Price Dynamics and Repeated games

Bernard De Meyer - University of Paris 1

CIRM

Innovative Research in Mathematical Finance
in honor of Yuri KABANOV
SEPTEMBER 3-7, 2018.

Introduction

- Informational asymmetries are omnipresent in financial markets.

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
Market related information

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
Market related information

- Everybody knows who is informed

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
 Market related information

- Everybody knows who is informed
\rightarrow The moves by informed agents are analyzed by the others

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
 Market related information

- Everybody knows who is informed
\rightarrow The moves by informed agents are analyzed by the others
\rightarrow Informed agents have a market power

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
 Market related information

- Everybody knows who is informed
\rightarrow The moves by informed agents are analyzed by the others
\rightarrow Informed agents have a market power
- Trough game theory, we analyze how these informations are incorporated into the prices.

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
 Market related information

- Everybody knows who is informed
\rightarrow The moves by informed agents are analyzed by the others
\rightarrow Informed agents have a market power
- Trough game theory, we analyze how these informations are incorporated into the prices. \rightarrow The price process is endogenous

Introduction

- Informational asymmetries are omnipresent in financial markets. Institutional investors are better informed than private investors

Economic information
 Market related information

- Everybody knows who is informed
\rightarrow The moves by informed agents are analyzed by the others
\rightarrow Informed agents have a market power
- Trough game theory, we analyze how these informations are incorporated into the prices. \rightarrow The price process is endogenous
- The price process should be a CMMV (Continuous Martingale of Maximal Variation)

General idea of DM (2010)

The Market as a 2 player game:
P1= risk neutral informed investor.
$P 2=$ remaining part of the market.

General idea of DM (2010)

The Market as a 2 player game:
P1= risk neutral informed investor.
P2= remaining part of the market.
$P 1$ and P2 are trading a risky asset R against a numéraire N.

General idea of DM (2010)

The Market as a 2 player game:
P1= risk neutral informed investor.
P2= remaining part of the market.
$P 1$ and P2 are trading a risky asset R against a numéraire N.

- Information asymmetry:

P1 receives initially a message $m \in M$ with law ν
$P 2$ is not informed about m, he just knows ν.

General idea of DM (2010)

The Market as a 2 player game:
P1= risk neutral informed investor.
P2= remaining part of the market.
$P 1$ and P2 are trading a risky asset R against a numéraire N.

- Information asymmetry:

P1 receives initially a message $m \in M$ with law ν
$P 2$ is not informed about m, he just knows ν.

- Liquidation value.

At a future date D, m will be publicly revealed.
(ex. Shareholder meeting.)

General idea of DM (2010)

The Market as a 2 player game:

- Information asymmetry:

P1 receives initially a message $m \in M$ with law ν
$P 2$ is not informed about m, he just knows ν.

- Liquidation value.

At a future date D, m will be publicly revealed.
At date D, the value of R on the market will be $L=L(m)$. The value of N will be 1 . The function $L($.$) is known by both players.$

General idea of DM (2010)

- The Market as a 2 player game:
- Information asymmetry:

P1 receives initially a message $m \in M$ with law ν
$P 2$ is not informed about m, he just knows ν.

- Liquidation value.

At a future date D, m will be publicly revealed.
At date D, the value of R on the market will be $L=L(m)$. The value of N will be 1 . The function $L($.$) is known by both players.$

- The message m can be identified with $L(m)$. $\mu=$ law of $L(m)$.

The game $\Gamma_{n}(\mu)$:

- Stage 0:

Nature chooses $L \sim \mu$
$P 1$ is informed of L not $P 2$.
P1 and P2 know μ.

The game $\Gamma_{n}(\mu)$:

- Stage 0:
n transaction periods before D.

The game $\Gamma_{n}(\mu)$:

- Stage 0:
n transaction periods before D.
- Using a general trading mechanism $\langle I, J, T\rangle$:
$I, J=P 1$'s and P2's action spaces.
$T: I \times J \rightarrow \mathbb{R}^{2}$.
If choices $=(i, j), T(i, j)=\left(A_{i j}, B_{i j}\right)$ where $A_{i j}$ and $B_{i j}$ are the numbers of R and N shares that $P 2$ gives to $P 1$.

The game $\Gamma_{n}(\mu)$:

- Stage 0:
n transaction periods before D.
- Using a general trading mechanism $\langle I, J, T\rangle$:
- At stage q: P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.

The game $\Gamma_{n}(\mu)$:

- n transaction periods before D.

