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Transaction Costs

I Classical paradigm: idealized frictionless market

I Trading on real financial markets induces costs:
I Fixed costs (access to market, broker,...)
I Proportional transaction costs (bid-ask spread, per unit fees)
I Price impacts: large trades affects price adversely

I Trade-off between
I Displacement from frictionless optimal strategy

(strategy = choice of risk/return tradeoff)
I Trading costs induced by frictions (price impacts)

−→ Solutions take different forms: impulse control, singular
control, regular control.



How to Model Price impacts ?

I Price impacts increase with size and speed of trading
I Model of Almgren [’03]: proportional to power α of trading

rate
I Buying dxt during dt increases price by

∣∣ dxt
dt

∣∣α
−→ additional cost ∝

∣∣∣∣dxtdt

∣∣∣∣α dxt
dt

dt

=⇒ Transaction costs produced by price impacts are
proportional to power α + 1 of trading rate.

I Linear price impacts: α = 1

I Practitioners: square root law (α = 1
2), Almgren et al.[’05]:

α = 0.6, Lillo et al.[’03]: α between 0.2 and 0.5

I In multidimensional markets (several assets): possibility of
cross-impacts
−→ α-homogeneous vector field



Overview of Recent Literature on Price Impact

I Optimal execution (Bertsimas & Lo[’98], Almgren & Chriss[’99,’01],

Alfonsi, Fruth & Schied [’10], Predoiu, Shaiket & Shreve[’11], Obizhaeva

& Wang [’13],...)

I Linear price impact (quadratic transaction cost)
I Portfolio choice in Black-Scholes (1 or multiple assets):

Guasoni & Weber [’15, ’16]
I Portfolio choice in a factor model: Garleanu & Pedersen [’13],

Collin-Dufresne et al.[’14]
I Option hedging in a Bachelier market: Bank, Soner &

Voss[’15], Almgren & T.M. Li [’15]
I General Markovian Itô diffusion: Moreau, Muhle-Karbe &

Soner [’14]



Overview of Recent Literature

I Nonlinear price impacts
I Black-Scholes model with price impact proportional to a power

of a volume-normalization of trading rate: Guasoni & Weber
[’15]

I Proportional and quadratic costs: Liu, Muhle-Karbe & Weber
[’14]

I Target tracking in general setting: Cai, Rosenbaum & Tankov
[’15]

I Utility Maximization for general one-dimensional Itô diffusion
prices: C., Herdegen, Muhle-Karbe [’18]



What We Do

I Nonlinear price impact in a multi-dimensional market
I Utility maximization of consumption over a finite horizon T
I Investor with constant relative risk aversion (CRRA): power

utility
I Market with

I A bank account with stochastic (local) rate
I d risky assets following Markovian Itô dynamics

I Result
I Expansion of the problem value function around the frictionless

solution
I Family of candidates for asymptotically optimal strategies
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Utility Maximization Without Frictions

I Market dynamics

dS j
t

S j
t

= µj(St)dt + σj(St) · dBt , for 1 6 j 6 d

dS0
t = S0

t r(St)dt

with µ, r , σ continuous and σσ> invertible.

I Wealth of the investor W 0 satisfies

dW 0
t =(rtW

0
t − ct)dt +

d∑
j=1

H j
tS

j
t (µj(St)− r(St))dt

+
d∑

i ,j=1

H j
tS

j
tσ

j
i (St)dB

i
t ,



Utility Maximization Without Frictions

I Investor chooses optimally c > 0 and H to maximize

E
[∫ T

0
U(ct)dt + U(cT )

∣∣∣∣W0 = w ,S0 = s

]
→ max !

under the constraint W 0 > 0,

I Utility function U(x) = x1−γ

1−γ , γ ∈ (0,∞)\{1}
I Value function (state variables are: time t, wealth w and stock price s)

V 0(t,w , s) = sup
c,H

E
[∫ T

t
U(ct)dt + U(cT )

∣∣∣∣Wt = w ,St = s

]
I Admissible strategies (c ,H) ∈ A0: W 0 > 0, c0 > 0 on [0,T ]



Utility Maximization Without Frictions

I V 0 satisfies the Hamilton-Jacobi-Bellman PDE:
V 0
t − Ũ(V 0

w )− LsV 0 − V 0
w rw

− suph

{
Q(t,w , s, h,V 0

w ,V
0
ww ,V

0
ws)
}

= 0

V 0(T ,w , s) = U(w),

I Ũ(y) = supx∈Rd{U(x)− xy} = R
1−R y

1− 1
R convex conjugate,

I Q functional quadratic in h.
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Trading With Price Impact

