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Description of the market model
Solving for equilibrium

Market structure

Continuous trading on [0, 1], at time 1 dividends are paid and
market terminates.
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Description of the market model
Solving for equilibrium

Market structure

Continuous trading on [0, 1], at time 1 dividends are paid and
market terminates.
Traded securities:

@ Riskless asset with r =0
@ Single risky asset that pays dividend V = f(Z), with
Z ~ N(0,1).
Assumptions on f

@ f is increasing, bounded, differentiable and has bounded
derivative that vanishes at infinity.

@ Wlog the range of f is an interval [b, d].
e Wiog E[V] =0
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Solving for equilibrium

Market participants

There are three types of agents on the market:

e Noisy/liquidity traders: their total demand at time t is B;.
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Description of the market model
Solving for equilibrium

Market participants

There are three types of agents on the market:
e Noisy/liquidity traders: their total demand at time t is B;.

o Informed investor: observes F! = F?2 V o(V) and solves

sup E% [—e‘”’Wle]: sup E%V
XeA(H) XeA(H)

where E%" is the expectation using the probability measure of
the insider who is given the realisation V = v.
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Market participants

There are three types of agents on the market:
e Noisy/liquidity traders: their total demand at time t is B;.
o Informed investor: observes F! = F?2 V o(V) and solves

)

sup E% [—e‘”’Wle]: sup E%V
XeA(H) XeA(H)

| vesone [ pasi] ]

where E%" is the expectation using the probability measure of
the insider who is given the realisation V = v.

@ Market maker: Observes ]-"tY where Y; = 0; + B; and sets the
price
S: = E[f(Z) | F'].
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Description of the market model
Solving for equilibrium

Market participants

There are three types of agents on the market:
e Noisy/liquidity traders: their total demand at time t is B;.

o Informed investor: observes F! = F?2 V o(V) and solves

sup E% [—e‘”’Wle]: sup E%V
XeA(H) XeA(H)

where E%" is the expectation using the probability measure of
the insider who is given the realisation V = v.

@ Market maker: Observes ]-"tY where Y; = 0; + B; and sets the
price
S: = E[f(Z) | F'].

We will look for S satisfying dS; = w(t, S¢)dY:.
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Description of the market model
Solving for equilibrium

On the form of the pricing rule

Standard pricing rule is a pair (H, w) and the price given by
St = H(t,&:) where

dé = w(t,&)dY:

@)
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Description of the market model
Solving for equilibrium

On the form of the pricing rule

Standard pricing rule is a pair (H, w) and the price given by
St = H(t, &) where

dée = w(t,&)dYe
Pricing rule is rational = function H solves

w2(t, x)

Ht(t’X)+ 2

Hy (t,x) =0
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Description of the market model
Solving for equilibrium

On the form of the pricing rule

Standard pricing rule is a pair (H, w) and the price given by
St = H(t, &) where

dée = w(t,&)dYe
Pricing rule is rational = function H solves

w2(t, x)

Ht(t’X)+ 2

Hyx(t,x) =0
= we choose H(t,x) = x. It is wlog since

dH(t’ gf) = HX(ta gt)W(t7 gt)dYt
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Description of the market model
Solving for equilibrium

An admissible pricing rule is measurable function w satisfying:
© w € CH?([0,1] x R) is strictly positive on (b, d).
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Description of the market model
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Definition

An admissible pricing rule is measurable function w satisfying:
© w € CH?([0,1] x R) is strictly positive on (b, d).

@ There exists a unique strong solution to the SDE

dSt = W(t, St)dBt, go =0a.s. (1)
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Definition

An admissible pricing rule is measurable function w satisfying:
© w € CH?([0,1] x R) is strictly positive on (b, d).
@ There exists a unique strong solution to the SDE

dSt = W(t, St)dBt, 50 =0a.s. (1)

It is rational if S; = E[f(Z)|F)]= S1 = f(2).

Definition

An admissible strategy 6 for w is adapted to (F!) and satisfies

© 0 is absolutely continuous, i.e., df; = a;dt.
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© w € CH?([0,1] x R) is strictly positive on (b, d).
@ There exists a unique strong solution to the SDE
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It is rational if S; = E[f(Z)|F)]= S1 = f(2).
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An admissible strategy 6 for w is adapted to (F!) and satisfies
© 0 is absolutely continuous, i.e., df; = a;dt.
@ There exists a unique strong solution of dS; = w(t, S;)dY:.
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Description of the market model
Solving for equilibrium

Definition

An admissible pricing rule is measurable function w satisfying:
© w € CH?([0,1] x R) is strictly positive on (b, d).
@ There exists a unique strong solution to the SDE

dSt = W(t, St)dBt, 50 =0a.s. (1)

It is rational if S; = E[f(Z)|F)]= S1 = f(2).

