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Plan of the Talk

1. Classic facts

2. Fatou’s lemma for varying probabilities including
uniform Fatou’s lemma

3. Lebesgue’s convergence theorem for varying
probabilities

4. Applications
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Fatou’s Lemma: Classic Facts

1. Fatou’s lemma

2. Lebesgue’s dominated convergence theorem

3. Monotone convergence theorem

Fatou’s Lemma

For a probability measure p and a sequence of measurable functions, the
inequality

lim inf
n→∞

∫
fn(x)p(dx) ≥

∫
lim inf
n→∞

fn(x)p(dx)

holds, if one of the following conditions is satisfied:

(i) each function fn is nonnegative;

(ii) there exists a measurable function g such that g ≤ fn and
∫
g(x)p(dx) > −∞;

(iii) the sequence {f−n }, where f−n := −min{fn, 0}, is uniformly integrable, that is,

lim
K→+∞

inf
n=1,2,...

∫
X
fn(x)I{x ∈ X : fn(x) ≤ −K}p(dx) ≥ 0.

Stronger results hold when the sequence of functions satisfies some additional
conditions. Lebesgue’s dominated convergence theorem and monotone
convergence theorem are corollaries from Fatou’s lemma. 3 / 36



Extensions of Fatou’s lemma

A. Fatou’s lemma for converging probabilities (weak convergence,
setwise convergence, convergence in total variation)

B. Uniform Fatou’s lemma

C. Lower bounds on possibly negative functions

(i) existence of a sequence of minorant functions

(ii) uniform integrability with respect to a sequence of probability measures

D. Convergence and continuity properties of functions

(i) lower semi-equicontinuity

(ii) semi-convergence in probability
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Convergence of Probabilities

We are interested in the situation when there is a sequence of converging
probabilities on a metric space X. Recall the definition of the following
three types of convergence:

(i) weak convergence (convergence in probability)

pn → p if for every bounded continuous function f∫
f(x)pn(dx)→

∫
f(x)p(dx) (1)

(ii) setwise convergence

pn → p if pn(E)→ p(E) for each measurable subset E. Equivalently, (1) holds for
every bounded measurable function f.

(iii) convergence in total variation

pn → p if ρTV (p, pn)→ 0, where ρTV (p, pn) = 2 sup{|p(B)− pn(B)| : B ∈ B(X)}.

For discrete random variables, these three types of convergence coincide.

Weak convergence is the most natural and general form of convergence of probabilities,

(iii)⇒ (ii)⇒ (i). 5 / 36



Fatou’s Lemma for Varying Probabilities

Theorem (Serfozo 1981)

For probabilities converging weakly pn → p and nonnegative measurable
functions fn,

lim inf
n→∞

∫
fn(x)pn(dx) ≥

∫
lim inf

y→x,n→∞
fn(y)p(dx).

Theorem (Royden 1963)

For probabilities converging setwise pn → p and nonnegative measurable
functions fn,

lim inf
n→∞

∫
fn(x)pn(dx) ≥

∫
lim inf
n→∞

fn(x)p(dx).
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Uniform Fatou’s Lemma

Let (X,F) be a measurable space. The inequality in Fatou’s lemma can
be rewritten as

inf
X∈F

{
lim inf
n→∞

∫
X
fn(x)pn(dx)−

∫
X
[lim inf
n→∞

fn(x)]p(dx)
}
≥ 0. (2)

Uniform Fatou’s lemma (F., Kasyanov, and Zgurovsky 2016) is a stronger
inequality:

lim inf
n→∞

inf
X∈F

{∫
X
fn(x)pn(dx)−

∫
X
[lim inf
n→∞

fn(x)]p(dx)
}
≥ 0. (3)

This is a stronger inequality and examples support this.

