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Market structure

Continuous trading on [0, 1], at time 1 dividends are paid and
market terminates.

Traded securities:
Riskless asset with r = 0
Single risky asset that pays dividend V = f (Z ), with
Z ∼ N(0, 1).

Assumptions on f
f is increasing, bounded, differentiable and has bounded
derivative that vanishes at infinity.
Wlog the range of f is an interval [b, d ].
Wlog E[V ] = 0
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Market participants

There are three types of agents on the market:
Noisy/liquidity traders: their total demand at time t is Bt .

Informed investor: observes F I
t = FS

t ∨ σ(V ) and solves

sup
X∈A(H)

E0,v
[
−e−γW θ

1
]

= sup
X∈A(H)

E0,v
[
−e
−γ
[

(V−S1)θ1+
∫ 1
0 θsdSs

]]
,

where E0,v is the expectation using the probability measure of
the insider who is given the realisation V = v .
Market maker: Observes FY

t where Yt = θt + Bt and sets the
price

St = E[f (Z ) | FY
t ].

We will look for S satisfying dSt = w(t, St)dYt .
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On the form of the pricing rule

Standard pricing rule is a pair (H,w) and the price given by
St = H(t, ξt) where

dξt = w(t, ξt)dYt

Pricing rule is rational ⇒ function H solves

Ht(t, x) + w2(t, x)
2 Hxx (t, x) = 0

⇒ we choose H(t, x) = x . It is wlog since

dH(t, ξt) = Hx (t, ξt)w(t, ξt)dYt
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Definition
An admissible pricing rule is measurable function w satisfying:

1 w ∈ C1,2 ([0, 1]× R) is strictly positive on (b, d).

2 There exists a unique strong solution to the SDE

dSt = w(t, St)dBt , ξ0 = 0 a.s. (1)

It is rational if St = E[f (Z )|FY
t ]⇒ S1 = f (Z ).

Definition
An admissible strategy θ for w is adapted to (F I

t ) and satisfies
1 θ is absolutely continuous, i.e., dθt = αtdt.
2 There exists a unique strong solution of dSt = w(t, St)dYt .
3 (S,V ) is a Markov process wrt ((F I

t ),P0,v ).

Further we call it inconspicuous if E[θ|FY
t ] = 0 for every t ∈ [0, 1].
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Definition of equilibrium

Definition
A pair (w∗, θ∗) is said to form an equilibrium if w∗ is an admissible
pricing rule, θ∗ is an admissible strategy, and the following
conditions are satisfied:

1 Market efficiency condition: given θ∗, w∗ is a rational pricing
rule.

2 Insider optimality condition: given w∗, θ∗ solves the insider
optimization problem:

E0,v
[
u
(
W θ∗

1

)]
= sup

θ∈A
E0,v

[
u
(
W θ

1

)]
.

We focus on inconspicuous equilibrium.
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Theorem
Suppose the admissible pricing rule w satisfies

1

wt(t, ξ)
w2(t, ξ) + wξξ(t, ξ)

2 = −γ.

2 θ∗ admissible and satisfies

ξ∗1 = v , P0,v a.s..,

where ξ∗ is the strong solution to

ξt =
∫ t

0
w(s, ξs)d(Bs + θ∗s ).

Then θ∗ is the optimal strategy.
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Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Proof
Define function

φ(t, ξ) =
∫ ξ

V

y − V
w(t, y)dy + 1

2

∫ 1

t
w(s,V )ds.

Then
φ(1, ξ1) =

∫ ξ1

V

y − V
w(1, y)dy ≥ 0.

And

φ(t, ξt) = φ(0, 0) + γ

2

∫ t

0
(ξs − V )2ds +

∫ t

0
(ξs − V )d(θs + Bs).

In particular

−W θ
1 = (ξ1 − V )θ1 −

∫ 1

0
θsdξs =

∫ 1

0
(ξs − V )dθs

= φ(1, ξ1)− φ(0, 0)−
∫ 1

0

γ

2 (ξs − V )2ds −
∫ 1

0
(ξs − V )dBs
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Proof, ctd.

Insider’s utility is given by:

J = −1
γ

inf
θ
E0,v

[
e−γ

∫ 1
0 (V−ξt )dθt

]
= −1

γ
inf
θ
E0,v

[
e−γ(φ(0,0)−φ(1,ξ1))E1(−γ(ξ − V ))

]
≤ −1

γ
e−γφ(0,0) inf

θ
E0,v [E1(−γ(ξ − V ))] ,

where
Et(X ) = exp

{∫ t

0
XsdBs −

1
2

∫ t

0
X 2

s ds
}
.
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

On PDE for weighting function

Suppose w satisfies

wt(t, ξ)
w2(t, ξ) + wξξ(t, ξ)

2 = −γg(t, ξ).