Using a general trading mechanism $\langle I, J, T\rangle$:

- At stage q: P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.
- Tradeoff : Maximizing the current stage payoff vs Disclosing private information.

The game $\Gamma_{n}(\mu)$:

- Using a general trading mechanism $\langle I, J, T\rangle$:
- At stage q : P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.
- Tradeoff : Maximizing the current stage payoff vs Disclosing private information. \rightarrow mixed strategies:
For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.

The game $\Gamma_{n}(\mu)$:

- At stage q : P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.
- Tradeoff : Maximizing the current stage payoff vs Disclosing private information. \rightarrow mixed strategies:

For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.

The game $\Gamma_{n}(\mu)$:

- At stage q : P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.
- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$

The game $\Gamma_{n}(\mu)$:

- At stage q : P1 and P2 chose simultaneously $\left(i_{q}, j_{q}\right)$.
$\left(i_{q}, j_{q}\right)$ is then publicly announced.
$y_{q}=\left(y_{q}^{R}, y_{q}^{N}\right)=$ P1's portfolios after q
$y_{q}=y_{q-1}+T\left(i_{q}, j_{q}\right)$ and $y_{0}=(0,0)$.
- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$
- P1 aims to maximize the liquidation value of his final portfolio:
$E\left[L y_{n}^{R}+y_{n}^{N}\right]$

The game $\Gamma_{n}(\mu)$:

- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$
- P1 aims to maximize the liquidation value of his final portfolio: $E\left[L y_{n}^{R}+y_{n}^{N}\right]$
- P2=coalition of agents. Payoff function?

The game $\Gamma_{n}(\mu)$:

- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$
- P1 aims to maximize the liquidation value of his final portfolio: $E\left[L y_{n}^{R}+y_{n}^{N}\right]$
- P2=coalition of agents. Payoff function? P1's profit=P2's loss

The game $\Gamma_{n}(\mu)$:

- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$
- P1 aims to maximize the liquidation value of his final portfolio:
$E\left[L y_{n}^{R}+y_{n}^{N}\right]$
- P2=coalition of agents. Payoff function? P1's profit=P2's loss A cautious P1 will play his max-min strategy

The game $\Gamma_{n}(\mu)$:

- For player 1: $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where
$\sigma_{q}:\left(L, i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(I)$.
For player 2: $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, where
$\tau_{q}:\left(i_{1}, j_{1}, \ldots, i_{q-1}, j_{q-1}\right) \rightarrow \Delta(J)$.
- μ, σ, τ induces a probability distribution on $\left(L, i_{1}, j_{1}, \ldots, i_{n}, j_{n}\right)$
- P1 aims to maximize the liquidation value of his final portfolio:
$E\left[L y_{n}^{R}+y_{n}^{N}\right]$
- P2=coalition of agents. Payoff function? P1's profit=P2's loss

A cautious P1 will play his max-min strategy
=Equilibrium strategy in the 0-sum game where a risk neutral P2 aims to maximize the liquidation value of his final portfolio.

Natural exchange mechanism

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- If trading R against $\$$ or against the cent,
\rightarrow same transactions in value.
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- $\Rightarrow \forall \alpha>0, \forall X: V_{1}([\alpha \cdot X])=\alpha \cdot V_{1}([X])$
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- If trading R or $R+\$ 100$ against $\$$
\rightarrow same transactions in value.
- Existence of the value
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- $\Rightarrow \forall$ constant $\beta, \forall X: V_{1}([X+\beta])=V_{1}([X])$
- Existence of the value
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- $\forall \mu \in \Delta^{2}, \Gamma_{n}(\mu)$ has an equilibrium.
- Positive value of information.
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- $\exists \mu \in \Delta^{2}: V_{1}(\mu)>0$
- Continuity of the value

Natural exchange mechanism

A trading mechanism $\langle I, J, T\rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value
- $\exists p \in[1,2[, \exists A$ s. th. \forall v.a. X, Y :
$\left|V_{1}([X])-V_{1}([Y])\right| \leq A\|X-Y\|_{L^{p}}$

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$

Price at time $q=L_{q}^{n}:=E\left[L \mid i_{s}, j_{s} ; s \leq q\right]$.
It is the price at which P2 would agree to trade with another uninformed player.

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$

Price at time $q=L_{q}^{n}:=E\left[L \mid i_{s}, j_{s} ; s \leq q\right]$.
It is the price at which P2 would agree to trade with another uninformed player.