The difference between is (2) and (3) is similar to the difference between
convergence and uniform convergence.
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Uniform Fatou’s Lemma

Uniform Fatou’s Lemma (F., Kasyanov, and Zgurovsky 2016)

Let (X,F) be a measurable space, a sequence of probability measures {pn}n=1,2,...

converge in total variation to a probability measure p on X, f ∈ L1(X; p), and
fn ∈ L1(X; pn) for each n = 1, 2, . . . . Then the inequality

lim inf
n→∞

inf
X∈F

(∫
X

fn(x)pn(dx)−
∫
X

f(x)p(dx)
)
≥ 0

holds if and only if the following two statements hold:
(i) for each ε > 0

p({x ∈ X : fn(x) ≤ f(x)− ε})→ 0 as n→∞,

and, therefore, there exists a subsequence {fnk}k=1,2,... ⊆ {fn}n=1,2,... such that
lim inf
k→∞

fnk (x) ≥ f(x) for p-a.s. x ∈ X;

(ii) the following inequality holds:

lim
K→+∞

inf
n=1,2,...

∫
X
fn(x)I{x ∈ X : fn(x) ≤ −K}pn(dx) ≥ 0.

Observation: As a special case, uniform Fatou’s lemma holds for

f(x) := lim inf
n→∞

fn(x).
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Uniform Lebesgue’s Convergence Theorem

Uniform Lebesgue’s Convergence Theorem (F., Kasyanov, and Zgurovsky 2016)

Let (X,F) be a measurable space, a sequence of probability measures
{pn}n=1,2,... converge in total variation to a probability measure p on X,
f ∈ L1(X; p), and fn ∈ L1(X; pn) for each n = 1, 2, . . . . Then the equality

lim
n→∞

sup
X∈F

∣∣∣ ∫
X

fn(x)pn(dx)−
∫
X

f(x)p(dx)
∣∣∣ = 0

holds if and only if the following two statements hold:

(i) the sequence of functions {fn}n=1,2,... converges in probability p to f ; and

(ii)

lim
K→+∞

sup
n=1,2,...

∫
|fn(x)|I{x ∈ X : |fn(x)| ≥ K}pn(dx) = 0.
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Uniform Integrability of a Sequence of Functions

Uniformly integrable (u.i.) with respect to (w.r.t.) {pn}

lim
K→+∞

sup
n=1,2,...

∫
|fn(x)|I{x ∈ X : |fn(x)| ≥ K}pn(dx) = 0.

Asymptotically uniformly integrable (a.u.i.) w.r.t. {pn}

lim
K→+∞

lim sup
n→∞

∫
|fn(x)|I{x ∈ X : |fn(x)| ≥ K}pn(dx) = 0.

Theorem

A sequence of functions {fn}n=1,2,... is a.u.i. w.r.t. {pn}n=1,2,... if and
only if there exists Ñ = 0, 1, 2, . . . such that {fn+Ñ}n=1,2,... is u.i. w.r.t.
{pn+Ñ}n=1,2,... (Kartashov 2008 for pn = p).
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Uniform Fatou’s Lemma

Uniform Fatou’s Lemma (F., Kasyanov, and Zgurovsky 2016)

Let (X,F) be a measurable space, a sequence of probability measures {pn}n=1,2,...

converge in total variation to a probability measure p on X, f ∈ L1(X; p), and
fn ∈ L1(X; pn) for each n = 1, 2, . . . . Then the inequality

lim inf
n→∞

inf
X∈F

(∫
X

fn(x)pn(dx)−
∫
X

f(x)p(dx)
)
≥ 0

holds if and only if the following two statements hold:
(i) for each ε > 0

p({x ∈ X : fn(x) ≤ f(x)− ε})→ 0 as n→∞,

and, therefore, there exists a subsequence {fnk}k=1,2,... ⊆ {fn}n=1,2,... such that
lim inf
k→∞

fnk (x) ≥ f(x) for p-a.s. x ∈ X;

(ii) the following inequality holds:

lim
K→+∞

lim inf
n→∞

∫
X
fn(x)I{x ∈ X : fn(x) ≤ −K}pn(dx) ≥ 0.
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Uniform Lebesgue’s Convergence Theorem

