such processes will be called an admissible pair.

## DRBSDE with irregular barriers

Some literature : Cvitanić and Karatzas ('96), Hamadène and Lepeltier ('00), Lepeltier and Xu ('07), Crépey and Matoussi ('08), ...

## Definition

A process $\left(Y, Z, A, C, A^{\prime}, C^{\prime}\right)$ is said to be a solution to the DRBSDE with parameters $(g, \xi, \zeta)$, where $(\xi, \zeta)$ is an admissible pair and $g$ is a Lipschitz driver if

$$
\begin{aligned}
& \left(Y, Z, A, C, A^{\prime}, C^{\prime}\right) \in S^{2} \times H^{2} \times\left(S^{2}\right)^{4} \\
& Y_{t}=\xi_{T}+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}+A_{T}-A_{t}+C_{T-}-C_{t-} \\
& -\left(A_{T}^{\prime}-A_{t}^{\prime}\right)-\left(C_{T-}^{\prime}-C_{t-}^{\prime}\right) \text { for all } t \in[0, T] \text { a.s. } \\
& \zeta_{t} \geq Y_{t} \geq \xi_{t} \text { for all } t \in[0, T] \text { a.s. }
\end{aligned}
$$

$(A, C)$ is a Mertens process, $\left(A^{\prime}, C^{\prime}\right)$ is a Mertens process $(A, C)$ and $\left(A^{\prime}, C^{\prime}\right)$ satisfy conditions of minimality ... $d A_{t} \perp d A_{t}^{\prime}$ and $d C_{t} \perp d C_{t}^{\prime}$ (mutual singularity)
...Minimality conditions (Skorokhod conditions)

$$
\begin{aligned}
& \int_{0}^{T} \mathbf{1}_{\left\{Y_{t-}>\xi_{t-\}}\right.} d A_{t}=0 \text { a.s. } \\
& \left(Y_{t}-\xi_{t}\right)\left(C_{t}-C_{t-}\right)=0 \text { for all } t \text { a.s. } \\
& \int_{0}^{T} \mathbf{1}_{\left\{Y_{t-}<\zeta_{t-\}}\right.} d A_{t}^{\prime}=0 \text { a.s. } \\
& \left(Y_{t}-\zeta_{t}\right)\left(C_{t}^{\prime}-C_{t-}^{\prime}\right)=0 \text { for all } t \text { a.s. }
\end{aligned}
$$

Remark: We have assumed that $\xi_{t-}$ and $\zeta_{t-}$ exist. This assumption can be relaxed.

## Definition

A process ( $Y, Z, A, C, A^{\prime}, C^{\prime}$ ) is said to be a solution to the DRBSDE with parameters $(g, \xi, \zeta)$, where $(\xi, \zeta)$ is an admissible pair and $g$ is a Lipschitz driver if

$$
\begin{aligned}
& \left(Y, Z, A, C, A^{\prime}, C^{\prime}\right) \in S^{2} \times H^{2} \times\left(S^{2}\right)^{4} \\
& Y_{t}=\xi_{T}+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}+A_{T}-A_{t}+C_{T-}-C_{t-} \\
& -\left(A_{T}^{\prime}-A_{t}^{\prime}\right)-\left(C_{T-}^{\prime}-C_{t-}^{\prime}\right) \text { for all } t \in[0, T] \text { a.s. } \\
& \zeta_{t} \geq Y_{t} \geq \xi_{t} \text { for all } t \in[0, T] \text { a.s. }
\end{aligned}
$$

$(A, C)$ is a Mertens process, $\left(A^{\prime}, C^{\prime}\right)$ is a Mertens process
$(A, C)$ and $\left(A^{\prime}, C^{\prime}\right)$ satisfy conditions of minimality ...
$d A_{t} \perp d A_{t}^{\prime}$ and $d C_{t} \perp d C_{t}^{\prime}$ (mutual singularity)

We introduce the following condition

## Mokobodzki's condition

There exist two nonnegative strong supermartingales $H$ and $H^{\prime}$ in $S^{2}$ such that

$$
\xi_{t} \leq H_{t}-H_{t}^{\prime} \leq \zeta_{t}, \quad 0 \leq t \leq T \quad \text { a.s. }
$$

Theorem (existence)
The following assertions are equivalent :

- The $\operatorname{DRBSDE}(g, \xi, \zeta)$ has a solution.
- The pair $(\xi, \zeta)$ satisfies Mokobodzki's condition.


## Theorem (uniqueness)

If $(\xi, \zeta)$ satisfies Mokobodzki's condition, the solution of $\operatorname{DRBSDE}(g, \xi, \zeta)$ is unique.