- A martingale Π_{t} is a CMMV if $\Pi_{t}=f\left(B_{t}, t\right)$ where $B=B . M$. and $f(x, t)$ is increasing in x.

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$
- Price at time $q=L_{q}^{n}:=E\left[L \mid i_{s}, j_{s} ; s \leq q\right]$.

It is the price at which P2 would agree to trade with another uninformed player.

- A martingale Π_{t} is a CMMV if $\Pi_{t}=f\left(B_{t}, t\right)$ where $B=B . M$. and $f(x, t)$ is increasing in x.
- Π_{t}^{μ} : the unique CMMV s. th.: $\Pi_{1}^{\mu} \sim \mu$.

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$
- Price at time $q=L_{q}^{n}:=E\left[L \mid i_{s}, j_{s} ; s \leq q\right]$.

It is the price at which P2 would agree to trade with another uninformed player.

- A martingale Π_{t} is a CMMV if $\Pi_{t}=f\left(B_{t}, t\right)$ where $B=B . M$. and $f(x, t)$ is increasing in x.
- Π_{t}^{μ} : the unique CMMV s. th.: $\Pi_{1}^{\mu} \sim \mu$.
- If Π^{n} is optimal in $\max _{\Pi} \sum_{k=1}^{n}\left\|\Pi_{\frac{k}{n}}-\Pi_{\frac{(k-1)}{n}}\right\|_{L^{1}}$, where Π is a martingale with $\Pi_{1} \sim \mu$

Definitions

- $V_{n}(\mu)=$ value of $\Gamma_{n}(\mu)$
- Price at time $q=L_{q}^{n}:=E\left[L \mid i_{s}, j_{s} ; s \leq q\right]$.

It is the price at which P2 would agree to trade with another uninformed player.

- A martingale Π_{t} is a CMMV if $\Pi_{t}=f\left(B_{t}, t\right)$ where $B=B . M$. and $f(x, t)$ is increasing in x.
- Π_{t}^{μ} : the unique CMMV s. th.: $\Pi_{1}^{\mu} \sim \mu$.
- If Π^{n} is optimal in $\max _{\Pi} \sum_{k=1}^{n}\left\|\Pi_{\frac{k}{n}}-\Pi_{\frac{(k-1)}{n}}\right\|_{L^{1}}$,
where Π is a martingale with $\Pi_{1} \sim \mu$ then $\Pi^{n} \xrightarrow{\text { Law }} \Pi^{\mu}$ as $n \rightarrow \infty$

Theorem:

- If the exchange mechanism is natural
- if, $\forall n,\left(\sigma^{n}, \tau^{n}\right)$ is an equilibrium in $\Gamma_{n}(\mu)$
- if $L_{q}^{n}:=E_{\pi_{\left(\mu, \sigma^{n}, \tau^{n}\right)}}\left[L \mid i_{s}, j_{s} ; s \leq q\right]$ and $\Pi_{t}^{n}:=L_{\llbracket n t \rrbracket}^{n}$
then Π^{n} converges in law to the $C M M V \Pi^{\mu}$ as $n \rightarrow \infty$

Theorem:

- If the exchange mechanism is natural
- if, $\forall n,\left(\sigma^{n}, \tau^{n}\right)$ is an equilibrium in $\Gamma_{n}(\mu)$
- if $L_{q}^{n}:=E_{\pi_{\left(\mu, \sigma^{n}, \tau^{n}\right)}}\left[L \mid i_{s}, j_{s} ; s \leq q\right]$ and $\Pi_{t}^{n}:=L_{\llbracket n t \rrbracket}^{n}$
then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

Theorem:

- If the exchange mechanism is natural
- if, $\forall n,\left(\sigma^{n}, \tau^{n}\right)$ is an equilibrium in $\Gamma_{n}(\mu)$
- if $L_{q}^{n}:=E_{\pi_{\left(\mu, \sigma^{n}, \tau^{n}\right)}}\left[L \mid i_{s}, j_{s} ; s \leq q\right]$ and $\Pi_{t}^{n}:=L_{\llbracket n t \rrbracket}^{n}$
then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?

Theorem:

- If the exchange mechanism is natural
- if, $\forall n,\left(\sigma^{n}, \tau^{n}\right)$ is an equilibrium in $\Gamma_{n}(\mu)$
- if $L_{q}^{n}:=E_{\pi_{\left(\mu, \sigma^{n}, \tau^{n}\right)}}\left[L \mid i_{s}, j_{s} ; s \leq q\right]$ and $\Pi_{t}^{n}:=L_{\llbracket n t \rrbracket}^{n}$
then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?