I The investor now faces price impact: absolutely continuous
strategy Hε

dHε
t = θεtdt

−→ Execution price: S̃ j
t = S j

t + f j(St , εθt)

I f price impact function: homogeneous of degree α in the 2nd
variable, α ∈ (0, 1)
−→ cf. Guasoni & Weber[’15], C., Herdegen, Muhle-Karbe [’18]:

S̃t = St + λΛtsgn(θt)|θt |α.

I May depend on S , and trading speed in all assets θε

I ε small parameter

I Impose that θ · f (s, εθ) > 0, for θ 6= 0: positive cost



Trading With Price Impact

I Limiting cases:
I For α→ 1 −→ Linear price impact: Guasoni & Weber[’16],

Moreau, Muhle-Karbe & Soner[’17],
I For α→ 0 −→ Proportional transaction costs: Possamai,

Soner & Touzi [’13, ’15]

I For α ∈ (0, 1), one-dimensional problem (with power utility)
solved Guasoni & Weber, (with exponential utility) and C.,
Herdegen & Muhle-Karbe[’18]

−→ Multidimensional case is new.



Trading With Price Impact

I Marked-to-market wealth W ε with dynamics

dW ε
t =(rtW

ε
t − ct)dt +

d∑
j=1

H j
tS

j
t ((µjt − rt)dt + σjtdBt)

−
d∑

j=1

θjt f
j(St , εθt)dt

I Need new state variables: vector of positions h

I Investor chooses optimally processes θ and c > 0 to maximize

E
[∫ T

0
U(ct)dt+U(cT )

∣∣∣∣W0 = w ,H0 = h, S0 = s

]
→ max!

I Constraints: W ε > 0, c > 0, and H jS j

W ε ∈ [0, 1], for all j



Value Function with Price Impact

I Value function now depends on position as well

V ε(t,w , s, h) = sup
c,θ

E

[∫ T

t

U(cs)ds+U(cT )

∣∣∣∣Wt = w ,Ht = h,St = s

]

I HJB equation much more involved: asymptotic expansion of
value function −→ ansatz for V ε

V ε(t,w , s, h) =V 0(t,w , s)− ε2m∗
u(t,w , s)

− ε4m∗
$(t,w , s, ε−m

∗
(h − h0))

(similar to Soner & Touzi[’13], and Moreau, Muhle-Karbe &
Soner[’17])
−→ identify corrector equation satisfied by u and $



Value Function With Price Impact

I Convex conjugate of the cost functional:

Φ(s, x) = sup
θ∈Rd

x · θ −
d∑

j=1

θj f
j(s, θ)


Already showed up in Guasoni & Rásonyi[’15], C., Herdegen &

Muhle-Karbe[’18]

I Appears in
I HJB equation for V ε

I The first corrector equation governing $
I The candidates for asymptotically optimal policy (Φx)

I Is homogeneous of degree m = 1 + 1
α > 2 in the second variable.



Corrector Equations

I In HJB equation for ansatz we identify two corrector
equations

I Fast variable ξ = h−h0(t,w ,s)
εm∗ : renormalized displacement,

similar as in litterature (proportional, nonlinear & quadratic
costs)

I One equation for (t,w , s, ξ) 7→ $(t,w , s, ξ)

−V 0
ww

2

∥∥∥∥∥∥
d∑

j=1

ξjsjσ
j

∥∥∥∥∥∥
2

−(V 0
w )1−mΦ (s,−$ξ)+

1

2
Tr
(
ch

0

$ξξ

)
= a

−→ Similar to stationary PDE obtained by Ichihara[’12] in the
context of ergodic control

I One for u: −E (t,w , s, u, ∂u, ∂2u) = a(t,w , s)
−→ does not depend on position h !



First Corrector Equation

−V 0
ww

2

∥∥∥∥∥∥
d∑

j=1

ξjsjσ
j

∥∥∥∥∥∥
2

− (V 0
w )1−mΦ (s,−$ξ) +

1

2
Tr
(
ch

0
$ξξ

)
= a

I Unknown: ξ 7→ $ and a, for each (t,w , s).
I Ichihara [’12]: unique solution ($, a)!
I Numerically, Cacace & Camilli [’16] provides Newton

gradient-type methods to solve for both ($, a) together.