# Links with non-linear Dynkin games and non-linear extended Dynkin games 

## $g$-expectation and $g$-conditional expectation

Let $g$ be a Lipschitz driver
Let $t \in[0, T]$. Let $s \leq t$.
The $g$-conditional expectation at time $s$ is defined by

$$
\begin{aligned}
\mathscr{E}_{s, t}^{g}: L^{2}\left(\Omega, \mathcal{F}_{t}, P\right) & \longrightarrow L^{2}\left(\Omega, \mathcal{F}_{s}, P\right) \\
\eta & \mapsto X_{s},
\end{aligned}
$$

where the pair $(X, \pi)$ is the unique solution (in $S^{2} \times \boldsymbol{H}^{2}$ ) of the BSDE

$$
x_{s}=\eta+\int_{s}^{t} g\left(u, X_{u}, \pi_{u}\right) d u-\int_{s}^{t} \pi_{u} d W_{u}, s \in[0, t] .
$$

- particular case : if $g \equiv 0$, then $\mathscr{E}_{s, t}^{g}(\cdot)=\mathbb{E}\left(\cdot \mid \mathcal{F}_{s}\right)$.

We consider the following non-linear Dynkin game (over stopping times)

- Two players $A$ and $B$
- Each of the players chooses a strategy in $\mathcal{T}_{0}$.
- If agent $A$ chooses a strategy $\tau \in \mathcal{T}_{0}$ and agent $B$ chooses a strategy $\sigma \in \mathcal{I}_{0}$, the pay-off at time $\tau \wedge \sigma$ (when the game ends) is $I(\tau, \sigma)$, where

$$
I(\tau, \sigma):=\xi_{\tau} \mathbf{1}_{\tau \leq \sigma}+\zeta_{\sigma} \mathbf{1}_{\sigma<\tau}
$$

- The pay-off is assessed by a (non-linear) $g$-expectation.

At time 0 , player $A$ receives $\mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)]$ and player $B$ receives $-\mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)]$

- The upper value $\bar{V}(0)$ and the lower value $\underline{V}(0)$ at time 0 are defined by

$$
\begin{aligned}
& \bar{V}(0):=\inf _{\sigma \in \mathcal{T}_{0}} \sup _{\tau \in \mathcal{T}_{0}} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)] \\
& \underline{V}(0):=\sup _{\tau \in \mathcal{T}_{0}} \inf _{\sigma \in \mathcal{T}_{0}} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)] .
\end{aligned}
$$

- The upper value $\bar{V}(0)$ and the lower value $\underline{V}(0)$ at time 0 are defined by

$$
\begin{aligned}
& \bar{V}(0):=\inf _{\sigma \in \mathcal{T}_{0}} \sup _{\tau \in \mathcal{T}_{0}} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)] \\
& \underline{V}(0):=\sup _{\tau \in \mathcal{T}_{0}} \inf _{\sigma \in \mathcal{T}_{0}} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)] .
\end{aligned}
$$

- More generally, the upper value $\bar{V}(S)$ and the lower value $\underline{V}(S)$ at time $S$ (where $S \in \mathcal{T}_{0}$ ) are defined by

$$
\begin{aligned}
& \bar{V}(S):=\operatorname{ess}_{\inf }^{\sigma \in \mathcal{T}_{S}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{S, \tau \wedge \sigma}^{\mathscr{g}}[/(\tau, \sigma)] \\
& \underline{V}(S):=\operatorname{ess}^{\sup }{ }_{\tau \in \mathcal{T}_{S}} \operatorname{ess}_{\inf }^{\sigma \in \mathcal{T}_{s}} \mathscr{E}_{S, \tau \wedge \sigma}^{g}[1(\tau, \sigma)] .
\end{aligned}
$$

As usual, $\underline{V}(S) \leq \bar{V}(S)$ a.s.

## Theorem (Existence and characterization of the value)

Let $(\xi, \zeta)$ be an admissible pair of processes satisfying Mokobodzki condition and such that $\xi$ and $-\zeta$ are right u.s.c. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

## Theorem (Existence and characterization of the value)

Let $(\xi, \zeta)$ be an admissible pair of processes satisfying Mokobodzki condition and such that $\xi$ and $-\zeta$ are right u.s.c. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

- In the linear case, that is, $g=0$, the equality $\bar{V}(S)=\underline{V}(S)$ has been proven by Alario-Nazaret, Lepeltier and Marchal (1982).
- When $\xi$ and $-\zeta$ are right-continuous, we recover well-known results
- for the case $g=0$ : Cvitanić and Karatzas (1996), Hamadène and Lepeltier (2000), Lepeltier and Xu (2007), ...
- for the case $g$ non-linear : Dumitrescu, Quenez and Sulem (2016).


