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Yuri in Japan since 2008

2008 Aug Tokyo
2008 Sep Kyoto
2009 Feb-Mar Osaka
2009 Aug Kyoto
2009 Sep Kyoto
2010 Aug Tokyo
2012 Feb Sapporo
2013 Feb Sapporo
2014 Feb Sapporo
2014 Mar Kyoto
2016 Feb Sapporo
2016 Apr-Jun Tokyo (Apr Osaka, Jun Hakodate)
2017 Feb Sapporo
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Summary and Plan

This talk is

▶ Based on Cai and Fukasawa (F&S, 2016)

▶ An extended framework (reformulation)

Plan

▶ Revisit to the Leland-Lott strategy

▶ A class of regular and singular controls

▶ Homogenization

▶ A deterministic problem

▶ Asymptotically optimal strategy

▶ Fixed transaction costs

▶ An open problem
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Leland-Lott strategy : enlarged volatility

Consider the Black-Scholes : dSt = σStdBt .
European pricing PDE with enlarged volatility :

p(s,T ) = f (s),
∂p

∂t
+

1

2

(
1 +

2

α

)
σ2s2

∂2p

∂s2
= 0.

Itô’s formula gives

f (ST ) = p(S0, 0) +

∫ T

0
XtdSt −

1

α

∫ T

0
Γtd⟨S⟩t

with

Xt =
∂p

∂s
(St , t), Γt =

∂2p

∂s2
(St , t).

Use the third term to pay transaction costs (Γ ≥ 0 if f is convex).
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Leland-Lott strategy : regular discretization
A discrete hedging strategy :

X h
t = Xih, t ∈ (ih, (i + 1)h], i = 0, 1, 2, . . .

P&L under proportional transaction costs :∫ T

0
X h
t dSt − κ

∑
0<t≤T

St |∆X h
t |

The trick : by choosing h =
2

π

κ2α2

σ2
, as κ→ 0,

∫ T

0
X h
t dSt →

∫ T

0
XtdSt , κ

∑
0<t≤T

St |∆X h
t | →

1

α

∫ T

0
Γtd⟨S⟩t .
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Central limit theorem

The hedging error of O(κ) is

1

κ

(∫ T

0
XtdSt −

∫ T

0
X h
t dSt

)
minus

1

κ

 1

α

∫ T

0
Γtd⟨S⟩t − κ

∑
0<t≤T

St |∆X h
t |

 .

Denis and Kabanov (F&S, 2010): it converges in D[0,T ] to a
time-changed BM WQ , where

Q = ηL(α)

∫ ·

0
|ΓtSt |2d⟨S⟩t , ηL(α) =

1

π
α2 +

2

π
α+ 1− 2

π
.
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ηL(α)

Asymptotic replication with modified volatility under small transaction costs 387

Fig. 3 Comparison between ηL(α) and η†(α)

The coefficient η†(α) is represented in Fig. 3 (dashed curve of the left panel), where
we observe a significant improvement in terms of the asymptotic variance of the
hedging error compared to Leland’s strategy.

The rest of the paper is structured as follows. In Sect. 2, we define a class of
continuous trading strategies which are admissible in the presence of proportional
transaction costs. The main results are stated in Sect. 3. We also provide a detailed
description for the implementation in practice and several numerical experiments.
In Sect. 4, a heuristic derivation of the main results and a detailed comment on the
relation with the existing literature can be found. We give the rigorous proofs in
Sect. 5.

2 Framework

In this section, we give a rigorous formulation of the problem and describe our class
of continuous trading strategies. Let (#,F ,P, {Ft , t ≥ 0}) be a filtered probability
space satisfying the usual assumptions. Let T > 0 be a constant which stands for the
maturity of a European option. Let f be a Borel function on (0,∞) which stands
for the payoff function of the option. We suppose that the underlying asset price
process S of the option is positive and continuous on [0, T ]and follows

dSt = $tdt + σ (St , t)dBt

on [0, T ], where $ is an (Ft )-adapted locally bounded process, B is an (Ft )-standard
Brownian motion and σ is a positive C3,1 functions on (0,∞) × [0, T ]. We assume
interest rates to be zero for brevity.