Uniform Lebesgue’s Convergence Theorem (F., Kasyanov, and Zgurovsky 2016)

Let (X,F) be a measurable space, a sequence of probability measures
{pn}n=1,2,... converge in total variation to a probability measure p on X,
f ∈ L1(X; p), and fn ∈ L1(X; pn) for each n = 1, 2, . . . . Then the equality

lim
n→∞

sup
X∈F

∣∣∣ ∫
X

fn(x)pn(dx)−
∫
X

f(x)p(dx)
∣∣∣ = 0

holds if and only if the following two statements hold:

(i) the sequence of functions {fn}n=1,2,... converges in probability p to f ; and

(ii)

lim
K→+∞

lim sup
n→∞

∫
|fn(x)|I{x ∈ X : |fn(x)| ≥ K}pn(dx) = 0.
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Dunford-Pettis Theorem

Dunford-Pettis Theorem

Let (X,F) be a measurable space, p be a probability measure on X, and
{fn}n=1,2,... ⊂ L1(X; p) be a sequence of measurable functions on X.
Then the following statements are equivalent:

(i) there exists {fnk}k=1,2,... ⊂ {fn}n=1,2,... such that fnk → f weakly in
L1(X; p) for some f ∈ L1(X; p);

(ii) there exists Ñ = 1, 2, . . . such that {fn+Ñ}n=1,2,... is u.i.;

(iii) {fn}n=1,2,... is a.u.i.

In view of Eberlein-Šmulian theorem, statements (i) and (ii) are equivalent
due to the Dunford-Pettis theorem.
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Minorant Condition for a Sequence of Functions

Consider the following condition (depending on how pn converges to p):

Minorant condition (when pn → p weakly)

Let there exists a sequence of measurable functions {gn} such that gn ≤ fn and

−∞ <

∫
lim sup

n→∞,y→x
gn(y)p(dx) ≤ lim inf

n→∞

∫
gn(x)pn(dx).

Minorant condition (when pn → p setwise)

Let there exists a sequence of measurable functions {gn} such that gn ≤ fn and

−∞ <

∫
lim sup
n→∞

gn(x)p(dx) ≤ lim inf
n→∞

∫
gn(x)pn(dx).

When pn = p and gn = g for some measurable function g, the minorant condition
in the case when pn → p setwise becomes the standard condition for classic
Fatou’s lemma that there exists a measurable function g such that g ≤ fn and∫
g(x)p(dx) > −∞.
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Fatou’s Lemma for Varying Probabilities

Theorem
For probabilities converging weakly pn → p and a sequence of measurable functions
{fn}, if one of the following conditions holds:

(i) each function fn is nonnegative (Serfozo 1981 and F., Kasyanov, Zadoianchuk 2014);

(ii) {fn} satisfies the minorant condition (F., Kasyanov, Zadoianchuk 2014);

(iii) {f−n } is a.u.i. w.r.t. {pn};
then lim inf

n→∞

∫
fn(x)pn(dx) ≥

∫
lim inf

y→x,n→∞
fn(y)p(dx).

Theorem
For probabilities converging setwise pn → p and a sequence of measurable functions
{fn}, if one of the following conditions holds:

(i) each function fn is nonnegative (Royden 1963);

(ii) {fn} satisfies the minorant condition (F., Kasyanov, Zadoianchuk 2014);

(iii) {f−n } is a.u.i. w.r.t. {pn};
then lim inf

n→∞

∫
fn(x)pn(dx) ≥

∫
lim inf
n→∞

fn(x)p(dx).
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Fatou’s Lemma in the Standard Form for Weakly
Converging Probabilities

Lower semi-equicontinuity
A family H of real-valued functions on a metric space X is called lower
semi-equicontinuous at the point x if for each ε > 0 there exists δ > 0 such that

h(y) > h(x)− ε for all y ∈ Bδ(x) and for all h ∈ H,

where Bδ(x) is the open ball of radius δ centered at x.

