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Introduction

Important features of the market
@ (Possible) default on the underlying risky asset

@ The market is non-linear : the dynamics of the wealth process are
non-linear (the driver is non-linear). The non-linearity of the driver
can encode different lending and borrowing rates, repo rates,
impact of a large investor ...

@ The market is incomplete : not every contingent claim is replicable.
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Introduction

Goal

Study the pricing of an American option whose pay-off process is not
necessarily right-continuous.
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Introduction

Goal

Study the pricing of an American option whose pay-off process is not
necessarily right-continuous.

@ dual characterization in terms of a non-linear mixed problem of
control and stopping

@ characterization of in terms of the minimal supersolution a
constrained reflected BSDE.

— passes through establishing a non-linear optional decomposition.
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The model

Non-linear incomplete market with default
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The model

Let T > 0 be a fixed terminal horizon.

Let (2, G, P) be a complete probability space.

Let W be a one-dimensional Brownian motion.

¥ is a random variable which models a default time.

We assume P(® > t) > 0 for all t > 0.

Let N be the process defined by N; := 13<; for all t € [0, T],

Let G = {G;,t > 0} be the (augmented) filtration generated by W
and N.

@ We assume that W is a G-Brownian motion.
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The model

@ Let (/A;) be the predictable compensator of the nondecreasing
process (N;) = (19<¢).

@ We assume that A\; = fO’ Asds, t > 0, where Ag > 0 is the intensity
process.

@ To simplify the presentation, we assume that A is bounded.
@ Let M be the compensated martingale given by

t
MtZ: Nt_At:Nt_/ }Lst.
0
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The model

We consider a market with :
@ arisky asset S = (St)o<t<T

as; = St— (,Utdt"‘ o dW;+ Bthl‘) with Sp > 0.

The processes G, u, and [ are predictable bounded
with 6; > 0 and By > —1.
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The model

@ An investor, endowed with an initial wealth x € R.

@ At each time t, the investor chooses the amount @; of wealth
invested in the risky asset (where ¢ € H?).

@ The value of the associated portfolio (also called wealth) at time t
is denoted by V;*? (or simply V4).

@ The wealth process VIX ? (or simply V;) satisfies the following
dynamics :

—dVy = f(t, Vi, 9;61)dt — 0;6:dW; — @;3:dM;,

with Vo = x, where f is a nonlinear (non-convex) Lipschitz driver.
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The model

The model includes many examples :

@ fis a linear driver given by
f(t,y,00t) = —rey — (ue — rt)@r = —riy — (1t — 1)1, where ri is a
risk-free interest rate.
@ different borrowing and lending interest rates R; and r; such
that Ry > ry :
f(t,y,90t) = —rx — @t(ue —rt) + (Re—re) (¥ — 91)
(cf. Korn , El Karoui and Quenez (1997))
@ arepo market on which the risky asset is traded
f(t,y,9:0¢) = —rey — O(ur — 11) — h9; + by,
where b; (resp. ;) the borrowing (resp. lending) repo rate.
(cf. Brigo)

@ large seller, ...
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The model

Remark : This nonlinear market is incomplete.

Indeed, let | € L2(Gr) be the terminal pay-off of a European option.
Then, it might not be possible to find (x,®) in R x H? such that

Vi® =n.
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The model

Remark : This nonlinear market is incomplete.

Indeed, let | € L2(Gr) be the terminal pay-off of a European option.
Then, it might not be possible to find (x,®) in R x H? such that

Vi® =n.

In other words, the BSDE

—dV; = f(t, Vi, Z)dt — ZdW; — Zio; 'BedMy; Vi =,

might not be well-defined.
(Here, we have set as usual Z; := ¢;G6;.)
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Seller’s and buyer’s superhedging price

Seller's and buyer’s superhedging price
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Seller's and buyer’s superhedging price

@ 7 is the set of G-stopping times with values in [0, T]

@ We consider an American option with maturity 7 and irregular
pay-off process & € S?

@ S? s the space of optional (not necessarily right-continuous)
processes X such that E[ess supycqX?] < +oo.