Definition

An admissible strategy 6 for w is adapted to (F!) and satisfies
© 0 is absolutely continuous, i.e., df; = a;dt.
@ There exists a unique strong solution of dS; = w(t, S;)dY:.
O (S, V) is a Markov process wrt ((F!),P%).

Further we call it inconspicuous if E[f|F,] = 0 for every t €[0,1].
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Description of the market model
Solving for equilibrium

Definition of equilibrium

Definition

A pair (w*,0%) is said to form an equilibrium if w* is an admissible
pricing rule, 8* is an admissible strategy, and the following
conditions are satisfied:
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Definition
A pair (w*,0%) is said to form an equilibrium if w* is an admissible
pricing rule, 8* is an admissible strategy, and the following
conditions are satisfied:
© Market efficiency condition: given 8%, w* is a rational pricing
rule.
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Description of the market model
Solving for equilibrium

Definition of equilibrium

Definition
A pair (w*,0%) is said to form an equilibrium if w* is an admissible
pricing rule, 8* is an admissible strategy, and the following
conditions are satisfied:
© Market efficiency condition: given 8%, w* is a rational pricing
rule.
@ Insider optimality condition: given w*, 0* solves the insider
optimization problem:

£ [o ()] = s [o ()]
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Description of the market model
Solving for equilibrium

Definition of equilibrium

Definition
A pair (w*,0%) is said to form an equilibrium if w* is an admissible
pricing rule, 8* is an admissible strategy, and the following
conditions are satisfied:
© Market efficiency condition: given 8%, w* is a rational pricing
rule.
@ Insider optimality condition: given w*, 0* solves the insider
optimization problem:

£ [o ()] = s [o ()]

We focus on inconspicuous equilibrium.
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Description of the market model Insider’s optimality condition

Solving for equilibrium

Suppose the admissible pricing rule w satisfies

o
Wt(t7§) + Wfﬁ(t7 E)

w3(t,€) 2

@ 0* admissible and satisfies

& =v, P as..,

where £* is the strong solution to

5t:/0 w(s, £)d(Bs + 67).

Then 0* is the optimal strategy.
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Description of the market model Insider’s optlmallty COnd.ItIOI’I
Solving for equilibrium l\/\arket. maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Proof

Define function

Ey_\/ 1 1
¢(t7£):/\/mdy+§/t W(S, V)dS.
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Proof

Define function
Ey_v 11
y
t, &) = - d —l——/WS,VdS.
(09 = [ Loty [ s )
Then
61 y_ V

———dy > 0.
14 W(17y) Y=

$(1,&1) =
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Proof

Define function

Ey—V 1 1
o(t,¢€) :/v W(t’y)dyﬂti/t w(s, V)ds.
Then ’ v
. 1 y_
oL&)= [ Lo
And

~ t t
86,60 = 6(0.0) + 7 [ (6= V)Pds+ [ (& = V)d(os + Bo).

9 Danilova Risk averse insider O



Description of the market model Insider’s optimality condition

Solving for equilibrium

Proof

Define function

o9 [} LYoy [Muts. vy

t,y
Then Y
O
And
o(t.6) = 60,00+ 1 ["(6—vyds+ [ (6~ v)d(os+ B.).
In particular

1 1
W = (@ -V - [ bedee = [ (& - V)b
_ _ e - vds - (e -
= 0(1.6) = 6(0.0) — [ (&~ V)ds— [ (&~ V)b,
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Proof, ctd.

Insider's utility is given by:

J = —linfEO’v [e_A’fol(V_ft)det}
v 6
— 1. 0,v [ ,—7(¢(0,0)—¢(1,¢1))
=~ ifE [ Dey(—( - V)]

< _%e—W(O’O) inf > [£1(—(¢ = V)]

where

t
5(X)_exp{/XdB 5 xfds}.

@)
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

On PDE for weighting function

Suppose w satisfies
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Description of the market model Insider’s optimality condition

Solving for equilibrium

On PDE for weighting function

Suppose w satisfies

wi(t,§) N wee(t, €)

w3(t,€) 2

Then value function of the insider will become:

= —g(t,§).

