Infinite dimensional polynomial processes

Christa Cuchiero
based on joint work with Sara Svaluto-Ferro

University of Vienna

Innovative Research in Mathematical Finance
in Honor of Yuri Kabanov
September 7, 2018

Outline

(1) Introduction and motivation

- ... from population genetics
- ... from stochastic portfolio theory
- ... and some connections to Yuri's work
(2) The theory of infinite dimensional polynomial processes
(3) Application: (rough) polynomial forward variance models

From population genetics to ...

- Neutral 2-allele Wright-Fisher Markov chain model from population genetics
- Discrete time model of a population with constant size N with two types of alleles, denoted by A and a
- X_{t}^{N} : number of type A individuals at time t
- X_{t}^{N} is modeled as a Markov chain with state space $\{0, \ldots, N\}$ and transition probabilities

$$
P_{k j}=P\left(X_{t+1}^{N}=j \mid X_{t}^{N}=k\right)=\binom{N}{j}\left(\frac{k}{N}\right)^{j}\left(1-\frac{k}{N}\right)^{N-j}
$$

- Binomial sampling with probability X_{t}^{N} / N

... a guiding example of polynomial processes

- Diffusion approximation
- The process $\frac{1}{N} X_{[N t]}^{N}$ converges in law to the Kimura or Wright-Fisher diffusion on $[0,1]$

$$
d \lambda_{t}=\sqrt{\left(1-\lambda_{t}\right) \lambda_{t}} d B_{t}, \quad \lambda_{0} \in[0,1],
$$

where B denotes a standard Brownian motion.
\Rightarrow Guiding example of a polynomial process

... a guiding example of polynomial processes

- Diffusion approximation
- The process $\frac{1}{N} X_{[N t]}^{N}$ converges in law to the Kimura or Wright-Fisher diffusion on $[0,1]$

$$
d \lambda_{t}=\sqrt{\left(1-\lambda_{t}\right) \lambda_{t}} d B_{t}, \quad \lambda_{0} \in[0,1],
$$

where B denotes a standard Brownian motion.
\Rightarrow Guiding example of a polynomial process

- It has the following non-standard properties:
- Non-Lipschitz property of the volatility
- Statespace is not the whole of \mathbb{R}
- Nevertheless existence of strong and pathwise unique solutions

Guiding example of standard polynomial processes

- Key property and moment formula: the expected value of polynomials of the process' marginals can be computed easily:

$$
\mathbb{E}\left[\sum_{j=0}^{k} y_{j} \lambda_{t}^{j}\right]=\sum_{j=0}^{k} y_{j, t} \lambda_{0}^{j}
$$

where y_{t} solves the linear ODE in \mathbb{R}^{k+1}

$$
\partial_{t} y_{t}=L_{k} y_{t}, \quad y_{0}=\left(y_{0}, y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k+1}
$$

with L_{k} the matrix representation of the infinitesimal generator applied to the basis monomials $\left(1, x, \ldots, x^{k}\right)$.
\Rightarrow Tractability: the Feynman-Kac PDE reduces to a linear $k+1$ dimensional ODE, that is solved by matrix exponentiation.

Polynomial jump diffusions on $\mathcal{E} \subseteq \mathbb{R}^{d}$

Definition

- A linear operator $L: \operatorname{Pol}\left(\mathbb{R}^{d}\right) \rightarrow \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ is called polynomial if it maps polynomials to polynomials of same or lower degree.
- Let L be a polynomial operator. Then a polynomial jump diffusion on \mathcal{E} is a càdlàg \mathcal{E}-valued solution λ to the martingale problem for L, i.e. for all $p \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$

$$
p\left(\lambda_{t}\right)-\int_{0}^{t} L p\left(\lambda_{s}\right) d s=(\text { local martingale })
$$

For polynomial operators the moment formula holds true and they are of the form

$$
\nabla p(\lambda)^{\top} b(\lambda)+\frac{\operatorname{Tr}\left(c(\lambda) \nabla^{2} p(\lambda)\right)}{2}+\int\left(p(\lambda+\xi)-p(\xi)-\nabla p(\lambda)^{\top} \xi\right) K(\lambda, d \xi)
$$

with $\lambda \mapsto b(\lambda)$ affine, $\lambda \mapsto c_{i j}(\lambda)+\int \xi_{i} \xi_{j} K(\lambda, d \xi)$ quadratic, $\lambda \mapsto \int \xi^{\mathbf{k}} K(\lambda, d \xi)$ polynomial up to degree $|\mathbf{k}|$ for $|\mathbf{k}| \geq 3$.