It's an aggregate of the random noises introduced by the informed player on his actions to take benefit of his information without revealing it too fast.

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?

It's an aggregate of the random noises introduced by the informed player on his actions to take benefit of his information without revealing it too fast.

- Why a CMMV?

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?

It's an aggregate of the random noises introduced by the informed player on his actions to take benefit of his information without revealing it too fast.

- Why a CMMV?
- P1 choses the pace of revelation he wants:
he selects the martingale Π^{n} with $\Pi_{1}^{n}=L \sim \mu$

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?

It's an aggregate of the random noises introduced by the informed player on his actions to take benefit of his information without revealing it too fast.

- Why a CMMV?
- P1 choses the pace of revelation he wants:
he selects the martingale Π^{n} with $\Pi_{1}^{n}=L \sim \mu$
- P1's payoff is \approx proportional to the L^{1}-variation of Π^{n}.

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?
- Why a CMMV?
- P1 choses the pace of revelation he wants: he selects the martingale Π^{n} with $\Pi_{1}^{n}=L \sim \mu$
- P1's payoff is \approx proportional to the L^{1}-variation of Π^{n}.
- Is the appearance of CMMW just a coincidence of the model?

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?
- Why a CMMV?
- Is the appearance of CMMW just a coincidence of the model?
- It is a consequence of an hidden CLT.

Theorem:

then Π^{n} converges in law to the CMMV Π^{μ} as $n \rightarrow \infty$

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?
- Why a CMMV?
- Is the appearance of CMMW just a coincidence of the model?
- It is a consequence of an hidden CLT.
- It is independent of the way the market is organized (trading mechanism)

Theorem:

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?
- Why a CMMV?
- Is the appearance of CMMW just a coincidence of the model?
- It is a consequence of an hidden CLT.
- It is independent of the way the market is organized (trading mechanism)
- It also appears in multi asset models (F. Gensbittel 2010) with monotonic derivatives

Theorem:

This result suggests that, in a risk neutral market, the price process should be a CMMV.

- Where does the B.M. comes from?
- Why a CMMV?
- Is the appearance of CMMW just a coincidence of the model?
- It is a consequence of an hidden CLT.
- It is independent of the way the market is organized (trading mechanism)
- It also appears in multi asset models (F. Gensbittel 2010) with monotonic derivatives
- It also appears if player 2 is risk averse (De Meyer- Fournier

Risk aversion:

- In a market with risk aversion, the actualized price process Π is not a martingale!

Risk aversion:

- In a market with risk aversion, the actualized price process Π is not a martingale!
- There exists a unique equivalent probability measure Q under which the actualized price process is a CMMV.

Risk aversion:

- In a market with risk aversion, the actualized price process Π is not a martingale!
- There exists a unique equivalent probability measure Q under which the actualized price process is a CMMV.
- Is this conjecture in accordance with real data?

Risk aversion:

- In a market with risk aversion, the actualized price process Π is not a martingale!
- There exists a unique equivalent probability measure Q under which the actualized price process is a CMMV.
- Is this conjecture in accordance with real data?

Black and Scholes model is a CMMV.

$$
\begin{aligned}
& \Pi_{t}=\Pi_{0} \exp \left(\sigma B_{t}-\frac{\sigma^{2}}{2} t\right) \\
& d \Pi_{t}=\Pi_{t} \sigma d B_{t}
\end{aligned}
$$

Risk aversion:

- In a market with risk aversion, the actualized price process Π is not a martingale!
- There exists a unique equivalent probability measure Q under which the actualized price process is a CMMV.
- Is this conjecture in accordance with real data?

Black and Scholes model is a CMMV.

$$
\begin{aligned}
& \Pi_{t}=\Pi_{0} \exp \left(\sigma B_{t}-\frac{\sigma^{2}}{2} t\right) \\
& d \Pi_{t}=\Pi_{t} \sigma d B_{t}
\end{aligned}
$$

- This conjecture is the basic assumption of the CMMV pricing model

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV,

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

Example $C_{T, t}^{K}=$ actualized price at time t of a call option on R with strike K and exercise date T

$$
C_{T, t}^{K}=E_{Q}\left[C_{T, T}^{K} \mid \mathcal{F}_{t}\right]
$$

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

Example $C_{T, t}^{K}=$ actualized price at time t of a call option on R with strike K and exercise date T

$$
\begin{aligned}
C_{T, t}^{K} & =E_{Q}\left[C_{T, T}^{K} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(\Pi_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