J = —LinfEOY [ﬂfol(‘/&)d@r]
vy o0
1 _ ) [ [ (et -1)(y—
_ Ll fRov [e HH0.0)—0(t£))= [y [y (8(tx) -1y~ V)dyde g,
vy o0

where 81 = 51 (—’y(f - V))
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Characterisation of Equilibrium

A pair (w*,0*) is an inconspicuous equilibrium if:

Q@ w* satisfies

W;((t,f) ng(t’g)
= — 2
wieer T2 " S
@ Y* = B+ 0* is a standard Brownian motion in its own
filtration,

Q & =v, P% as. where £* is the strong solution to

t
ft:/o W(S,fs)dys*-
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Description of the market model

Solving for equilibrium

To find w satisfying (2) and

Insider's optimality condition
Market maker’s fixed point problem

Insider's optimal strategy: Markov Bridge

13

/1 W(taét)dBtY = 61 :l: Vv
0
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Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

To find w satisfying (2) and

/1 W(tagt)dBtY = 61 :L Va
0

consider a transformation:

X dy 1 t
Kw(t,X) —/0 m + 5/0 WX(S,O)C]S.
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

To find w satisfying (2) and

/1 W(tagt)dBtY = 51 :l: V7
0

consider a transformation:

X dy 1 t
KW t7 - ~ X 3 d
(£,x) /Ow(t’y)+2/ow(50)s

dK, (t, &) = ~Ecdt + dBY .

Then
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

To find w satisfying (2) and

1
| wie.gydsY === v,
consider a transformation:

X dy 1 t
Kw(t,x :/ 74—7/ wy(s,0)ds.
(£:%) o w(t,y) 2Jo (s:0)
Then
dK, (t, &) = ~Ecdt + dBY .

Let Rt = Kw(t’gt)v )‘(t7y) = K;1(t7y)'
Then (1, 1) = V and

dre = Y\(t, ke )dt + dBY
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

To find w satisfying (2) and

1
/ w(t,&)dB) =& =V,
0
consider a transformation:
Kot x)—/xo’y+1/tw (s,0)ds
w b) - 0 W(t’y) 2 0 X b) .

Then
dKy (t, &) = 7€edt + dBY .

Let Rt = Kw(t’gt)v )‘(t7y) = K;l(t7y)'
Then A(1, k1) =¢ V and

dre = Y\(t, ke )dt + dBY
with X solving Burger's equation

1
Ae(t, x) + §>\XX(t’X) = —yA«(t, x)A(t, x)

13 Danilova Risk averse insider



Description of the market model Insiders Optw,'ah?y cond-mon
Solving for equilibrium Market_ maker’s fixed point problem
Insider's optimal strategy: Markov Bridge

Measure change is given by:

d_IED _ efol YAt o) die— 2L J 22 (tmede _ Ce Jo AL x)dx
dP

=] =
14 Danilova Risk averse insider




Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Measure change is given by:

CdiE = efo1 ’YA(tvﬁt)th_é fol A2(t,ke)dt _ Cewfoﬁl A(1,x)dx
Thus, market maker's problem becomes:

o B1
P(x) = Plry<x]=CEle"h Xa0dy )

2
_ C/X RN fod>*1oP(u)du—y7dy
—0o0
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Measure change is given by:

CdiE = efo1 ’YA(tvﬁf)th_é fol A2(t,ke)dt _ Ce’yf:l A(1,x)dx
Thus, market maker's problem becomes:

~ B1
P(x) = Plry<x]=CEle"h Xa0dy )

2
_ C/X RN fod>*1oP(u)du—y7dy
—0o0

= Fixed point problem.
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Measure change is given by:

:jﬂ; = ej; ’yA(th‘f)dF‘:t_’}; L[Ol )\2(t,lﬂlt)dt — Ce'y foﬁl )\(l,X)dX
Thus, market maker's problem becomes:

P(x) = Pl < x] = ClleTJa by )
_ C/X RN fo¢*loP(u)du—%dy
= Fixed point problem.Consider recursive map P"*1 = TP".
g"() = Fod o P"x), 6"(x) = [ g"(u)d

c, = var
’ fi";o exp {767(u) - 4}

P™l(x) = / exp {fyG”(u) - U2} du
\ﬁ 2

14 Danilova Risk averse insider




Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Define a set D where we pick P from as:
X2

c
2072

D=1!PecCyR):Pac. cdf,0< Py(x) <
p(R) a.c. ¢ < Py(x) oz

exp
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Define a set D where we pick P from as:

x2

D=.PecCp(R):Pac cdf, 0 <Py(x) < \/%exp 52
Then

@ D is convex and closed,
@ forany P € D we have TP € D,

© T is a continuous map wrt sup norm.