Then value function of the insider will become:

J = −1
γ

inf
θ
E0,v

[
e−γ

∫ 1
0 (V−ξt )dθt

]
= −1

γ
inf
θ
E0,v

[
e−γ(φ(0,0)−φ(t,ξ1))−γ

∫ 1
0

∫ ξt
V (g(t,y)−1)(y−V )dydtE1

]
where E1 = E1 (−γ(ξ − V ))
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Characterisation of Equilibrium

Theorem
A pair (w∗, θ∗) is an inconspicuous equilibrium if:

1 w∗ satisfies
w∗t (t, ξ)
w∗(t, ξ)2 +

w∗ξξ(t, ξ)
2 = −γ, (2)

2 Y ∗ = B + θ∗ is a standard Brownian motion in its own
filtration,

3 ξ∗1 = v, P0,v a.s. where ξ∗ is the strong solution to

ξt =
∫ t

0
w(s, ξs)dY ∗s .

12 Danilova Risk averse insider 	
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

To find w satisfying (2) and∫ 1

0
w(t, ξt)dBY

t = ξ1 =L V ,

consider a transformation:

Kw (t, x) =
∫ x

0

dy
w(t, y) + 1

2

∫ t

0
wx (s, 0)ds.

Then
dKw (t, ξt) = γξtdt + dBY

t .

Let κt = Kw (t, ξt), λ(t, y) = K−1w (t, y).
Then λ(1, κ1) =L V and

dκt = γλ(t, κt)dt + dBY
t

with λ solving Burger’s equation

λt(t, x) + 1
2λxx (t, x) = −γλx (t, x)λ(t, x)
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Measure change is given by:
dP
d P̃

= e
∫ 1
0 γλ(t,κt )dκt− γ2

2

∫ 1
0 λ

2(t,κt )dt = Ceγ
∫ κ1
0 λ(1,x)dx

Thus, market maker’s problem becomes:

P(x) = P[κ1 ≤ x ] = C Ẽ[eγ
∫ β1
0 λ(1,u)du1{β1≤x}]

= C
∫ x

−∞
eγ
∫ y
0 f ◦Φ−1◦P(u)du− y2

2 dy

⇒ Fixed point problem.Consider recursive map Pn+1 = TPn.

gn(x) = f ◦ Φ−1 ◦ Pn(x), Gn(x) =
∫ x

0
gn(u)du,

c∗n =
√
2π∫∞

−∞ exp
{
γGn(u)− u2

2

} ,
Pn+1(x) = c∗n√

2π

∫ x

−∞
exp

{
γGn(u)− u2

2

}
du
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Description of the market model
Solving for equilibrium

Insider’s optimality condition
Market maker’s fixed point problem
Insider’s optimal strategy: Markov Bridge

Define a set D where we pick P from as:

D =
{
P ∈ Cb(R) : P a.c. cdf, 0 ≤ Px (x) ≤ c√

2π
exp

{
− x2
2σ2

}}

Then
1 D is convex and closed,
2 for any P ∈ D we have TP ∈ D,
3 T is a continuous map wrt sup norm.
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Insider’s optimal strategy: Markov Bridge

Thus: there exists w satisfying

w∗t (t, ξ)
w∗(t, ξ)2 +

w∗ξξ(t, ξ)
2 = −γ,

and ∫ 1

0
w∗(t, ξt)dBY

t = ξ1 =L V ,

Need: θ∗ such that
Y ∗ = B + θ∗ is a standard Brownian motion in its own
filtration,
ξ∗1 = v , P0,v a.s. where ξ∗ is the strong solution to

ξt =
∫ t

0
w(s, ξs)dY ∗s .

⇒ Markov bridge construction. main result
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Insider’s optimality condition
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Insider’s optimal strategy: Markov Bridge

Let p(s, x ; t, z) be a transition density of process

κt =
∫ t

0
γλ(s, κs)ds + Bt .

It satisfies

lim
t→u

∫
Bc

r (z)
p(t, y ; u, z)p(0, x ; t, y)dy = 0, ∀u > 0, r > 0,

the Chapman-Kolmogorov equations

p(s, x ; u, y) =
∫
R
p(s, x ; t, z)p(t, z ; u, y)dz , 0 ≤ s < t ≤ 1,

and
sup

x /∈Br (z)
t<1

p(t, x ; 1, z) <∞,

for every z ∈ R and r > 0.
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Moreover, for any z ∈ R
1 p(0, x ; 1, z) > 0.
2 For h(t, y) = p(t, y ; 1, z) we have h ∈ C1,2([0, 1)× R).