From stochastic portfolio theory to...

- Stochastic portfolio theory (SPT) (introduced by Robert Fernholz, loannis Karatzas, etc.) analyzes high dimensional stock markets, typically the constituents of large equity indices like S\&P 500 and the capital distribution curves.
- That is, the mapping $\log k \mapsto \log \left(\mu_{t}^{(k)}\right)$, where $\mu_{t}^{(1)}, \ldots, \mu_{t}^{(d)}$ are the ordered market weights of the d considered companies.
- They are of remarkable stability between 1926-2016 for the US stock market (see the graph by J. Ruf below).

...to polynomial models for the market weights

- Polynomial models allow to overcome certain shortcomings of existing models (see [C.'18; Polynomial processes in stochastic portfolio theory]).
- Within the Financial Maths Team Challenge 2016 South Africa, we performed a calibration of a 300 dimensional polynomial process.
- Shape preservation and "correct" dynamic behavior over 50 years.
- Comparison between the polynomial model and a Black \& Scholes model:

From large financial markets in SPT...

- Consider a set of stocks with market capitalizations $S_{t}^{1}, \ldots, S_{t}^{d}$ and the corresponding market weights $\mu_{t}^{i}=\frac{S_{t}^{i}}{S_{t}^{t}+\cdots+S_{t}^{d}}$ taking values in the unit simplex $\Delta^{d}=\left\{z \in[0,1]^{d}: z_{1}+\cdots+z_{d}=1\right\}$, i.e. the space of probability measures on a set of d points.
- Large financial market as $d \rightarrow \infty$, e.g. for analyzing the capitalization curves.
- \Rightarrow Probability measure valued setting with an (uncountably) infinite dimensional underlying space.
- Possible approach: Linear factor models, i.e. view $\left(\mu^{1}, \ldots, \mu^{d}\right)$ as the projection of a single tractable infinite dimensional model.
- Let X be a probability measure valued polynomial process.
- For functions $g_{i}^{d} \geq 0$ such that $g_{1}^{d}+\ldots+g_{d}^{d} \equiv 1$, set $\mu_{t}^{i, d}=\int g_{i}^{d}(x) X_{t}(d x) . \Rightarrow$ much richer class than polynomial models on Δ^{d} but similar tractability.
- Consider limits as $d \rightarrow \infty$.

...to some open questions inspired by Yuri's work

...to some open questions inspired by Yuri's work

- When does such a model satisfy NAA1, i.e. no (relative) asymptotic arbitrage of the first kind, as introduced in the context of large financial markets by Y. Kabanov and D. Kramkov (1994, 1998)? \Rightarrow Existence of supermartingale deflators?
- Construction of stochastic integrals with respect to the measure valued process, in a similar spirit as in T.Björk, G. Di Masi, Y. Kabanov, W.Runggaldier (1997), by reversing the role of integrands (measure valued processes) and integrators (continuous function valued processes)?
- Evolution of the value of a portfolio corresponding to a trading strategy which is a predictable process with values in continuous functions. The measure valued process could for instance represent an electricity forward price.
- Functionally generated portfolios (also in a modelfree sense based on Itô-type formulas in the sense of H . Föllmer)