If the family of functions {fn}n=1,2,... is lower semi-equicontinuous at x, then

lim inf
n→∞,y→x

fn(y) = lim inf
n→∞

fn(x),

Equicontinuity
A family H of real-valued functions on a metric space X is called equicontinuous at the
point x if for each ε > 0 there exists δ > 0 such that

|h(y)− h(x)| < ε for all y ∈ Bδ(x) and for all h ∈ H,

where Bδ(x) is the open ball of radius δ centered at x.
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Fatou’s Lemma in the Standard Form for Weakly
Converging Probabilities

Theorem

For probabilities converging weakly pn → p and a lower
semi-equicontinuous family of measurable functions {fn}n=1,2,..., if one of
the following conditions holds:

(i) each function fn is nonnegative;

(ii) {fn} satisfies the minorant condition;

(iii) {f−n } is a.u.i. w.r.t. {pn};
then

lim inf
n→∞

∫
fn(x)pn(dx) ≥

∫
lim inf
n→∞

fn(x)p(dx) =

∫
lim inf

y→x,n→∞
fn(y)p(dx).
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Semi-Convergence in Probability

Lower semi-convergence in probability

A sequence {fn}n=1,2,... lower semi-converges in probability p to f if for each
ε > 0

p({x ∈ X : fn(x) ≤ f(x)− ε})→ 0 as n→∞.

In particular, for
f∗(x) := lim inf

n→∞
fn(x), x ∈ X,

{fn}n=1,2,... lower semi-converges to f∗ in every probability measure p on X.

If {fn}n=1,2,... lower semi-converges in probability p to some function f, then
there exists a subsequence {fnk

}k=1,2,... of the sequence {fn}n=1,2,... such that
f(x) ≤ lim infk→∞ fnk

(x) for p-a.s. x ∈ X (F., Kasyanov, and Zgurovsky 2016).

A sequence {fn}n=1,2,... upper semi-converges in probability p to f if
{−fn}n=1,2,... lower semi-converges in probability p to −f.
A sequence {fn}n=1,2,... converges in probability p to f if and only if
{fn}n=1,2,... lower and upper semi-converges in probability p to f.
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Fatou’s Lemma for Varying Probabilities

Theorem
For probabilities converging setwise pn → p and measurable functions {fn} lower
semi-converging in probability p to a measurable function f, if one of the following
conditions holds:

(i) each function fn is nonnegative; (ii) {fn} satisfies the minorant condition;
(iii) {f−n } is a.u.i. w.r.t. {pn};

then
lim inf
n→∞

∫
fn(x)pn(dx) ≥

∫
f(x)p(dx).

Theorem
For probabilities converging weakly pn → p and a lower semi-equicontinuous family of
measurable functions {fn}, that lower semi-converges in probability p to a measurable
function f, if one of conditions (i), (ii), and (iii) from the theorem above holds, then

lim inf
n→∞

∫
fn(x)pn(dx) ≥

∫
f(x)p(dx).

In all the cases, we can take f(x) := lim inf
n→∞

fn(x), but there are examples when

f(x) > lim inf
n→∞

fn(x) for all x ∈ X.
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Lebesgue’s Convergence Theorem for Varying Probabilities

Theorem

For probabilities converging setwise pn → p and measurable functions {fn}
converging in probability p to a measurable function f, if one of the
following conditions holds:

(i) {fn} is a.u.i. w.r.t. {pn};
(ii) both {fn} and {−fn} satisfy the minorant condition;

then

lim
n→∞

∫
fn(x)pn(dx) =

∫
f(x)p(dx).
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Lebesgue’s Convergence Theorem for Varying Probabilities

Theorem

For probabilities converging weakly pn → p and measurable functions {fn} such
that lim

n→∞,y→x
fn(y) exists for p-a.s. x ∈ X, if one of the following conditions

holds:

(i) {fn} is a.u.i. w.r.t. {pn};

(ii) both {fn} and {−fn} satisfy the minorant condition;

then

lim
n→∞

∫
fn(x)pn(dx) =

∫
lim
n→∞

fn(x)p(dx).