Thus there exists a weak solution on [0, 1] to

κt =
∫ t

0

{
γλ(u, κu) + (∇h(u, κu))

h(u, κu)

}
du + Bt , (3)

the law of which, Px→z
0→1 , satisfies Px→z

0→1 (κ1 = z) = 1 .
Moreover, since h(t, ·) > 0 for all t < 1, strong uniqueness holds
for the above SDE.
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Construction of measures

There exists a unique weak solution to

Xt = x +
∫ t

0
γλ(u,Xu)du + Bt

Let Px be the associated probability measure. Define PT by

dPT

dPx = h(T ,XT )
h(0, x) .

h is a martingale ⇒ X solves (3) until T under PT main result
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Tightness
It is enough to show that

lim
δ→0

lim sup
T→1

PT (w(X , δ, [0, 1]) > 8c) = 0,

where
w(X , δ, [S,T ]) = sup

|s−t|≤δ
s,t∈[S,T ]

‖Xs − Xt‖.

Note that

PT (w(X , δ, [0, 1]) > 8c) ≤ PT (w(X , δ, [0, 1− δ̂]) > 4c)
+PT (w(X , δ, [1− δ̂, 1]) > 4c)

Let Zδ = w(X , δ, [0, δ]) then ∀T > 1− δ

[Zδ ◦ θ1−δ > 4c] ⊂ [Z1−T ◦ θT > 2c] ∪ [ZT−1+δ ◦ θ1−δ > 2c].
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Insider’s optimal strategy: Markov Bridge

Tightness, interval [T , 1)

(∆ = 1− T )

PT (Z∆ ◦ θT > 2c) = E x
[
1[Z∆◦θT>2c]

p(∆,XT , z)
p(1, x , z)

]

=
E x
[
PXT (Z∆ > 2c)1[XT∈Br (z)]p(∆,XT , z)

]
p(1, x , z)

+
E x
[
PXT (Z∆ > 2c)1[XT /∈Br (z)]p(∆,XT , z)

]
p(1, x , z)

≤ sup
y∈Br (z)

Py (Z∆ > 2c)

+ 1
p(1, x , z)

∫
Bc

r (z)
p(∆, y , z)p(T , x , y)m(dy),
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Tightness, interval [1− δ,T )

Let T δ := 1− δ and consider M1
t := p(1− t,Xt , z) and

τ δ := inf{t ≥ 0 : sup0≤s≤t Xs − inf0≤s≤t Xs > 2c} ∧ δ ∧ 1

limT→1 PT (ZT−T δ ◦ θT δ > 2c) = lim
T→1

E x [1[T δ+τδ◦θTδ<T ]MT ]
p(1, x , z)

=
E x [1[τδ◦θTδ<δ]MT δ+τδ◦θTδ

]
p(1, x , z)

≤ 1
p(1, x , z)

[
E x [1[X1−δ /∈B c

4
(z)]M1−δ]

+ E x [1[XTδ∈B c
4

(z)]1[τc◦θTδ<δ]MT δ+τc◦θTδ
]
]

Tightness + convergence of finite dimensional distributions ⇒
existence of the limiting measure Px→z

0→1 on (C([0, 1],R),B1).
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τ δ := inf{t ≥ 0 : sup0≤s≤t Xs − inf0≤s≤t Xs > 2c} ∧ δ ∧ 1

limT→1 PT (ZT−T δ ◦ θT δ > 2c) = lim
T→1

E x [1[T δ+τδ◦θTδ<T ]MT ]
p(1, x , z)

=
E x [1[τδ◦θTδ<δ]MT δ+τδ◦θTδ

]
p(1, x , z)

≤ 1
p(1, x , z)

[
E x [1[X1−δ /∈B c

4
(z)]M1−δ]

+ E x [1[XTδ∈B c
4

(z)]1[τc◦θTδ<δ]MT δ+τc◦θTδ
]
]

Tightness + convergence of finite dimensional distributions ⇒
existence of the limiting measure Px→z

0→1 on (C([0, 1],R),B1).
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Bridge property

Observe that for any g ∈ C∞K (R), we have that E x→z
0→1 [g(X1)] can

be expressed as (∆ = 1− T )

g(z) + lim
T→1

E x [p(∆,XT , z)(g(XT )− g(z))]
p(1, x , z)

= g(z) + lim
T→1

∫
Br (z)

p(∆, y , z)p(T , x , y)
p(1, x , z) (g(y)− g(z)) dy

+ lim
T→1

∫
Bc

r (z)

p(∆, y , z)p(T , x , y)
p(1, x , z) (g(y)− g(z)) dy .
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Theorem

There exists an equilibrium (w∗, θ∗) where
1 w∗(t, ξ) = 1

λ−1
ξ

(t,ξ) be the weighting function.

2 θ∗t =
∫ t
0 α
∗
sds where α∗s = w∗(s, ξs)ρξ(s,ξs ;1,ξZ

1 )
ρ(s,ξs ;1,ξZ

1 ) with
ξZ
1 = f (Z ). Moreover ξ∗ is the unique strong solution of

dξt = w∗(t, ξt)dBt + w∗(t, ξt)2 ρξ(t, ξt ; 1, ξZ
1 )

ρ(t, ξt ; 1, ξZ
1 )

, ξ0 = 0,

where ρ is transition density of ξ.
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