Infinite dimensional setting

- Y : real Banach algebra with identity element 1 for the multiplication
- Y^{*} : dual space equipped with the weak-*-topology, which is the weakest topology making all linear functionals $\lambda \mapsto \lambda(y)=\langle y, \lambda\rangle$ on Y^{*} continuous.
- $y_{1} \otimes y_{2}$: symmetric tensor product for two elements $y_{1}, y_{2} \in Y$
- We fix a (reasonable) crossnorm $\|\cdot\|_{\times}$on $Y \otimes Y$, i.e. a norm $\|\cdot\|_{\times}$on $Y \otimes Y$ such that
(1) $\left\|y_{1} \otimes y_{2}\right\|_{\times}=\left\|y_{1}\right\|\left\|y_{2}\right\|$ for each $y_{1}, y_{2} \in Y$, and
(2) $\sup _{y \in Y \otimes Y,\|y\|_{x} \leq 1}\left|\left(\lambda_{1} \otimes \lambda_{2}\right)(y)\right|=\left\|\lambda_{1}\right\| Y^{*}\left\|\lambda_{2}\right\|_{Y^{*}}$ for each $\lambda_{1}, \lambda_{2} \in Y^{*}$.
- $Y \widehat{\otimes} Y$: completion of $Y \otimes Y$ with respect to $\|\cdot\|_{X}$
- $y^{\otimes k}, Y^{\otimes k}, Y^{\otimes}{ }^{\otimes}, \lambda^{\otimes k}$ for $k \in \mathbb{N}$ are defined analogously. For $k=0$, we identify $Y^{\widehat{\otimes} 0}$ with \mathbb{R}.

Guiding example and polynomials on Y^{*}

Example (important setting for SPT)

- Let $E \subseteq \mathbb{R}$ be compact.
- $Y:=C(E):$ Banach space of continuous functions
- $Y^{*}=M(E)$: space of finite signed measures
- Letting $\|\cdot\|_{\times}$be the supremum norm on $C(E)^{\otimes k}$, we get that $Y^{\widehat{\otimes} k}$ is the space of symmetric continuous functions $f: E^{k} \rightarrow \mathbb{R}$.

Guiding example and polynomials on Y^{*}

Example (important setting for SPT)

- Let $E \subseteq \mathbb{R}$ be compact.
- $Y:=C(E)$: Banach space of continuous functions
- $Y^{*}=M(E)$: space of finite signed measures
- Letting $\|\cdot\|_{\times}$be the supremum norm on $C(E)^{\otimes k}$, we get that $Y^{\widehat{\otimes} k}$ is the space of symmetric continuous functions $f: E^{k} \rightarrow \mathbb{R}$.
- A polynomial on Y^{*} with coefficients $y:=\left(y_{0}, \ldots, y_{k}\right) \in \bigoplus_{j=0}^{k} Y^{\widehat{\otimes} j}$ is defined as $p(\lambda)=\sum_{j=0}^{k}\left\langle y_{j}, \lambda^{\otimes j}\right\rangle$ with $\left\langle y_{j}, \lambda^{\otimes j}\right\rangle:=\lambda^{\otimes j}\left(y_{j}\right)$ for $y_{j} \in Y^{\widehat{\otimes j} j}$.
- $P:=\left\{\lambda \mapsto p(\lambda) \mid p\right.$ is a polynomial on $\left.Y^{*}\right\}$ algebra of all polynomials on Y^{*}
- The space of cylindrical polynomials with coefficients in a dense linear subspace $D \subseteq Y$ is defined by

$$
P^{D}=\left\{\varphi\left(\left\langle y_{1}, \lambda\right\rangle, \ldots,\left\langle y_{k}, \lambda\right\rangle\right) \mid \text { polynomials } \varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}, k \in \mathbb{N}_{0}, y_{i} \in D\right\} .
$$

Differentiability

Definition

- A map $f: Y^{*} \rightarrow \mathbb{R}$ is said to be Fréchet differentiable at $\lambda \in Y^{*}$ if there exists a linear functional $y_{\lambda}^{* *}(\cdot)=\left\langle y_{\lambda}^{* *}, \cdot\right\rangle \in Y^{* *}$ such that

$$
\lim _{\tilde{\lambda} \rightarrow 0} \frac{\left|f(\lambda+\tilde{\lambda})-f(\lambda)-y_{\lambda}^{* *}(\widetilde{\lambda})\right|}{\|\widetilde{\lambda}\|_{Y^{*}}}=0 .
$$

We write $\partial f(\lambda):=y^{* *}$.

- Analogously, whenever it exists, we denote by $\partial^{k} f(\lambda)$ the element of $\left(Y^{\widehat{\otimes} k}\right)^{* *}$ corresponding to the k-th iterated Fréchet derivative of f at λ.