Theorem
For probabilities converging weakly pn → p and an equicontinuous family of
functions {fn}, that converges in probability p, if one of conditions (i) and (ii)
from the theorem above holds, then

lim
n→∞

∫
fn(x)pn(dx) =

∫
lim
n→∞

fn(x)p(dx).
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Applications: Optimality Inequality and Equations for Average-Cost

Markov Decision Processes

MDP diagram
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Applications: Optimality Inequality and Equations for Average-Cost

Markov Decision Processes

Let us consider a Markov decision process (MDP) defined by {X,A, P, c}, where

(i) X is a state space;

(ii) A is an action space;

(iii) P (dy|x, a) is the transition probability;

(iv) c(x, a) is the one-step cost function.

The objective is to minimize

(i) finite-horizon costs: vπN,α(x) := Eπx
[∑N−1

t=0 αtc(xt, at)
]
, where N = 1, 2, . . . is the

horizon length and α ∈ [0, 1) is the discount factor;

(ii) infinite-horizon costs: vπα(x) := Eπx
[∑∞

t=0 α
tc(xt, at)

]
; or

(iii) average costs per unit time: wπ(x) := lim supN→∞
1
N
Eπx
[∑N−1

t=0 c(xt, at)
]
.

For each function V π(x) = vπN,α(x), vπα(x), or wπ(x), define the optimal value

V (x) := inf
π∈Π

V π(x),

where Π is the set of all policies.
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Applications: Optimality Inequality and Equations for Average-Cost

Markov Decision Processes

Continuity assumptions on transition probabilities and costs:

Assumption W*:

1. The transition probability P is weakly continuous.

2. The cost function c is K-inf-compact and bounded below.

Definition
A function f : X× A→ R is called K-inf-compact, if for every compact set K ⊆ X, the
function f : K × A→ R is inf-compact.

Suppose Assumption W* holds. Then discounted optimality equation holds (F.,
Kasyanov, and Zadoianchuk 2012):

vα(x) = mina
{
c(x, a) + α

∫
vα(y)P (dy|x, a)

}
.

Vanishing discount factor approach for average-cost MDPs:
Let mα := infx va(x) and uα(x) := vα(x)−mα. Then

uα(x) + (1− α)mα = min
a

{
c(x, a) + α

∫
uα(y)P (dy|x, a)

}
.
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Optimality Inequality for Average-Cost Markov Decision Processes

The optimality equation for discounted-cost MDP implies

(1− α)mα + uα(x) = min
a

{
c(x, a) + α

∫
uα(y)P (dy|x, a)

}
.

For a sequence of discount factors {αn ↑ 1} and for every sequence (xn, an)→ (x, a), Fatou’s
lemma for weakly converging probabilities implies

lim inf
n→∞

∫
uαn (y)P (dy|xn, an) ≥

∫
lim inf

n→∞,y→x
uαn (y)P (dy|x, a).

Assumption B. The following conditions hold:
(i) w∗ := infx∈X w(x) < +∞;
(ii) supα<1 uα(x) <∞ for all x ∈ X.

For α ∈ [0, 1) consider w = lim inf
α↑1

(1− α)mα and w = lim sup
α↑1

(1− α)mα.

Theorem (F., Kasyanov, and Zadoianchuk 2012)

Suppose Assumptions W* and B hold. Consider a sequence {αn ↑ 1}n=1,2,... of nonnegative
discount factors. Then there exist a measurable function

u(x) := lim inf
n→∞,y→x

uαn (y), x ∈ X,

and a stationary policy φ such that ACOI holds:

w + u(x) ≥ c(x, φ(x)) +
∫
u(y)P (dy|x, φ(x)), x ∈ X,

where φ is average-cost optimal, and

w(x) = wφ(x) = limα↑1(1− α)vα(x) = w = w, x ∈ X.
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Optimality Equations for Average-Cost Markov Decision Processes

Recall that (1− α)mα + uα(x) = min
a

{
c(x, a) + α

∫
uα(y)P (dy|x, a)

}
.

