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Introduction

• Informational asymmetries are omnipresent in financial markets.

Institutional investors are better informed than private investors

Economic information

Market related information

• Everybody knows who is informed

→ The moves by informed agents are analyzed by the others

→ Informed agents have a market power

• Trough game theory, we analyze how these informations are

incorporated into the prices. → The price process is endogenous

• The price process should be a CMMV (Continuous Martingale of

Maximal Variation)
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General idea of DM (2010)

• The Market as a 2 player game:

• Information asymmetry:

P1 receives initially a message m ∈ M with law ν

P2 is not informed about m, he just knows ν.

• Liquidation value.

At a future date D, m will be publicly revealed.

At date D, the value of R on the market will be L = L(m). The

value of N will be 1. The function L(.) is known by both players.

• The message m can be identified with L(m).
µ =law of L(m).
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The game Γn(µ):

• Stage 0:

Nature chooses L ∼ µ

P1 is informed of L not P2.

P1 and P2 know µ.
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The game Γn(µ):

• Stage 0:

• n transaction periods before D.

• Using a general trading mechanism 〈I, J, T 〉:
I , J=P1’s and P2’s action spaces.

T : I × J → R
2.

If choices=(i, j), T (i, j) = (Aij, Bij) where Aij and Bij are the

numbers of R and N shares that P2 gives to P1.

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• Stage 0:

• n transaction periods before D.

• Using a general trading mechanism 〈I, J, T 〉:
• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• n transaction periods before D.

• Using a general trading mechanism 〈I, J, T 〉:
• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

• Tradeoff : Maximizing the current stage payoff vs Disclosing private

information.

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• Using a general trading mechanism 〈I, J, T 〉:
• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

• Tradeoff : Maximizing the current stage payoff vs Disclosing private

information. → mixed strategies:

For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

• Tradeoff : Maximizing the current stage payoff vs Disclosing private

information. → mixed strategies:

For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• At stage q: P1 and P2 chose simultaneously (iq, jq).

(iq, jq) is then publicly announced.

yq = (yRq , y
N
q )= P1’s portfolios after q

yq = yq−1 + T (iq, jq) and y0 = (0, 0).

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

• P1 aims to maximize the liquidation value of his final portfolio:

E[LyRn + yNn ]
Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

• P1 aims to maximize the liquidation value of his final portfolio:

E[LyRn + yNn ]

• P2=coalition of agents. Payoff function?

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

• P1 aims to maximize the liquidation value of his final portfolio:

E[LyRn + yNn ]

• P2=coalition of agents. Payoff function? P1’s profit=P2’s loss

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

• P1 aims to maximize the liquidation value of his final portfolio:

E[LyRn + yNn ]

• P2=coalition of agents. Payoff function? P1’s profit=P2’s loss

A cautious P1 will play his max-min strategy

Price Dynamics and Repeated games – p. 4/16



The game Γn(µ):

• For player 1: σ = (σ1, . . . , σn), where

σq : (L, i1, j1, . . . , iq−1, jq−1) → ∆(I).

For player 2: τ = (τ1, . . . , τn), where

τq : (i1, j1, . . . , iq−1, jq−1) → ∆(J).

• µ, σ, τ induces a probability distribution on (L, i1, j1, . . . , in, jn)

• P1 aims to maximize the liquidation value of his final portfolio:

E[LyRn + yNn ]

• P2=coalition of agents. Payoff function? P1’s profit=P2’s loss

A cautious P1 will play his max-min strategy

=Equilibrium strategy in the 0-sum game where a risk neutral P2

aims to maximize the liquidation value of his final portfolio.
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Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if

• Numéraire scale invariance

• Invariance with respect to the riskless part of the risky asset.

• Existence of the value

• Positive value of information.

• Continuity of the value

Price Dynamics and Repeated games – p. 5/16



Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if

• Numéraire scale invariance

• If trading R against $ or against the cent,

→ same transactions in value.

• Invariance with respect to the riskless part of the risky asset.

• Existence of the value

• Positive value of information.

• Continuity of the value

Price Dynamics and Repeated games – p. 5/16



Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if
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Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if

• Numéraire scale invariance

• Invariance with respect to the riskless part of the risky asset.

• ⇒ ∀ constant β,∀X : V1([X + β]) = V1([X])
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Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if

• Numéraire scale invariance

• Invariance with respect to the riskless part of the risky asset.

• Existence of the value

• ∀µ ∈ ∆2, Γn(µ) has an equilibrium.

• Positive value of information.

• Continuity of the value
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Natural exchange mechanism

A trading mechanism 〈I, J, T 〉 is natural if

• Numéraire scale invariance

• Invariance with respect to the riskless part of the risky asset.

• Existence of the value

• Positive value of information.

• Continuity of the value

• ∃p ∈ [1, 2[,∃A s. th. ∀ v.a. X,Y :

|V1([X])− V1([Y ])| ≤ A‖X − Y ‖Lp
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q := E[L|is, js; s ≤ q].

It is the price at which P2 would agree to trade with another

uninformed player.

• A martingale Πt is a CMMV if Πt = f(Bt, t)

where B=B.M. and f(x, t) is increasing in x.

• Πµ
t : the unique CMMV s. th.: Πµ

1 ∼ µ.