For a $p \in P^{D}$ of the form $p(\lambda):=\varphi\left(\left\langle y_{1}, \lambda\right\rangle, \ldots,\left\langle y_{d}, \lambda\right\rangle\right)$ we have

$$
\partial^{k} p(\lambda)=\sum_{i_{1}, \ldots, i_{k}=1}^{d} y_{i_{1}} \otimes \cdots \otimes y_{i_{k}} \varphi_{i_{1}, \ldots, i_{k}}\left(\left\langle y_{1}, \lambda\right\rangle, \ldots,\left\langle y_{d}, \lambda\right\rangle\right) .
$$

and thus $\partial^{k} p(\lambda) \in D^{\otimes k}$ for each $\lambda \in Y^{*}$.

Lévy type operator

Definition

Let $L: P^{D} \rightarrow P$ be a linear operator and fix $\lambda \in Y^{*}$. The operator L is said to be of Lévy type on $\mathcal{E} \subseteq Y^{*}$ at λ if $p \mapsto L p(\lambda)$ can be represented as

$$
\begin{aligned}
L p(\lambda)= & -\Gamma(\lambda) p(\lambda)+B(\partial p(\lambda), \lambda)+\frac{1}{2} Q\left(\partial^{2} p(\lambda), \lambda\right) \\
& +\int p(\xi)-p(\lambda)-\langle\partial p(\lambda), \xi-\lambda\rangle K(\lambda, d \xi),
\end{aligned}
$$

where the quadruplet $(\Gamma(\lambda), B(\cdot, \lambda), Q(\cdot, \lambda), K(\lambda, \cdot))$ consists of some constant $\Gamma(\lambda) \in \mathbb{R}_{+}$, some linear operators

$$
B(\cdot, \lambda): D \rightarrow \mathbb{R}, \quad \text { and } \quad Q(\cdot, \lambda): D \otimes D \rightarrow \mathbb{R},
$$

and some (nonnegative) measure $K(\lambda, \cdot)$ on $\mathcal{E} \backslash\{\lambda\}$ satisfying

$$
Q(y \otimes y, \lambda) \geq 0 \quad \text { and } \quad \int\langle y, \xi-\lambda\rangle^{2} K(\lambda, d \xi)<\infty, \quad \forall y \in D .
$$

Polynomial operators

Definition

Fix $\mathcal{E} \subseteq Y^{*}$. A linear operator $L: P^{D} \rightarrow P$ is called \mathcal{E}-polynomial if for every $p \in P^{D}$ there is some $q \in P$ such that $\left.q\right|_{\mathcal{E}}=\left.L p\right|_{\mathcal{E}}$ and $\operatorname{deg}(q) \leq \operatorname{deg}(p)$.

Proposition (C. \& Svaluto-Ferro '18)

A linear operator $L: P^{D} \rightarrow P$ of Lévy type is \mathcal{E}-polynomial if and only if

$$
\begin{aligned}
& \Gamma(\lambda)=\text { const, } \quad B(y, \lambda)=B_{0}(y)+\left\langle B_{1}(y), \lambda\right\rangle \\
& Q(y \otimes y, \lambda)+\int\langle y, \xi-\lambda\rangle^{2} K(\lambda, d \xi)=\sum_{i=0}^{2}\left\langle Q_{i}(y \otimes y), \lambda^{\otimes i}\right\rangle \\
& \int\langle y, \xi-\lambda\rangle^{k} K(\lambda, d \xi)=\sum_{i=0}^{k}\left\langle J_{i}^{k}\left(y^{\otimes k}\right), \lambda^{\otimes i}\right\rangle, \quad k \geq 3
\end{aligned}
$$

for some linear operators $B_{0}: D \rightarrow \mathbb{R}, B_{1}: D \rightarrow Y, Q_{i}: D \otimes D \rightarrow Y^{\widehat{\otimes} i}$, $i \in\{0,1,2\}, J_{i}^{k}: D^{\otimes k} \rightarrow Y^{\otimes i}, i \in\{0, \ldots, k\}$ for $k \geq 3$.

Dual operator

Definition

Let $L: P^{D} \rightarrow P$ be an \mathcal{E}-polynomial operator and fix $k \in \mathbb{N}$.