Example $C_{T, t}^{K}=$ actualized price at time t of a call option on R with strike K and exercise date T

$$
\begin{aligned}
C_{T, t}^{K} & =E_{Q}\left[C_{T, T}^{K} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(\Pi_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right)-K\right)^{+} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

Example $C_{T, t}^{K}=$ actualized price at time t of a call option on R with strike K and exercise date T

$$
\begin{aligned}
C_{T, t}^{K} & =E_{Q}\left[C_{T, T}^{K} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(\Pi_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right)-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right] \\
\text {where } Z & \sim \mathcal{N}(0,1) \text { and } B_{t} \text { is solution of } f_{t}\left(B_{t}\right)=\Pi_{t}
\end{aligned}
$$

The CMMV Pricing model

- If the price process Π of an underlying asset R is a CMMV, then $\Pi_{t}=f\left(B_{t}, t\right)=f_{t}\left(B_{t}\right)$.
- If we know f, then we have pricing formulas for derivatives on R.

Example $C_{T, t}^{K}=$ actualized price at time t of a call option on R with strike K and exercise date T

$$
\left.\begin{array}{rl}
C_{T, t}^{K} & =E_{Q}\left[C_{T, T}^{K} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(\Pi_{T}-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[\left(f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right)-K\right)^{+} \mid \mathcal{F}_{t}\right] \\
& =E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
\end{array}\right\} .
$$

Example: European Call on CAC40

The CMMV pricing model

- How can we find f ?

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

- $f_{t}\left(B_{t}\right)=\Pi_{t}$

$$
=E_{Q}\left[\Pi_{T} \mid \mathcal{F}_{t}\right]
$$

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

- $f_{t}\left(B_{t}\right)=\Pi_{t}$

$$
\begin{aligned}
& =E_{Q}\left[\Pi_{T} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

- $f_{t}\left(B_{t}\right)=\Pi_{t}$

$$
\begin{aligned}
& =E_{Q}\left[\Pi_{T} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right) \mid \mathcal{F}_{t}\right] \\
& =E_{Z}\left[f_{T}\left(B_{t}+\sqrt{T-t} Z\right)\right]
\end{aligned}
$$

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

$$
\begin{aligned}
f_{t}\left(B_{t}\right) & =\Pi_{t} \\
& =E_{Q}\left[\Pi_{T} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right) \mid \mathcal{F}_{t}\right] \\
& =E_{Z}\left[f_{T}\left(B_{t}+\sqrt{T-t} Z\right)\right]
\end{aligned}
$$

\rightarrow We just have to know f_{T}.

The CMMV pricing model

- How can we find f ?

Theoretically, just by observing Π_{t} during a small interval of time

- $f_{t}\left(B_{t}\right)=\Pi_{t}$

$$
\begin{aligned}
& =E_{Q}\left[\Pi_{T} \mid \mathcal{F}_{t}\right] \\
& =E_{Q}\left[f_{T}\left(B_{t}+\left(B_{T}-B_{t}\right)\right) \mid \mathcal{F}_{t}\right] \\
& =E_{Z}\left[f_{T}\left(B_{t}+\sqrt{T-t} Z\right)\right]
\end{aligned}
$$

\rightarrow We just have to know f_{T}.

- Metaphore

Sunset over a foggy sea...

Sunset over a foggy sea...
 ...with a drunk captain

Theorem

Let Π^{1} and Π^{2} be two distinct CMMV (i.e. with distinct f),
Let $\epsilon>0$,
Let ν^{i} denote the probability measure induced by Π^{i} on $\mathcal{C}[0, \epsilon]$
then ν^{1} and ν^{2} are mutually singular.

How can we find f ?

- Observing Π_{t} during a small time interval

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process \rightarrow needs full precision in continuous time...

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process \rightarrow needs full precision in continuous time...
- Very sensitive to data (ill posed problem)

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process \rightarrow needs full precision in continuous time...
- Very sensitive to data (ill posed problem)
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process \rightarrow needs full precision in continuous time...
- Very sensitive to data (ill posed problem)
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem
- Non parametric in two ways

How can we find f ?

- Observing Π_{t} during a small time interval
- Problem solvable.
- Requires computation of the quadratic variation process \rightarrow needs full precision in continuous time...
- Very sensitive to data (ill posed problem)
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem
- Non parametric in two ways
- Given an arbitrary f_{T}, one can find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t$

How can we find f ?