15 Danilova Risk averse insider
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Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Thus: there exists w satisfying

wi (t,€)
Wt e T 2

wie(t,€) —

and

1
/0 w*(t,&)dB) =& =F V,
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Thus: there exists w satisfying

wi(t,€)
W (teF 2

* t
ng( 3| S

and .
/ W*(tvgt)dBtY = fl =~ V7
0

Need: 6* such that

@ Y* = B+ 0* is a standard Brownian motion in its own
filtration,

o & = v, POV as. where £* is the strong solution to

& = /Ot w(s,&s)dYs.
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Description of the market model

Solving for equilibrium Market maker’s fixed point problem

Thus: there exists w satisfying

wi(t,€)
W (teF 2

* t
ng( 3| S

and .
/ W*(tvgt)dBtY = fl =~ V7
0

Need: 6* such that

@ Y* = B+ 0* is a standard Brownian motion in its own
filtration,

o & = v, POV as. where £* is the strong solution to

& = /Ot w(s,&s)dYs.

= Markov bridge construction.
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Insider's optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Let p(s, x; t,z) be a transition density of process

t
Kt = / YA(s, ks)ds + Bs.
0
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Let p(s, x; t,z) be a transition density of process

t
Kt = / YA(s, ks)ds + B.
0
It satisfies

im [ plt.yiu2)p(0.x: . y)dy =0, Yu>0, 7 >0,
Be(2)

t—u

the Chapman-Kolmogorov equations
p(s,x;u,y) = / p(s,x; t,z)p(t,z;u,y)dz, 0 <s <t <1,
R

and
sup p(t,x;1,z) < oo,

x¢B(z)
t<1

for every z€ R and r > 0.
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Insider's optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Moreover, for any z € R
Q p(0,x;1,z) > 0.
@ For h(t,y) = p(t,y;1,z) we have h € C}2([0,1) x R).
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Moreover, for any z € R
Q@ p(0,x;1,2z) > 0.
@ For h(t,y) = p(t,y;1,z) we have h € C1?([0,1) x R).

Thus there exists a weak solution on [0, 1] to

Kt = /Ot {7)\(u, Ku) + W} du + B, (3)

the law of which, P{7¥, satisfies P{{ (k1 =2z) =1.

Moreover, since h(t,-) > 0 for all t < 1, strong uniqueness holds
for the above SDE.

18 Danilova Risk averse insider



Insider's optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Construction of measures

There exists a unique weak solution to

t
X = x +/ A1, Xo)du + By
0
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Construction of measures

There exists a unique weak solution to
t
X, = x +/ YA (U, Xo)du + By
0

Let P* be the associated probability measure. Define PT by

dPT  h(T,Xr)
dP* — " h(0,x)

h is a martingale
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Construction of measures

There exists a unique weak solution to
t
X, = x +/ YA (U, Xo)du + By
0

Let P* be the associated probability measure. Define PT by

dPT  h(T,X7)
dP* — " h(0,x)

h is a martingale = X solves (3) until T under PT @I
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Tightness

It is enough to show that

lim limsup PT(w(X,4,[0,1]) > 8c) =0,

=0 1751
where
w(X,5,[S, T]) = sup || Xs — X¢l.
|s—t|<do
s,te[S,T)
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Tightness

It is enough to show that

lim limsup PT(w(X,4,[0,1]) > 8c) =0,

=0 751
where
w(X,5,[S, T]) = sup || Xs — X¢l.
[s—t|<d
s,te[S,T)
Note that

PT(w(X,6,[0,1]) > 8¢c) < PT(w(X,4,]0,1—4]) > 4c)
+PT(w(X,6,[1—6,1]) > 4c)
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Tightness

It is enough to show that

lim limsup PT(w(X,4,[0,1]) > 8c) =0,

=0 751
where
w(X,5,[S, T]) = sup || Xs — X¢l.
[s—t|<d
s,te[S,T)
Note that

PT(w(X,6,[0,1]) > 8¢c) < PT(w(X,4,]0,1—4]) > 4c)
+PT(w(X,6,[1—6,1]) > 4c)

Let Zs = w(X, 6, [0,6]) then VT >1—6

[Z(g o0lfi_s5 > 4C] C [Zl—T ol > 2C] U [ZT—1+6 ofi_s5 > 2C].
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Insider's optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Tightness, interval [T, 1)

p(A, X1, 2)

T X
PT(Zac0r>20) = E* [Liggarpoag s

21 Danilova Risk averse insider O



Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Tightness, interval [T, 1)

(A=1-T)

(A X1, )