- A k-th dual operator $L_{k}: \bigoplus_{j=0}^{k} D^{\otimes j} \rightarrow \bigoplus_{j=0}^{k} Y^{\otimes \hat{} j}$ is a linear operator that maps the coefficients vector of p to the coefficients vector of $L p$, for each $p \in P^{D}$ with $\operatorname{deg}(p) \leq k$ such that $L_{k} y:=\left(L_{k}^{0} y, \ldots, L_{k}^{k} y\right)$ satisfies

$$
\operatorname{Lp}(\lambda)=\sum_{j=0}^{k}\left\langle L_{k}^{j} y, \lambda^{\otimes j}\right\rangle, \quad \text { for all } \lambda \in Y^{*}
$$

for $p(\lambda)=\sum_{j=0}^{k}\left\langle y_{j}, \lambda^{\otimes j}\right\rangle$.

Polynomial processes

Let $\mathcal{E} \subseteq Y^{*}$ and $L: P^{D} \rightarrow P$ be a linear operator. An \mathcal{E}-valued process $\left(\lambda_{t}\right)_{t \geq 0}$ defined on some filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ is called a solution to the martingale problem for L with initial condition $\lambda_{0} \in \mathcal{E}$ if

- $\lambda_{0}=\lambda \mathbb{P}$-a.s.,
- for every $p \in P^{D}$ there exists a measurable version of $\left(p\left(\lambda_{t}\right)\right)_{t \geq 0}$ and $\left(L p\left(\lambda_{t}\right)\right)_{t \geq 0}$ and
- the process

$$
N_{t}^{p}:=p\left(\lambda_{t}\right)-p\left(\lambda_{0}\right)-\int_{0}^{t} L p\left(\lambda_{s}\right) d s
$$

defines a local martingale for every $p \in P^{D}$.

Definition

Let L be \mathcal{E}-polynomial. A solution to the martingale problem for L is called an \mathcal{E}-valued polynomial jump diffusion if $\left(N_{t}^{p}\right)_{t \geq 0}$ is a true martingale for all $p \in P^{D}$.

Moment formula

Theorem (C.\& Svaluto-Ferro '18)

Let $\left(\lambda_{t}\right)_{t>0}$ be a polynomial jump diffusion corresponding to L and fix a dual operator $\left(L_{k}\right)_{k \in \mathbb{N}}$. Suppose that

- the k-th dual operator L_{k} is closable, and that the coefficients vector $y \in \bigoplus_{j=0}^{k} D^{\otimes j}$ is in the domain of its closure \bar{L}_{k}.
- Suppose that there is a weak solution $\left(y_{t}\right)_{t \geq 0}=\left(y_{t, 0}, \ldots, y_{t, k}\right)_{t \geq 0}$ with $y_{t, j} \in Y^{\widehat{\otimes} j}$ (satisfying certain technical conditions) of the $k+1$ dimensional system of linear ODEs on $\bigoplus_{j=0}^{k} Y^{\otimes} j$

$$
\partial_{t} y_{t}=\bar{L}_{k} y_{t}, \quad y_{0}=y
$$

Then the following conditional moment formula holds true

$$
\mathbb{E}\left[\left(\sum_{j=0}^{k}\left\langle y_{j}, \lambda_{T}^{\otimes j}\right\rangle\right) \mid \mathcal{F}_{t}\right]=\sum_{j=0}^{k}\left\langle y_{T-t, j}, \lambda_{t}^{\otimes j}\right\rangle .
$$

Interpretation

- The infinite dimensional Y^{*} valued Feynman Kac PDE reduces to a $k+1$ dimensional systems of linear ODEs on $\bigoplus_{j=0}^{k} Y^{\widehat{\otimes} j}$.
- When $Y^{*}=M(E)$ for some compact set $E \subseteq \mathbb{R}$, this correpsonds to a system of linear PDES, where the j-th component is a function on E^{j}.
- When E consists of one point, we are back to the one-dimensional guiding example of the Wright-Fisher diffusion and we obtain a $k+1$ dimensional ODE.

Polynomial foward variance models

- Log price dynamics: $d X_{t}=-\frac{1}{2} V_{t} d t+\sqrt{V_{t}} d W_{t}$
- Forward variance dynamics

$$
\lambda_{t}(x)=\frac{d}{d x} \lambda_{t}(x) d t+d M_{t}^{x}
$$

where $V_{t}=\lambda_{t}(0)$ (actually $\left.\lambda_{t}(x)=\mathbb{E}\left[V_{t+x} \mid \mathcal{F}_{t}\right]\right), W$ is a Brownian motion and $\left(M_{t}^{\times}\right)$is a continuous martingale for all $x \in \mathbb{R}_{+}$.