I For fixed (t,w , s), V 0
w , V

0
ww and ch

0
are constants:

−→ shape of equation does not depend on utility function



First Corrector Equation: 1-Dimensional Case

−V 0
ww

2

∥∥∥∥∥∥
d∑

j=1

ξjsjσ
j

∥∥∥∥∥∥
2

− (V 0
w )1−mΦ (s,−$ξ) +

1

2
Tr
(
ch

0
$ξξ

)
= a

I One dimensional ODE of Guasoni & Weber [’15], and C.,
Herdegen & Muhle-Karbe is a particular case:

s ′α(z) =
α

(α + 1)1+
1
α

|sα(z)|1+
1
α − z2 + cα

I Unknown: sα and cα, unique given growth conditions

I Sign of sα is the sign of z : rescaled displacement from
frictionless optimizer
−→ Command the mean-reverting speed in function of the
displacement.

I $ commands speed and direction (with Φx)
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Value Function Expansion

Theorem (Bayraktar, C., Ekren (2018))

Under some technical assumptions (frictionless problem, solutions
to the various PDEs, growth conditions and limits) the value
function V ε satisfies

V ε
(
t,w , s, h0(t,w , s)

)
= V 0(t,w , s)− ε2m∗

u(t,w , s) + o(ε2m
∗
)

where m∗ = 1
3m−2 and u is a viscosity solution of{

−E (t,w , s, ∂u, ∂2u) = a(t,w , s) on [0,T )×
(
R∗+
)d+1

u(T ,w , s) = 0 on R∗+ ×
(
R∗+
)d



Asymptotically Optimal Strategy

Theorem (Bayraktar, C., Ekren (2018), continued)

A family of asymptotically optimal strategies is given by

θεt :=

(
V 0
w (t,W ε

t , St)
)1−m

εm∗ Φx

(
St ,−$ξ

(
t,W ε

t , St ,
Hε
t − h0t
εm∗

))
.

where $ is the unique solution to the first corrector equation.



Discussion

I Leading order coincides with litterature: εα = λ of Guasoni &
Weber and C., Herdegen & Muhle-Karbe

ε2m
∗

= λ
2
α+3 .

I Candidate strategies: driven by $ξ, multi-dimensional version
of equation found in the one-dimensional models

I Form of first corrector equation does not depend on utility of
investor
−→ universal to nonlinear price impact problems



Discussion

I The functions Φx and $ξ give the direction of trading
−→ frictionless strategy tracked according to Φx(S ,−$ξ(·))
I In one dimension: trade towards frictionless optimizer
−→ mean-reversion of displacement

I In d-dimensional market, it is not true coordinate-wise unless

Φx

(
s,−$ξ

((
σσ>

)− 1
2 ·
))

can be separated.

−→ cf. Garleanu & Pedersen [’16], Guasoni & Weber [’16]
(principal portfolios)

I In d-dimensional market:
−→ $(t,W ε,S , H

ε−H0

εm∗ ) is tracking 0: not same speed in
every direction

I Counter-intuitive situation: investor might trade in the
“wrong” direction for a given asset !



Discussion

I Static properties of u with respect to t, w and s difficult to
assess
−→ Toolbox of invariant distributions for 1-dim diffusions
can’t be used !

I Feynman-Kac representation

u(t,w , s) = E
[∫ T

t
a(s,W ε

s ,St)ds | W 0
t = w , St = s

]
−→ Need to know a: simple model or numerical analysis.
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Assumptions

I Frictionless problem has a solution: V 0, h0 and ch
0

are regular
enough functions.

I V 0, V ε are viscosity solutions of their respective HJB equations

I First corrector equation has classical C2 solution ($, a) (regular in
(t,w , s) as well !)

I Second corrector equation admits a viscosity solution, and satisfies
comparison for a class of functions (cf. Moreau, Muhle-Karbe &
Soner)

I Rescaled deviation of value function locally uniformly bounded: for
all (t0,w0, s0) ∈ Domain

0 6
V 0(t,w , s)− V ε(t,w , s, h)

ε2m∗ 6 C

for 0 < ε < ε0, and (t,w , s, h) ∈ Br0(t0,w0, s0, h0(t0,w0, s0))

I Integrability conditions (asymptotic optimality of candidate)



The end

Thank you for your attention.

Questions ?
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