PT(ZAOQT > 2C) = E~ |:1[ZA097->2C] 1. x Z)

EX PXT(ZA > 26)1ix, (2 P(A, X7, 2)]

EX _PXT(ZA > 2c l[XT¢Br (2)]P (A,XT,Z)—

p(1,

)
p(1,x,2)

)

(

p(1,x,z)

@)
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Tightness, interval [T, 1)

(A=1-T)

A, X7,
PT(Zpnobr >2c) = EX {1[ZA09T>2C](T)}

1,x,z)
EX |[PXT(Zn > 2c

p(1,x,2z)

(
)l[XTGBr Z) (A7XT7Z):|
(

E~ |:PXT(ZA >2C)1[XT¢B Z) (A7XT7Z):|

p(1,x,z)
sup PY(Za > 2¢)
y€B(z)

1
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Tightness, interval [1 — 4, T)

Let T°:=1— ¢ and consider M} := p(1 — t, X;, z) and
70 = inf{t > 0: supgcsc; Xs — infocs<e Xs > 2c} AS AL

EX[Li7s 1 m50p. . < 1M
imroa1 PT(Zr s 0675 > 2¢) = lim irrc0,s <1 M)

=i
! p(1,x,z)
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Tightness, interval [1 — 4, T)

Let T°:=1— ¢ and consider M} := p(1 — t, X;, z) and
70 = inf{t > 0: supgcsc; Xs — infocs<e Xs > 2c} AS AL

EX[]' 547600 MT]
im7 PT(Zr_7s 0075 > 2¢) = Jim, [T;(l XTZ)U]
EX[Lirsop, s <s)MTs.47500, 5]

p(1,x,2z)

@)
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Description of the market model
Solving for equilibrium

Tightness, interval [1 — 4, T)

Insider's optimal strategy: Markov Bridge

Let T‘S =1— ¢ and consider I\/It1 = p(1—t, X¢, z) and

70 = inf{t > 0: supgcsc; Xs — infocs<e Xs > 2c} AS AL
. . EX[]'[T5+T500 <T]MT]
im7oy PT(Zr_qs 067 > 2¢) = 7I'IE>11 P(LX,T;)

EX[]'[T‘SOGTg <] MT5+T500T5]

p(17X,Z)
1 X
= m E [1[X175§£B%(z)]/\/ll_5]
+ EX[1[XT5€B%(Z)]1[TCOGT5<6]MT6+TCOGT6]
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Description of the market model
Solving for equilibrium

Tightness, interval [1 — 4, T)

Insider's optimal strategy: Markov Bridge

Let T‘s = 1— 6 and consider I\/It1 = p(1—t, X¢, z) and

70 = inf{t > 0: supgcsc; Xs — infocs<e Xs > 2c} AS AL
. . EX[]'[T5+7'509 <T]MT]
im7oy PT(Zr_qs 067 > 2¢) = 7I'IE>11 P(LX,T;)

EX[]'[T‘SOGTg <] MT5+T500T5]
p(1,x,z)

1 X
p(1,x,z) E []'[Xl—(séB%(z)] M;_s]

+ EX[1x s €Be (2)] Lreo0,5<s)MT5 4700 ;]

Tightness + convergence of finite dimensional distributions =
existence of the limiting measure P{Z{ on (C([0,1],R), By).
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Insider’s optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equilibrium

Bridge property

Observe that for any g € C(R), we have that Ef7{[g(X1)] can
be expressed as (A =1—T)

g(z) + }@1 EX [P(A,Xz(zl),(fi(z);ﬂ — g(2))]

@)
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Bridge property

Observe that for any g € C(R), we have that Ef7{[g(X1)] can
be expressed as (A =1—-T)

EX[p(A, X7,2)(8(XT) — 8(2))]

g(z) + }iin1 p(1,x,z)
= gle)+ g [ PELIREI) () — g(2))
: p(A,y, 2)p(T, x,y)
lim [ BT e) ()
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Description of the market model

Solving for equilibrium Insider's optimal strategy: Markov Bridge

Theorem

There exists an equilibrium (w*,0*) where

Q w*(t,§) = T ( 5 be the weighting function.
@ 0; = [y aids where o = w*(s, 55)’)5(55’5;11521)) with

fl = f(Z). Moreover £ is the unique strong solution of

e(t, &1, E5)

2P _
dée = w(t,&)dBr + w(t, &) ot €01, 67) o=

where p is transition density of .
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Insider's optimality condition
Market maker's fixed point problem
Insider’s optimal strategy: Markov Bridge

Description of the market model
Solving for equil
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