- We consider $x \mapsto \lambda_{t}(x)$ on the following Hilbert space Y^{*} (c.f. Filipovic 2001),

$$
Y^{*}=Y=\left\{\left.y \in A C\left(\mathbb{R}_{+}, \mathbb{R}\right)\left|\int_{0}^{\infty}\right| y^{\prime}(x)\right|^{2} \alpha(x) d x<\infty\right\}
$$

for a specified strictly positive weight function $\alpha>0$.

- Scalar product $\langle y, \lambda\rangle_{\alpha}=y(0) \lambda(0)+\int y^{\prime}(x) \lambda^{\prime}(x) \alpha(x) d x$.
- $x \mapsto M_{t}^{x} \in Y^{*}$ for every $t \geq 0 \mathbb{P}$-a.s.
- Polynomial structure: $d\left[\left\langle y, M_{t}^{x}\right\rangle_{\alpha},\left\langle y, M_{t}^{x}\right\rangle_{\alpha}\right]=\sum_{i=0}^{2}\left\langle Q_{i}(y \otimes y), \lambda^{\otimes i}\right\rangle_{\alpha} d t$

Special case: rough polynomial variance models

- Consider an $E \subset \mathbb{R}$-valued polynomial Volterra process, i.e.

$$
V_{t}=f(t)+\int_{0}^{t} K(t-s) \sqrt{C\left(V_{s}\right)} d B_{s}
$$

where f is a deterministic function, $C(v)=\Gamma v^{2}+\gamma v+c$ for constants Γ, γ, c, B a Brownian motion and K a kernel in $L_{\text {loc }}^{2}\left(\mathbb{R}_{+}, \mathbb{R}\right)$. In rough volatility models the kernel is typically fractional, i.e. $K(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}$ for $\alpha \in\left(\frac{1}{2}, 1\right)$.

- As in C. \& Teichmann '18, lift the stochastic Volterra processes to Y^{*} and consider the following SPDE

$$
d \lambda_{t}(x)=\frac{d}{d x} \lambda_{t}(x)+K(x) \sqrt{C\left(\left\langle\lambda_{t}, 1\right\rangle_{\alpha}\right)} d B_{t},
$$

- Then $M_{t}^{x}=K(x) \sqrt{C\left(\left\langle\lambda_{t}, 1\right\rangle_{\alpha}\right)} B_{t}$.
- $Q(y \otimes y ; \lambda)=\frac{1}{2}\langle y, K\rangle_{\alpha}^{2}\left(\Gamma\langle\lambda, 1\rangle_{\alpha}^{2}+\gamma\langle\lambda, 1\rangle_{\alpha}+c\right)$

Futures and options on VIX

- Define the VIX at time t via the continuous time monitoring formula

$$
V I X_{t}^{2}=\mathbb{E}\left[\left.\frac{1}{\Delta} \int_{0}^{\Delta} V_{t+x} d x \right\rvert\, \mathcal{F}_{t}\right]=\frac{1}{\Delta} \int_{0}^{\Delta} \lambda_{t}(x) d x
$$

- The risk neutral valuation formula for an option on VIX with payoff φ (for the VIX future $\varphi(x)=\sqrt{x})$ is then

$$
\mathbb{E}\left[\varphi\left(V I X_{t}^{2}\right)\right]=\mathbb{E}\left[\varphi\left(\frac{1}{\Delta} \int_{0}^{\Delta} \lambda_{t}(x) d x\right)\right]
$$

- Since $\int_{0}^{\Delta} \lambda_{t}(x) d x=\left\langle y, \lambda_{t}\right\rangle_{\alpha}$ for some y, for all polynomials φ up to degree k, this expectation can be computed by solving a $k+1$ dimensional system of PDEs. \Rightarrow Polynomial approximation for other payoffs.

Conclusion

Framework of infinite dimensional polynomial processes for

- ...(probability) measure valued processes, e.g. for stochastic portfolio theory or population genetics;
- ...function valued processes, for term structure modeling, in particular forward variance models and rough volatility;
- ... interacting particle systems.

Thank you for your attention!

Thanks Yuri, for all your inspiring ideas, in particular for bringing each year skiing and mathematics together!

Happy birthday!