For a sequence of discount factors {αn ↑ 1} and for every sequence (xn, an)→ (x, a), if
Lebesgue’s convergence theorem for weakly converging probabilities holds:

lim
n→∞

∫
uαn (y)P (dy|xn, an) =

∫
lim
n→∞

uαn (y)P (dy|x, a),

then average cost optimality equations hold:

w + u(x) = c(x, φ(x)) +

∫
X
u(y)P (dy|x, φ(x)) = min

a∈A
[c(x, a) +

∫
X
u(y)P (dy|x, a)]. (4)

Theorem

Suppose Assumptions W* and B hold. Consider a sequence {αn ↑ 1}n=1,2,... of nonnegative
discount factors. If the sequence {uαn}n=1,2,... satisfies:

(i) the cost function c(x, a) is continuous in x for each a;

(ii) the family of functions {uαn}n=1,2,... is equicontinuous;

(iii) {uαn}n=1,2,... is a.u.i. w.r.t. any sequence of probabilities defined by {P (·|xn, an)} such
that (xn, an)→ (x, a).

then there exist a stationary policy φ and a subsequence {αnk}k=1,2,... of {αn}n=1,2,... such
that the ACOEs (4) hold with the function u(x) satisfying

u(x) := lim
k→∞,y→x

uαnk
(y) = lim

k→∞
uαnk

(x).
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Applications to Inventory Control

We consider an inventory control problem defined by the following parameters:

(i) K > 0 is a fixed ordering cost;

(ii) c̄ > 0 is the per unit ordering cost;

(iii) {Dt, t = 1, 2, . . . } is a sequence of i.i.d. nonnegative finite random variables
representing the demand at periods 0, 1, . . . ;

(iv) h(x) is the holding/backlog cost per period, which is assumed to be a convex
real-valued function on R with h(x)→∞ as |x| → ∞.

The dynamics of the system are defined as

xt+1 = xt + at −Dt+1, t = 0, 1, . . . ,

where

(i) xt is the amount of inventory at the end of epoch t,

(ii) at is the amount of inventory ordered at the end of epoch t, where at ≥ 0,

(iii) Dt is the demand during the epoch t; Dt ≥ 0 and {Dt} are i.i.d.

The one-step costs are

c(xt, at) = K1{at 6=0} + c̄at + Eh(xt + at −Dt+1).

Assumptions W* and B hold for the MDP corresponding to this problem. The cost
function c(x, a) is continuous in x for each a.
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Applications to Inventory Control

For a sequence of discount factors {αn ↑ 1}n=1,2,..., the sequence of functions
{uαn}n=1,2,... is equicontinuous and a.u.i. w.r.t. any sequence of probabilities defined
by {P (·|xn, an)} such that (xn, an)→ (x, a).

For the average-cost problem, there exist a sequence of discount factor {αn}n=1,2,... and
a stationary policy ϕ such that ACOEs hold:

w + u(x) = K1{ϕ(x)>0} +H(x+ ϕ(x))− c̄x = min{min
a≥0

[K +H(x+ a)], H(x)} − c̄x,

where
u(x) = lim

n→∞,y→x
uαn(y) = lim

n→∞
uαn(x) (5)

and
H(x) := c̄x+ Eh(x−D) + Eu(x−D).

Definition of K-convexity

A function G : X→ R is called K-convex, where K ≥ 0, if for x ≤ y and for λ ∈ (0, 1),

G((1− λ)x+ λy) ≤ (1− λ)G(x) + λG(y) + λK.

