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Yuri in Japan since 2008

2008 Aug Tokyo
2008 Sep Kyoto
2009 Feb-Mar Osaka
2009 Aug Kyoto
2009 Sep Kyoto
2010 Aug Tokyo
2012 Feb Sapporo
2013 Feb Sapporo
2014 Feb Sapporo
2014 Mar Kyoto
2016 Feb Sapporo
2016 Apr-Jun Tokyo (Apr Osaka, Jun Hakodate)
2017 Feb Sapporo
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Summary and Plan

This talk is
» Based on Cai and Fukasawa (F&S, 2016)
» An extended framework (reformulation)
Plan
» Revisit to the Leland-Lott strategy

v

A class of regular and singular controls

v

Homogenization

v

A deterministic problem

v

Asymptotically optimal strategy

Fixed transaction costs

v

> An open problem
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Leland-Lott strategy : enlarged volatility

Consider the Black-Scholes : dS; = 05:dB;.
European pricing PDE with enlarged volatility :

op 1 2 0?
p(s, T) = £(s), al; <1+ ) 52875’2’:0.

Itd's formula gives

T 1 T
(Sr) = p(so.0) + [ xeasc— 3 [ rals),
0 0

with 5 o
P
8 (Sta ) rt 8 2(5t7 )

Use the third term to pay transaction costs (I > 0 if f is convex).

Xt =
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Leland-Lott strategy : regular discretization
A discrete hedging strategy :

Xh =Xy, te(ih(i+1)h], i=0,1,2,...

P&L under proportional transaction costs :

.
/ XPdS —k > S|AX{]
0

0<t<T
2 2.2
The trick : by choosing h = —%, as k — 0,
T O
T T 1 [T
/ Xxhds, —)/ XedS:, £ Y SAX]| - / r:d(S);.
0 0 0<t<T @ Jo
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Central limit theorem
The hedging error of O(k) is

1 T T
( / X.dS; — / Xt”dSt>
K \Jo 0

1(1

K

.
L[ rasy—s 3 siaxt

0<t<T

minus

Denis and Kabanov (F&S, 2010): it converges in D[0, T] to a
time-changed BM W, where

’ 1 2 2
Q= ”L(a)/ FeSePd(S)e, nu(a) = ;az + —a +1-=.
0

™
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alpha initial wealth(Call, S=100, K=100, kappa=0.01, sigma=0.2, T=1)
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Abstraction

Let S be a continuous local martingale and X =T -S4 ¢ - (S).
The question is how to approximate

1
X-5—=(X,S)
o
by
XS —rh-|K].
where X is an adapted process of finite variation and || X|| is its
total variation process. A is a given adapted process (say, A = S).
» X is a trading strategy of finite proportional transaction costs.
» Here one can consider a € [—2,0) as well.

» o = —2 corresponds to the Stratonovich integral.
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A class of control strategies
We consider X = X* of the form

¢ 1
dX; = ;sgn(Zt)c(|Zt|, Fe)d(X)e — rdLe 4 rdR:,

where
» Z=27"=(X—X)/k, a scaled deviation.

» c(z,f) is a nonnegative piecewise C%2 function with
(z = 2)(—sen(2)c(|z], f) + sgn(2)e(|2'], ) < Lz - 2",

» F is a multi-dimensional continuous semimartingale.
» L and R are adapted, non-decreasing with

dLy = Liz—_g,ydLe, ARy =1yz,_¢dR:, |Zi] < Gt.

» G is a positive continuous semimartingale.
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The existence of the strategy

For a given continuous semimartingale (X, F, G), G > 0, there
exists unique solution (Z, L, R) of the Skorokhod equation

dX 1

dz =—= ~d(X, 6 dl — dR
¢ T LAX 6+
1 A 1
2ngn( )c(|Z]G F)d(X) + ZGdE
with

(a fixed point argument using the one-sided Lipschitz continuity)
The strategy X is then well-defined by

dL = GdL, dR=GdR, X=X —kGZ.
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Tracking error