Example :
The pay-off is of the form &; = h(S;), where h is a Borel function such
that (h(Sy)) is in S2.
@ American digital call option (with strike K > 0), where
h(X) = 1[K7+w)(X).
@ American digital put option, where h(x) :=1(_. x)(X)-
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Seller’s and buyer’s superhedging price

Definition (seller’s superhedging price at time 0)

up :=inf{x € R: Jo € H? with V;"® > & vre T}
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Seller's and buyer’s superhedging price

Definition (seller’s superhedging price at time 0)

up :=inf{x € R: Jo € H? with V;"® > & vre T}

Definition (buyer’s superhedging price at time 0)
o :=sup{z€R: 3(1,0) € T x H with V; “?+ &, >0a.s. }.

References : Karatzas and Kou (1998), ...
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No arbitrage considerations

No arbitrage considerations
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No arbitrage considerations

We will see that :
The interval [Up, Up] is a no-arbitrage interval of prices for the
American option.

Definition (arbitrage opportunity for the seller)

Let x € R be the initial price of the American option.
We say that (y, ) € R x H? is an arbitrage opportunity for the seller of
the American option with initial price x if

y<x and W®-E >0 as. forallte 7.

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



No arbitrage considerations

Definition (arbitrage opportunity for the buyer)

Let x € R be the initial price of the American option.
We say that (y, T, @) is an arbitrage opportunity for the buyer of the
American option with initial price x, if

y>x and V. ®?+E >0 as.
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No arbitrage considerations

Definition (arbitrage-free price)
A real number x € R is called an arbitrage-free price for the American
option if, neither the seller nor the buyer have arbitrage opportunity.

Proposition
The set of all arbitrage-free prices for the American option is given by
[0, to]-
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No arbitrage considerations

Proposition
The set of all arbitrage-free prices for the American option is given by
[Tio, uo]-

Remark :

@ ltis possible that uy < g, and hence, that there does not exist an
arbitrage-free price for the American option.
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Dual characterization of the seller’s price

Dual characterization of the seller’s price
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Dual characterization of the seller’s price

Let 7V be the set of bounded predictable processes v such that
v: > —1,forall t € [0, T], A\ydP ® dt-a.e.

Driver ¥
Forv € v, we define

(o, t,y,2,k) = f(0,1,y,2) + Vi(0)A(0) (k — Br(0)o; ' (0)2).

The mapping f¥ is an example of a A-admissible driver
(cf. Dumitrescu, M.G., Quenez, Sulem (2018)).

For such a driver and the corresponding BSDE (with default), we have :

existence and uniqueness of the solution ; representation result in the
linear case ; comparison theorem, strict comparison theorem,
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Dual characterization of the seller’s price

& -expectation

Let 7' €[0,T]. Lett < T'.
We define : .
gth’ L3(Q, Fpr, P) — L3(Q, FH, P)
n— X,
where (XV,Z¥,K") is the unique solution of the BSDE
—dXy = (8, X}, ZY,KY) — ZY dWs — KY dMs;
X;/-/ =1.

With this notation, X' = &7, ().
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Dual characterization of the seller’s price

Theorem (Dual characterization of the seller’s price)

Up = sup éaof,vfc(gr)
(T, v)eTxV
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Dual characterization of the seller’s price

Theorem (Dual characterization of the seller’s price)

W= sup  EE)
(T, v)eTxV

@ The particular linear case (f is linear)
— gain some intuition about the duality result

© Sketch of the proof
— a non-linear optional decomposition and a non-linear
predictable decomposition
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Dual characterization of the seller’s price

We consider the particular linear incomplete case, that is, the case
where
f(t,y,Z) = —fty—etZ

—r
Here, 0; := ytc Lis the risk premium at time t.

t
In this linear case the duality result for the seller’s superhedging price ug
for the American option with pay-off & € S? reduces to

(duality in the linear case)

U= sup Efi(&)= sup Ep(e 7%y,
(T,V)ET XV (t,v)eTxV

where {RY,v € 7'} is the set of equivalent martingale measures.

Indeed, we notice the following :
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Dual characterization of the seller’s price

Proposition (martingale measure)
The following assertions are equivalent :
(i) Ris a martingale measure.

(i) There exists v € ¥ such that R= R",
where R is the probability measure with density process
€Y such that

dcv CV [(Xt dW1+thMt] C

Here, we have set o = (—6; — viABs0; ).