A trading strategy is given by an (Ft )-adapted càglàd process X, and the associ-
ated wealth process & is defined by

&t = &0− +
∫ t

0
XudSu − κ

∫

[0,t]
λ(Su,u)d∥X∥u, (2.1)
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Abstraction

Let S be a continuous local martingale and X = Γ · S + φ · ⟨S⟩.
The question is how to approximate

X · S − 1

α
⟨X ,S⟩

by
X̂ · S − κΛ · ∥X̂∥,

where X̂ is an adapted process of finite variation and ∥X̂∥ is its
total variation process. Λ is a given adapted process (say, Λ = S).

▶ X̂ is a trading strategy of finite proportional transaction costs.

▶ Here one can consider α ∈ [−2, 0) as well.

▶ α = −2 corresponds to the Stratonovich integral.
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A class of control strategies
We consider X̂ = X̂κ of the form

dX̂t =
1

κ
sgn(Zt)c(|Zt |,Ft)d⟨X ⟩t − κdLt + κdRt ,

where

▶ Z = Zκ = (X − X̂ )/κ, a scaled deviation.

▶ c(z , f ) is a nonnegative piecewise C 0,2 function with

(z − z ′)(−sgn(z)c(|z |, f ) + sgn(z ′)c(|z ′|, f )) ≤ L|z − z ′|2.

▶ F is a multi-dimensional continuous semimartingale.

▶ L and R are adapted, non-decreasing with

dLt = 1{Zt=−Gt}dLt , dRt = 1{Zt=Gt}dRt , |Zt | ≤ Gt .

▶ G is a positive continuous semimartingale.
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The existence of the strategy

For a given continuous semimartingale (X ,F ,G ), G > 0, there
exists unique solution (Ẑ , L̂, R̂) of the Skorokhod equation

dẐ =
dX

κG
+

1

κ
d⟨X ,G ⟩+ dL̂− dR̂

− 1

κ2G
sgn(Ẑ )c(|Ẑ |G ,F )d⟨X ⟩+ ẐGd

1

G

with
dL̂ = 1{Ẑ=−1}dL̂, dR̂ = 1{Ẑ=1}dR̂, |Ẑ | ≤ 1.

(a fixed point argument using the one-sided Lipschitz continuity)
The strategy X̂ is then well-defined by

dL = GdL̂, dR = GdR̂, X̂ = X − κGẐ .
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Tracking error

Eκ :=(X − X̂ ) · S + κΛ · ∥X̂∥ − 1

α
⟨X , S⟩

=κZ · S + (Λc(Z ,F )) · ⟨X ⟩+ κ2Λ · (L+ R)− 1

α
⟨X ,S⟩.

Theorem : Assume
▶ 1{Γ=0} · ⟨S⟩ = 0 a.s.,
▶ Λ and Γ are continuous semimartingales.

Then,

Y κ :=
1

κ

(
Eκ − Λ

ξ(F ,G )
· ⟨X ⟩+ 1

α
⟨X , S⟩

)
→ WQ

stably in law on C [0,T ], where W is an independent BM,

Q = η(F ,G ,ΛΓ) · ⟨S⟩, and...
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ξ(f , g) = 2

∫ g

0
m(x , f )dx ,

m(x , f ) = exp

(
−2

∫ |x |

0
c(z , f )dz

)
,

η(f , g , λ) =
2

ξ(f , g)

∫ g

0
(x − λh(x , f , g))2m(x , f )dx ,

h(x , f , g) =
2sgn(x)

m(x , f )

∫ |x |

0

(
c(z , f )− 1

ξ(f , g)

)
m(z , f )dz

Remark : m(·, f ) is the speed measure density, [−g , g ] is the
state space, ξ(f , g) is the total mass of the speed measure,
and h solves h(−g , f , g) = 1, h(g , f , g) = −1 with

−sgn(x)c(x , f )h(x , f , g) +
1

2

∂h

∂x
(x , f , g) = c(x , f )− 1

ξ(f , g)
.
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Proof

▶ Jacod’s theorem of stable convergence : a sequence of
continuous semimartingales Y κ converges to WQ stably in law
on C [0,T ] if ⟨Y κ, S⟩ → 0, ⟨Y κ⟩ → Q and Q is continuous.