## Theorem (Existence and characterization of the value)

Let $(\xi, \zeta)$ be an admissible pair of processes satisfying Mokobodzki condition and such that $\xi$ and $-\zeta$ are right u.s.c. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

- Application in financial mathematics : superhedging price of a game option


# The case where $\xi$ and $-\zeta$ are completely irregular: Non-linear extended Dynkin game 

- Two players $A$ and $B$
- Agent $A$ chooses a strategy $\rho=(\tau, H)$ where $\tau \in \mathcal{I}_{0}$ and $H \in \mathcal{F}_{\tau}$. Agent $B$ chooses a strategy $\delta=(\sigma, G)$, where $\sigma \in \mathcal{T}_{0}$ and $G \in \mathcal{F}_{\sigma}$.
- The game ends at time $\tau \wedge \sigma$
- The pay-off at time $\tau \wedge \sigma$ is

$$
I(\rho, \delta):=\xi_{\rho}^{u} \mathbf{1}_{\tau \leq \sigma}+\zeta_{\delta}^{\prime} \mathbf{1}_{\sigma<\tau}
$$

where

$$
\xi_{\rho}^{u}:=\xi_{\tau} \mathbf{1}_{H}+\bar{\xi}_{\tau} \mathbf{1}_{H^{c}} \text { and } \zeta_{\delta}^{\prime}:=\zeta_{\sigma} \mathbf{1}_{G}+\underline{\zeta}_{\sigma} \mathbf{1}_{G^{c}},
$$

with $\bar{\xi}_{t}:=\limsup { }_{s \downarrow t, s>t} \xi_{s}$ (right upper- semicontinuous envelope) and $\underline{\zeta}_{t}:=\liminf _{s \downarrow t, s>t} \zeta_{s}$ (right lower- semicontinuous envelope)

- The pay-off is assessed by a (non-linear) $g$-expectation.
- Upper and Lower Value at time 0

$$
\begin{aligned}
& \bar{V}(0):=\inf _{\delta=(\sigma, G)} \sup _{\rho=(\tau, H)} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\rho, \delta)] \\
& \underline{V}(0):=\sup _{\rho=(\tau, H)} \inf _{\delta=(\sigma, G)} \mathscr{E}_{0, \tau \wedge \sigma}^{g}[I(\rho, \delta)] .
\end{aligned}
$$

- Upper and Lower Value at time $S\left(\right.$ where $\left.S \in \mathcal{I}_{0}\right) \ldots$

Theorem (Existence and characterization of the value) Let $(\xi, \zeta)$ be an admissible pair of completely irregular processes satisfying Mokobodzki condition. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

Theorem (Existence and characterization of the value) Let $(\xi, \zeta)$ be an admissible pair of completely irregular processes satisfying Mokobodzki condition. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

## Theorem (Existence and characterization of the value)

Let $(\xi, \zeta)$ be an admissible pair of completely irregular processes satisfying Mokobodzki condition. Then, for all $S \in \mathcal{T}_{0}$, we have

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

- This theorem is useful in showing a comparison theorem and a priori estimates with universal constants (i.e. depending only on the terminal time $T$ and the common Lipschitz constant $K$ ) for DRBSDEs with completely irregular barriers.


## Theorem (Gal'chouk-Lenglart)

Let $X$ be a 1-dimensional optional semimartingale with decomposition $X=X_{0}+M+A+B$, where $M$ and $A$ are as in the right-continuous case, and $B$ is an adapted left-continuous process of finite variation which is purely discontinuous and such that $B_{0}=0$. Let $F \in C^{2}(\mathbb{R})$. Then, a.s, for all $t \geq 0$,

$$
\begin{aligned}
F\left(X_{t}\right) & =F\left(X_{0}\right)+\int_{[0, t]} F^{\prime}\left(X_{s-}\right) d(A+M)_{s}+\frac{1}{2} \int_{] 0, t]} F^{\prime \prime}\left(X_{s-}\right) d\left\langle M^{c}\right\rangle_{s} \\
& +\sum_{0<s \leq t}\left[F\left(X_{s}\right)-F\left(X_{s-}\right)-F^{\prime}\left(X_{s-}\right) \Delta X_{s}\right] \\
& +\int_{[0, t[ } F^{\prime}\left(X_{s}\right) d B_{s+}+\sum_{0 \leq s<t}\left[F\left(X_{s+}\right)-F\left(X_{s}\right)-F^{\prime}\left(X_{s}\right) \Delta_{+} X_{s}\right] .
\end{aligned}
$$

Notation : $\Delta X_{s}=X_{s}-X_{s-}$ and $\Delta_{+} X_{s}=X_{s+}-X_{s}$.