Uses : G-martingale representation (Kusuoka (1999)).
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The general non-linear incomplete case : Sketch of the proof

The general non-linear incomplete case :
Main steps of the proof
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The general non-linear incomplete case : Sketch of the proof

We want to show :

Theorem (Dual characterization of the seller’s price)

W= sup  &E)
(T,v)eTxV

We consider the following non-linear problem of control and stopping :

Y(S):=ess sup &3(&)
(tV)eTsxV

where
°o & :=¢&"
@ For S a stopping time in 7y, we denote by 7s the set of stopping
times T such that t € [S, T] a.s.
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The general non-linear incomplete case : Sketch of the proof

Definition (strong &-supermartingale)

Letve 7.
We say that a process X € S? is a strong &"-supermartingale if
3(Xt) < Xs, forall S,t € T such that S <ta.s.
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The general non-linear incomplete case : Sketch of the proof

Definition (strong &”-supermartingale)

Letve 7.
We say that a process X € S? is a strong &"-supermartingale if
68 (Xt) < Xs, forall S,7€ T suchthat S< ta.s.

Theorem (Aggregation and Snell-type characterization)
@ There exists an r.u.s.c. process ( Y;) € S? which aggregates the
value family (Y(S)) of the problem of control and stopping.
@ The process (Y;) is a strong &-supermartingale for all v € 7
and Y; > &;, forall t € [0, T], a.s.
@ Moreover, the process ( Y;) is the smallest process in S?
satisfying these properties.

Remark : If the pay-off process & is right-continuous, then so is Y.
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Strong &V -supermartingales for all v € V

Strong &Y-supermartingales forallv € 1/ :
optional and predictable decomposition
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Strong &"-supermartingales for all v € 7/

Theorem (Non-linear optional decomposition)

Let (Y;) € S? be a &V-strong supermartingale for each v € 7.
Then, there exists a unique Z € H?, a unique C € C? and a unique
nondecreasing optional RCLL process h, with hy = 0 and E[h3] <
such that

—dY; = f(t, Yt,Zt)dt — Zth_1 (thWt -+ Bl‘dMl‘) + dCt— + dhy.

C? is the set of adapted non-decreasing RCLL purely discontinuous
processes (X;) such that Xo_ = 0 and E[X2] < +o.
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Strong &"-supermartingales for all v € 7/

Remark

In the case where f is linear and X is right-continuous, the above

& -optional decomposition is reduced to the usual optional
decomposition of an RCLL process, which is a (right-continuous)
supermartingale under all martingale probability measures (up to a
discounting and a change of probability measure procedure).

References : El Karoui and Quenez (1995), Kramkov (1996), Féllmer
and Kabanov (1998).
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Strong &"-supermartingales for all v € 7/

Theorem (Predictable decomposition)

Let (X;) € S? be a strong &"-supermartingale for all v € /. There
exists a unique process (Z,K, A, C) € H? x HE x 42 x C? such that

—adX; = £(t, X;, Z;)dt — Z,dW; — KidM; + dA; + dCy_

0

(Ki—Bio; ' Z)h <0, t€[0,T], dP®dt —a.e.

The set 42 is the set of
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Supersolution of a Constrained Reflected BSDEs

Characterization of the value process as the
minimal supersolution of a constrained reflected
BSDE
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Supersolution of a Constrained Reflected BSDEs

Definition
Let & € S?. A process Y’ € S? is said to be a supersolution of the
constrained reflected BSDE with driver f and obstacle § if there exists a
process (Z',K',A',C’") € H? x HZ x 42 x C? such that
—dY{ =1(t,Y{,Z])dt + dA, + dC;_ — Z dW; — K] dM;
Yr=Eras. and Y;>E forallte[0,T] as.;
(Yi—-&)(C.—C. )=0as.forallte T;

A +/ (K. —Bsog ' Z)Asds € 4%  and
0
(K| —Bio; 'Z)\ <0, te[0,T], dPdt-ace.;

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



Supersolution of a Constrained Reflected BSDEs

Proposition (Characterization of the seller’s price process)

The seller’s price process ( Y;) is a supersolution of the constrained

reflected BSDE from the previous definition.
Moreover, it is the minimal one, that is, if (Y{) is another supersolution,

then Y{ > Y forall t € [0, T] a.s.
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BSDE with default