Furthermore, the function uα is K-convex. Formula (5) implies that the function u is
also K-convex because the limit preserves K-convexity. This is useful for computing
optimal policies.
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Application of the Uniform Fatou Lemma to Partially
Observable Markov Decision Process (POMDP)

POMDP diagram
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Application of the Uniform Fatou Lemma to Partially
Observable Markov Decision Process

A partially observable Markov decision process (POMDP) is specified by
(X,Y,A, P,Q, c), where

(i) X is the state space,

(ii) Y is the observation set,

(iii) A is the action set,

(iv) P (dx′|x, a) is the transition probability,

(v) Q(dy|a, x) is the observation kernel,

(vi) c : X× A→ R is the one-step cost.

In addition:
P0(dx

′|x, a) is the initial state distribution on X,
Q0(dy|a, x) is the distribution of the initial kernel.
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Reduction of POMDPs to COMDPs

In principle, it is known how to solve a POMDP.

In order to do this, the original states should be replaced by belief states
which are probability distributions on the state space X.

Let P(E) be the set of probability distributions on a set E. Then a
COMDP is an MDP with the state space P(X). For example, if
X = {0, 1}, then P(X) = [0, 1].

In general, if X is a Polish (complete, separable, metric) space then P(X)
is also a Polish space if the topology of weak convergence on P(X) is
considered. Once an optimal policy for the COMDP is found, it is easy to
find an optimal policy for the POMDP.
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Evolution of Posterior Probabilities

Given a posterior distribution zt ∈ P(X) of the state xt ∈ X and an action at ∈ A
at time epoch t = 0, 1, . . . , the joint probability that the state xt+1 ∈ B ∈ B(X)
and the observation yt+1 ∈ C ∈ B(Y) is

R(B × C|zt, at) :=
∫
X
∫
B
Q(C|at, xt+1)P (dxt+1|xt, at)zt(dxt)

and the probability that the observation yt+1 ∈ C ∈ B(Y) is

R′(C|zt, at) =
∫
X
∫
X Q(C|at, xt+1)P (dxt+1|xt, at)zt(dxt),

where B(X) and B(Y) are the sets of probabilities on X and Y respectively.

Then there exist transition probabilities H from P(X)× A× Y to X such that

R(B × C|zt, at) =
∫
C

H(B|zt, at, yt+1)R
′(dyt+1|zt, at),

where B ∈ B(X), C ∈ B(Y), zt ∈ P(X) and at ∈ A.
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Evolution of Posterior Probabilities

Bayes’ formula:
For a posterior distribution zt ∈ P(X), action at ∈ A, and an observation
yt+1 ∈ Y, the posterior distribution zt+1 ∈ P(X) is

zt+1 = H(zt, at, yt+1).

The observation yt+1 is not available in the COMDP model, and therefore
yt+1 is a random variable with the distribution R′(·|zt, at), and H maps
(zt, at) ∈ P(X)× A to P(P(X)). Thus, zt+1 is a random variable with
values in P(X) whose distribution is defined uniquely by the transition
probability

q(D|z, a) :=
∫
Y
1{H(z,a,y)∈D}R

′(dy|z, a),

where D ∈ B(P(X)), z ∈ P(X), a ∈ A.
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Existence of Optimal Policies for COMDPs

Theorem (F., Kasyanov, and Zgurovsky 2016)

Suppose the following conditions hold for the POMDP:

(i) the cost function c is K-inf-compact;

(ii) the transition probability P (·|x, a) is weakly continuous in (x, a);

(iii) the observation probability Q(·|a, x) is continuous in total variation in
(a, x).

Then, Assumption W* holds for the COMDP. Furthermore, optimal
policies exist and convergence of value iteration takes place for discounted
cost problems.

Setwise continuity of Q(dy|a, x) is not sufficient for the existence of
optimal policies. Of course, weak continuity of Q is not sufficient either
(Huizhen (Janey) Yu provided an example in 2012).

The uniform Lebesgue’s convergence theorem for uniformly bounded
functions was understood to prove this theorem.
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