E" =X =X)-S+rN-|X]|| - $<x,5>

1
=kZ-S+ (Ac(Z,F))- (X) +r*N- (L+ R) — ~(X,5).
Theorem : Assume
> Lir—oy (S)=0as,
» A and I are continuous semimartingales.
Then,
1 A 1
Y == |&EF - (X)) 4+ —(X 1%
(- grg g e

stably in law on C|[0, T], where W is an independent BM,
Q=n(F,G,AI')-(S), and..
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(f.)=2 [ mix.F)dx,

Ix|
m(x, f) = exp (—2/0 c(z, f)dz) ,

n(f,g,\) = §(f2,g) /Og(x—/\h(x7 f,g))2 m(x, f)dx,

sgn(x Il
h(x,f,g) = i?x,(f)) /0 <c(z, f)— §(f1, g)> m(z, f)dz

Remark : m(-, f) is the speed measure density, [—g, g] is the
state space, £(f, g) is the total mass of the speed measure,
and h solves h(—g,f,g) =1, h(g,f,g) = —1 with

1
£(f.g)

Osaka University

—sgn(x)c(x, F)A(x, f.g) + ;gh (x,f.g) = c(x, f)
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Proof

» Jacod's theorem of stable convergence : a sequence of
continuous semimartingales Y* converges to Wy stably in law
on C[0, T]if (Y*,S) =0, (Y*") — Q and Q is continuous.

> Averaging lemma : if
g
| vt fug Amix, Fax =0
-g
for each (f,g, \,7), then

sup — 0

7€[0,T]

/ ¢(Zf> Ft7 Gtal\ta rt)d<X>t
0

as k — 0.
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Homogenization
Recall Z = Z% = (X — X)/k and

A 1
YR =278 — K2d(L+R Z,F)— ——— | (X
vt = zvas - (alk R+ (2. e ) a0,

4z~ — %dx _ %sgn(Z”)c(Z”, F)A(X) +dL — dR.
The function h(z, f, g) was so chosen that
1

2L+ R +<cZ,F —>. X

( ) (Z,F) $F.G) (X)

= —rh(Z",F,G) - X + Op(x?),

so that
Y® ~ (Z% — NTh(Z",F,G))-S.
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A deterministic problem

» Can choose ¢(-, F) and G.

» £(F, G) determines the limit of the tracking error. Say, need
&(F, G) = aT for the asymptotic replication.

» Minimize the asymptotic variance n(f, g, \) with £(f, g) fixed.

» Changing variables, the problem is to minimize

1 2\ 2
f,g,)\:/ <yu + A+ u—1y'u> du
n( ) | (u) £(f,g)( )y’ (u)
in the set ) of the increasing convex functions y on [0, 1] with
f,
v =0. y(0)="8)
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Explicit solution

Theorem :
?/12 ifA=0
inf  n(f,g,\) = lim x*n;(&/x) = 52/ | ’
6(F.8)=¢ MY A2n(E/A)  ifA#0,
where
0 if—2<x<1,
n(x) = m(x) ifl<x<2,
m(x) if x| > 2
and ( )2( 1) (x +2)2
4(x+2)7(x— X &
m(x) = 3 B4 —x) m(x) = 5

Remark: For the asymptotic replication, let £ = aA.
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a— ni(a)

eta
1.5

1.0
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Asymptotically optimal strategy
Suppose AI' > 0 and let £(F, G) = a/Al'" (asymptotic replication)
»0<a<l:

dX = sgn(X — X)22 1
= Sgn — =
s 20 kAT + | X — X|

d(X).

l<a<?2:
4—q« 1

dX =sgn(X — X —1
sen( )2(2—a)n/\l’+|X—X] A

d{X),

where

¢ -1
A= {]X—X\ > 2% /\r}.
4 -«
» 2 < « : singular control

X —X| < m%/\r.
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An open problem
After the homogenization, the system becomes

dYe = Z,dW; + c(Z:)y?dt + dLe + dR, — gdt,
dZ; = vdW; — sgn(Z:)c(Z:)y?dt + dL; — dR;
for which we get
inf_lim ZE[Y3] =27 (0).
2-dimensional degenerate singular control problem
AY; = ZdW; + dA; — %dt,
dZ; = vdW; — sgn(Z;)dA;

to minimize E[Y2] or E[Y}] ? Explicit strategy when T — oo ?
T T
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