BSDE with default
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BSDE with default

(Definition) A-admissible driver
Afunction g: [0, T] x Qx R3 = R; (®,t,y,2,k) — g(o,t,y,2,k)
is said to be a A-admissible driver if
@ (measurability) g is P ® B(R®)— measurable
e (integrability) g(.,0,0,0) € HZ.
@ there exists C > 0 such that dP ® dt-a.e., for each (y1,z1, k1),
(y27z27 k2)a

9(t,y1, 21, k1) — a(t, yo, 20, k2)| < C(lys — yo| 4|21 — 2o| + /A 4 _k2|)',
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BSDE with default

Definition (BSDE with A-admissible driver)
Let g be a A-admissible driver. Let | € L2(G).
@ Aprocess (Y,Z,K)in $2 x H? x HZ is said to be a solution of the
BSDE with default jump associated with (T, g, n) if it satisfies :

—dY; = g(t, Yt,Zt, Kt)dt— ZidWs — KidMy;, Y7 = M.

comment upon the comparison with Poisson
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BSDE theory in the case of a A-admissible driver
(cf.,)
@ existence and uniqueness of the solution for (non-linear) BSDE
with default jump.
@ representation result in the case of a linear A-admissible driver,
that is, the case where g(t,y, z, k) = aty + bz + ¢t Mtk + d.
@ comparison theorem for (non-linear) BSDEs with default under the
additional assumption
(A) There exists a predictable process (7;) with

(%\/T,) bounded and v;>—1, dt®dP— as.
such that
g(t7y7zvk1)_g(t7yazvk2)Z’Yt(k1_k2)}\‘t7 te [07 T]7 dt®dP_ a.e.

@ strict comparison theorem if the inequality is strict in assumption
(A), that is if y; > —1.
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BSDE with default

@ Definition : A process (X;) in 52 is called a strong
supermartingale if Xs > E[X; | 5] a.s., for all S,T € Ty such that
S<rtas.
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BSDE with default

@ Definition : A process (X;) in 52 is called a strong
supermartingale if Xs > E[X; | 5] a.s., for all S,T € Ty such that
S<tas.

@ A strong supermartingale (X;) in $2 has the following
Mertens decomposition

Xt X0—|—Mt A[—th, OStSTa.S.,

where
» M is a square-integrable martingale
M; = [5 ZsdWs, with Z € H?)
» Ais a non-decreasing right-continuous predictable process such
that Ay = 0 and E(A%) < =
» C is a non-decreasing right-continuous optional process purely
discontinuous with Cy— = 0 and E[C2] < .
A pair of processes (A, C) satisfying the above properties will be
called a Mertens process.
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BSDE with default

We use also

@ Gal’chouk-Lenglart formula for optional semimartingales
(a generalization of 1t6’s formula)
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BSDE with default

We use also

@ Gal’chouk-Lenglart formula for optional semimartingales
(a generalization of 1t6’s formula)

@ some results from our previous work
(the case of one barrier)

[ G.M., Imkeller P, Offen E., Ouknine Y. and M.-C. Quenez : Reflected
BSDEs when the obstacle is not right-continuous and optimal
stopping, (2017), Annals of Applied Probability.

[3 G.M., Imkeller P, Ouknine Y. and M.-C. Quenez : Optimal stopping
with f-expectations : the irregular case, (2017), submitted.
This talk :
G.M., Imkeller P., Ouknine Y. and M.-C. Quenez : Doubly Reflected
BSDEs and &-Dynkin games : beyond the right-continuous case,
(2017), submitted.

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



BSDE with default

Definition
Let (&t)tepo, 7] @nd (Ct)sepo, 7] be two (irregular) processes in $2 such
that
@ £ < foralltas.
e {r=Cras.
A pair of such processes will be called an admissible pair.
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DRBSDE with completely irregular barriers

DRBSDE with irregular barriers
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DRBSDE with completely irregular barriers

Some literature : Cvitani¢ and Karatzas ('96), Hamadéne and Lepeltier
('00), Lepeltier and Xu ('07), Crépey and Matoussi ('08), ...