▶ Averaging lemma : if∫ g

−g
ψ(x , f , g , λ, γ)m(x , f )dx = 0

for each (f , g , λ, γ), then

sup
τ∈[0,T ]

∣∣∣∣∫ τ

0
ψ(Zκ

t ,Ft ,Gt ,Λt , Γt)d⟨X ⟩t
∣∣∣∣→ 0

as κ→ 0.
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Homogenization
Recall Z = Zκ = (X − X̂ )/κ and

dY κ = ZκdS +
Λ

κ

(
κ2d(L+ R) +

(
c(Z ,F )− 1

ξ(F ,G )

)
d⟨X ⟩

)
,

dZκ =
1

κ
dX − 1

κ2
sgn(Zκ)c(Zκ,F )d⟨X ⟩+ dL− dR.

The function h(z , f , g) was so chosen that

κ2(L+ R) +

(
c(Z ,F )− 1

ξ(F ,G )

)
· ⟨X ⟩

= −κh(Zκ,F ,G ) · X + Op(κ
2),

so that
Y κ ≈ (Zκ − ΛΓh(Zκ,F ,G )) · S .
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A deterministic problem

▶ Can choose c(·,F ) and G .

▶ ξ(F ,G ) determines the limit of the tracking error. Say, need
ξ(F ,G ) = αΛΓ for the asymptotic replication.

▶ Minimize the asymptotic variance η(f , g , λ) with ξ(f , g) fixed.

▶ Changing variables, the problem is to minimize

η(f , g , λ) =

∫ 1

0

(
y(u) + λ+

2λ

ξ(f , g)
(u − 1)y ′(u)

)2

du

in the set Y of the increasing convex functions y on [0, 1] with

y(0) = 0, y ′(0) =
ξ(f , g)

2
.
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Explicit solution

Theorem :

inf
ξ(f ,g)=ξ

η(f , g , λ) = lim
x→λ

x2η†(ξ/x) =

{
ξ2/12 if λ = 0,

λ2η†(ξ/λ) if λ ̸= 0,

where

η†(x) =


0 if− 2 < x ≤ 1,

η1(x) if 1 < x < 2,

η2(x) if |x | ≥ 2

and

η1(x) =
4

3

(x + 2)2(x − 1)

x3(4− x)
, η2(x) =

(x + 2)2

12
.

Remark: For the asymptotic replication, let ξ = αλ.
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α 7→ η†(α)
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Asymptotically optimal strategy
Suppose ΛΓ > 0 and let ξ(F ,G ) = αΛΓ (asymptotic replication)

▶ 0 < α ≤ 1 :

dX̂ = sgn(X − X̂ )
α+ 2

2α

1

κΛΓ + |X − X̂ |
d⟨X ⟩.

▶ 1 < α < 2 :

dX̂ = sgn(X − X̂ )
4− α

2(2− α)

1

κΛΓ + |X − X̂ |
1Ad⟨X ⟩,

where

A =

{
|X − X̂ | ≥ 2κ

α− 1

4− α
ΛΓ

}
.

▶ 2 ≤ α : singular control

|X − X̂ | ≤ κ
α

2
ΛΓ.
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An open problem
After the homogenization, the system becomes

dYt = ZtdWt + c(Zt)γ
2dt + dLt + dRt −

γ

α
dt,

dZt = γdWt − sgn(Zt)c(Zt)γ
2dt + dLt − dRt

for which we get

inf lim
T→∞

1

T
E [Y 2

T ] = γ2η†(α).

2-dimensional degenerate singular control problem

dYt = ZtdWt + dAt −
γ

α
dt,

dZt = γdWt − sgn(Zt)dAt

to minimize E [Y 2
T ] or E [Y

+
T ] ? Explicit strategy when T → ∞ ?
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