• If Πn is optimal in maxΠ
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k=1 ‖Π k
n
−Π (k−1)

n
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where Π is a martingale with Π1 ∼ µ
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Definitions

• Vn(µ)=value of Γn(µ)

• Price at time q =Ln
q := E[L|is, js; s ≤ q].

It is the price at which P2 would agree to trade with another

uninformed player.

• A martingale Πt is a CMMV if Πt = f(Bt, t)

where B=B.M. and f(x, t) is increasing in x.

• Πµ
t : the unique CMMV s. th.: Πµ

1 ∼ µ.

• If Πn is optimal in maxΠ
∑n

k=1 ‖Π k
n
−Π (k−1)

n

‖L1 ,

where Π is a martingale with Π1 ∼ µ then Πn Law→ Πµ as

n → ∞
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Theorem:

• If the exchange mechanism is natural

• if, ∀n, (σn, τn) is an equilibrium in Γn(µ)

• if Ln
q := Eπ(µ,σn,τn)

[L|is, js; s ≤ q] and Πn
t := Ln

[[nt]]

then Πn converges in law to the CMMV Πµ as n → ∞
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Theorem:

This result suggests that, in a risk neutral market, the price

process should be a CMMV.

• Where does the B.M. comes from?

• Why a CMMV?

• Is the appearance of CMMW just a coincidence of the model?

• It is a consequence of an hidden CLT.

• It is independent of the way the market is organized (trading

mechanism)

• It also appears in multi asset models (F. Gensbittel 2010) with

monotonic derivatives

• It also appears if player 2 is risk averse (De Meyer- Fournier

2015)
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Risk aversion:

• In a market with risk aversion, the actualized price process Π is not

a martingale !
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• In a market with risk aversion, the actualized price process Π is not

a martingale !

• There exists a unique equivalent probability measure Q under

which the actualized price process is a CMMV.

• Is this conjecture in accordance with real data?

Black and Scholes model is a CMMV.

Πt = Π0 exp(σBt − σ2

2
t)

dΠt = ΠtσdBt
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Risk aversion:

• In a market with risk aversion, the actualized price process Π is not

a martingale !

• There exists a unique equivalent probability measure Q under

which the actualized price process is a CMMV.

• Is this conjecture in accordance with real data?

Black and Scholes model is a CMMV.

Πt = Π0 exp(σBt − σ2

2
t)

dΠt = ΠtσdBt

• This conjecture is the basic assumption of the CMMV pricing model
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The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,
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then Πt = f(Bt, t) = ft(Bt).
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then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Price Dynamics and Repeated games – p. 9/16



The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,

then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Example CK
T,t= actualized price at time t of a call option on R with

strike K and exercise date T

CK
T,t = EQ[C

K
T,T |Ft]

Price Dynamics and Repeated games – p. 9/16



The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,

then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Example CK
T,t= actualized price at time t of a call option on R with

strike K and exercise date T

CK
T,t = EQ[C

K
T,T |Ft]

= EQ[(ΠT −K)+|Ft]

Price Dynamics and Repeated games – p. 9/16



The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,

then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Example CK
T,t= actualized price at time t of a call option on R with

strike K and exercise date T

CK
T,t = EQ[C

K
T,T |Ft]

= EQ[(ΠT −K)+|Ft]

= EQ[(fT (Bt + (BT − Bt))−K)+|Ft]

Price Dynamics and Repeated games – p. 9/16



The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,

then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Example CK
T,t= actualized price at time t of a call option on R with

strike K and exercise date T

CK
T,t = EQ[C

K
T,T |Ft]

= EQ[(ΠT −K)+|Ft]

= EQ[(fT (Bt + (BT − Bt))−K)+|Ft]

= EZ [(fT (Bt +
√
T − t Z)−K)+]

where Z ∼ N (0, 1) and Bt is solution of ft(Bt) = Πt

Price Dynamics and Repeated games – p. 9/16



The CMMV Pricing model

• If the price process Π of an underlying asset R is a CMMV,

then Πt = f(Bt, t) = ft(Bt).

• If we know f , then we have pricing formulas for derivatives on R.

Example CK
T,t= actualized price at time t of a call option on R with

strike K and exercise date T

CK
T,t = EQ[C

K
T,T |Ft]

= EQ[(ΠT −K)+|Ft]

= EQ[(fT (Bt + (BT − Bt))−K)+|Ft]

= EZ [(fT (Bt +
√
T − t Z)−K)+]
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Example: European Call on CAC40
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• ft(Bt) = Πt

= EQ[ΠT |Ft]
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√
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• Metaphore
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Sunset over a foggy sea...

(t,Bt)
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Sunset over a foggy sea...

...with a drunk captain
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Theorem

Let Π1 and Π2 be two distinct CMMV (i.e. with distinct f ),

Let ǫ > 0,

Let νi denote the probability measure induced by Πi on C[0, ǫ]
then ν1 and ν2 are mutually singular.
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How can we find f?

• Observing Πt during a small time interval
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• Observing Πt during a small time interval

• Observing Πt in discrete time (t ∈ Gr)

• Observing (Πt, C
K
T,t) in discrete time (t ∈ Gr)

• Observing CK
T,0,∀K ∈ R

• Dupire like method

• ∂KC
K
T,0 = EZ [11fT (Z)>K ]

→ 1− ∂KC
K
T,0 = FN (f inv

T (K))
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Thank you!

Happy Birthday Yuri!
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