Definition

A process (Y,Z,A,C,A’,C') is said to be a solution to the DRBSDE

with parameters (g,&, ), where (§,{) is an admissible pair and g is a
Lipschitz driver if

(Y,Z,A,C A, C) e 5% x H? x (5%)*

T T
Yt — &T‘{—/ g(S, Ys,Zs)ds _/ stWs +AT - At + CT_ - Cf_
t t

— (A7 —A)—(Cr_—C} )forallt€[0,T] as.

Ci> Yy >E& forallte[0,T] as.

(A, C) is a Mertens process, (A', C') is a Mertens process
(A,C) and (A, C') satisfy conditions of minimality ...

dA; L dA} and dC; | dC} (mutual singularity)
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...Minimality conditions (Skorokhod conditions)

.
/0 1{Yt—>§t—}dAt =0a.s.
(Yy—E&)(Ci—Cr—)=0forall tas.

;
/0 1{Yt—<Ct—}dAlf =0a.s.
(Vi —C)(Ci—Cj_)=0forall t as.

Remark : We have assumed that &; and {;_ exist. This assumption
can be relaxed.
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DRBSDE with completely irregular barriers

Definition

A process (Y,Z,A,C,A’,C’) is said to be a solution to the DRBSDE
with parameters (g, &, ), where (&,{) is an admissible pair and g is a
Lipschitz driver if

(Y,Z,A,C,A,C) € 52 x H x (57)*
T T
Y= §T+/ 9(37 Y37Zs)d3—/ ZsdWs+ A1 — A+ Cr— — Gt
t t

— (AT —A)—(Cr_ —C} )forallte€[0,T]as.

G >Yi>C&iforallt€[0,T] as.

(A, C) is a Mertens process, (A’, C’) is a Mertens process
(A,C) and (A, C') satisfy conditions of minimality ...

dA; L dA, and dC; | dC} (mutual singularity)
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DRBSDE with completely irregular barriers

We introduce the following condition

Mokobodzki’s condition

There exist two nonnegative strong supermartingales H and H' in 52
such that
E<H—H <, 0<t<T as.

Theorem (existence)
The following assertions are equivalent :

@ The DRBSDE(g, &, {) has a solution.
@ The pair (&, {) satisfies Mokobodzki's condition.

Miryana Grigorova (Leeds) Nonlinear pricing of American options Luminy, 4 September 2018



DRBSDE with completely irregular barriers

Theorem (uniqueness)

If (€, C) satisfies Mokobodzki’s condition, the solution of
DRBSDE(g,&, ) is unique.
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Links with non-linear games

Links with
non-linear Dynkin games
and non-linear extended Dynkin games

=] F = = E DA
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g-expectation and g-conditional expectation

Let g be a Lipschitz driver
Lett€ [0, T]. Lets<t.
The g-conditional expectation at time s is defined by

&3 L3(Q, Fi, P) — L2(Q, Fs, P)
T] — X37

where the pair (X, ) is the unique solution (in 52 x H?) of the BSDE

t t
Xs - T] —'l_/ g(U, Xu,ﬂu)du_/ nuqu, S E [O, t].
S S

@ particular case : if g =0, then &7,(-) = E(:| Fs).
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Links with non-linear games Non-linear Dynkin game

We consider the following non-linear Dynkin game (over stopping times)

@ Two players Aand B
@ Each of the players chooses a strategy in 7.

@ If agent A chooses a strategy T € 7y and agent B chooses a
strategy ¢ € 1, the pay-off at time T A G (when the game ends) is
I(t,0), where

I(t,0) :=Eli<o + Lolo<r.

@ The pay-off is assessed by a (non-linear) g-expectation.
At time 0, player A receives é‘fm[l(r,c)]
and player B receives —ﬁfm(j[l(r,c)]
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Links with non-linear games Non-linear Dynkin game

@ The upper value V(0) and the lower value V(0) at time 0 are

defined by
V(0) := inf sup 5 Gl(T,0)]
oD 1e T,

V(0) := sup inf é" (T, 0)].
TE%GGT 0t
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Links with non-linear games Non-linear Dynkin game

@ The upper value V(0) and the lower value V(0) at time 0 are
defined by

V(0) := inf sup £ Gl(T,0)]

6€T ey

V(0) := sup inf @‘"7 (T, 0)].