- Observing Π_{t} during a small time interval
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem
- Non parametric in two ways
- Given an arbitrary f_{T}, one can find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t$ \rightarrow Which f_{T} will lead to a B close to B.M.?

How can we find f ?

- Observing Π_{t} during a small time interval
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem
- Non parametric in two ways
- Given an arbitrary f_{T}, one can find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t$ \rightarrow Which f_{T} will lead to a B close to B.M.?
- We can find convergent estimators of f_{T}

How can we find f ?

- Observing Π_{t} during a small time interval
- Observing Π_{t} in discrete time $(t \in G r)$
- Becomes a statistical problem
- Non parametric in two ways
- Given an arbitrary f_{T}, one can find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t$ \rightarrow Which f_{T} will lead to a B close to B.M.?
- We can find convergent estimators of f_{T}
- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$

How can we find f ?

- Observing Π_{t} during a small time interval

Observing Π_{t} in discrete time $(t \in G r)$

- Becomes a statistical problem
- Non parametric in two ways
- Given an arbitrary f_{T}, one can find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t$ \rightarrow Which f_{T} will lead to a B close to B.M.?
- We can find convergent estimators of f_{T}
- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$

How can we find f ?

- Observing Π_{t} during a small time interval
- Observing Π_{t} in discrete time $(t \in G r)$
- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$
- Compute the theoretical value

$$
\tilde{C}_{T, t}^{K}=E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
$$

How can we find f ?

- Observing Π_{t} during a small time interval

Observing Π_{t} in discrete time $(t \in G r)$

- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$
- Compute the theoretical value

$$
\tilde{C}_{T, t}^{K}=E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
$$

- Adjust f_{T} s. th. $\tilde{C}_{T, t}^{K}=C_{T, t}^{K}, \forall t \in G r$

How can we find f ?

- Observing Π_{t} during a small time interval

Observing Π_{t} in discrete time $(t \in G r)$

- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$
- Compute the theoretical value

$$
\tilde{C}_{T, t}^{K}=E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
$$

- Adjust f_{T} s. th. $\tilde{C}_{T, t}^{K}=C_{T, t}^{K}, \forall t \in G r$
- Observing $C_{T, 0}^{K}, \forall K \in \mathbb{R}$

How can we find f ?

- Observing Π_{t} during a small time interval

Observing Π_{t} in discrete time $(t \in G r)$

- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$
- Compute the theoretical value

$$
\tilde{C}_{T, t}^{K}=E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
$$

- Adjust f_{T} s. th. $\tilde{C}_{T, t}^{K}=C_{T, t}^{K}, \forall t \in G r$
- Observing $C_{T, 0}^{K}, \forall K \in \mathbb{R}$
- Dupire like method

How can we find f ?

- Observing Π_{t} during a small time interval

Observing Π_{t} in discrete time ($t \in G r$)

- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Given an arbitrary f_{T}, find B s. th. $\Pi_{t}=f_{t}\left(B_{t}\right), \forall t \in G r$
- Compute the theoretical value

$$
\tilde{C}_{T, t}^{K}=E_{Z}\left[\left(f_{T}\left(B_{t}+\sqrt{T-t} Z\right)-K\right)^{+}\right]
$$

- Adjust f_{T} s. th. $\tilde{C}_{T, t}^{K}=C_{T, t}^{K}, \forall t \in G r$
- Observing $C_{T, 0}^{K}, \forall K \in \mathbb{R}$
- Dupire like method
- $\partial_{K} C_{T, 0}^{K}=E_{Z}\left[\mathbb{1}_{f_{T}(Z)>K}\right]$

How can we find f ?

- Observing Π_{t} during a small time interval
- Observing Π_{t} in discrete time $(t \in G r)$
- Observing $\left(\Pi_{t}, C_{T, t}^{K}\right)$ in discrete time $(t \in G r)$
- Observing $C_{T, 0}^{K}, \forall K \in \mathbb{R}$
- Dupire like method
- $\partial_{K} C_{T, 0}^{K}=E_{Z}\left[\mathbb{1}_{f_{T}(Z)>K}\right]$
$\rightarrow 1-\partial_{K} C_{T, 0}^{K}=F_{\mathcal{N}}\left(f_{T}^{i n v}(K)\right)$

Thank you!

Happy Birthday Yuri!