TE% GG(ZE)

@ More generally, the upper value V(S) and the lower value V(S) at
time S (where S € 1) are defined by

V(S) := ess infcq, €8S supreq, é”sm[l(t,c)]

V(S) := ess supcq.ess infser, gjm[l('c,c)].

As usual, V(S) < V(S) as
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Links with non-linear games Non-linear Dynkin game

Theorem (Existence and characterization of the value)
Let (&, ) be an admissible pair of processes satisfying Mokobodzki
condition and such that & and —{ are right u.s.c. Then, for all S € T,

we have
Ys=V(S)=V(S) as.
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Links with non-linear games Non-linear Dynkin game

Theorem (Existence and characterization of the value)
Let (&, ) be an admissible pair of processes satisfying Mokobodzki
condition and such that & and —{ are right u.s.c. Then, for all S € T,

we have
Ys=V(S)=V(S) as.

@ In the linear case, that is, g = 0, the equality V(S) = V(S) has
been proven by Alario-Nazaret, Lepeltier and Marchal (1982).
@ When § and —{ are right-continuous, we recover well-known
results
» for the case g = 0 : Cvitani¢ and Karatzas (1996), Hamadéne and

Lepeltier (2000), Lepeltier and Xu (2007), ...
» for the case g non-linear : Dumitrescu, Quenez and Sulem (2016).
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Links with non-linear games Non-linear Dynkin game

Theorem (Existence and characterization of the value)
Let (&, ) be an admissible pair of processes satisfying Mokobodzki
condition and such that & and —{ are right u.s.c. Then, for all S € T,

we have
Ys=V(S)=V(S) as.

@ Application in financial mathematics :
superhedging price of a game option
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Links with non-linear games

The case where £ and — are completely
irregular :
Non-linear extended Dynkin game
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Links with non-linear games Non-linear extended Dynkin game

@ Two players Aand B

@ Agent A chooses a strategy p = (t,H) where T € 7y and H € ;.
Agent B chooses a strategy 8 = (6, G), where 6 € 7y and G € .

@ The game ends attime TAC
@ The pay-off attime TA G is

1(p,8) := Egteco + Llocr,

where ~ /

with E, = lim supsu’sxﬁs (right upper- semicontinuous envelope)
and St := liminfg; ¢~ Cs (right lower- semicontinuous envelope)

@ The pay-off is assessed by a (non-linear) g-expectation.
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Links with non-linear games Non-linear extended Dynkin game

@ Upper and Lower Value at time 0

V(0):= inf sup & [I(p,d
©= i s &, 00.5)

V(0):= sup inf & [i(p.3)]
( ) pZ(T,H) SZ(G,G) O,T/\cs[ (p )]

@ Upper and Lower Value at time S (where S € 7) ...
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Links with non-linear games Non-linear extended Dynkin game

Theorem (Existence and characterization of the value)

Let (&, ) be an admissible pair of completely irregular processes
satisfying Mokobodzki condition. Then, for all S € 7y, we have

Ys=V(S)=V(S) as.
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Links with non-linear games Non-linear extended Dynkin game

Theorem (Existence and characterization of the value)

Let (&, ) be an admissible pair of completely irregular processes
satisfying Mokobodzki condition. Then, for all S € 7y, we have

Ys=V(S)=V(S) as.

@ This theorem is useful in showing
a comparison theorem and a priori estimates with universal
constants (i.e. depending only on the terminal time T and the
common Lipschitz constant K) for DRBSDEs with completely
irregular barriers.
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Links with non-linear games Non-linear extended Dynkin game

Theorem (Gal’chouk-Lenglart)

Let X be a 1-dimensional optional semimartingale with decomposition
X =Xo+ M+ A+ B, where M and A are as in the right-continuous
case, and B is an adapted left-continuous process of finite variation

which is purely discontinuous and such that By = 0. Let F € C3(R).
Then, a.s, for all t > 0,

F(X;) = F(Xo) +/ "(Xs— )d(A+M)S+;/]O i F"(Xs_)d(M°)¢
+ Z Xs—) — F'(Xs—)AXq)

+/[0 : F'(Xs)dBsy + Z [F(Xs+) — F(Xs) — F/(XS)A+XS} '

0<s<t
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