Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	

Pricing without martingale measure

Innovative Research in Mathematical Finance, September 3-7 2018

Laurence Carassus, Léonard de Vinci Research Center and URCA, Joint work with Julien Baptiste and Emmanuel Lépinette.

Workshop Reduced Model and Magic Points

8-9 october 2018, Compiègne

- Bring together young and experienced researchers from the scientific communities of deterministic modeling (scientific computing) and random modeling around this theme.
- Program : Yvon Maday (Sorbonne University), Olga Mula (Dauphine University, PSL) and Kathrin Glau (Queen Mary University of London)
 - Reduction of model for PDE's (ROM), Empirical Interpolation Model (EIM), Magic points, Generalized Empirical Interpolation Model (GEIM), Data assimilation
 - Applications in Finance : option pricing with Fourier transform, magic points for pricing in one and two dimension
 - State of art, perspective
- Free registraton is required.
- www.utc.fr/workshop-reduction-de-modele-et-magic-points.html
- The organnizing comitte : L. Carassus, F. De Vuyst, V. Hédou, G. Gayraud, O. Goubet and S. Salmon

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
0						
Aim of the paper						
Aim of	the paper					

• Investors trading in a multi-period and discrete-time financial market.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
••						
Aim of the paper						
Aim of the paper						

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
0						
Aim of the paper						
Aim of the namer						

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
0						
Aim of the paper						
Aim of the paper						

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.
- Study the link between Absence of Immediate Profit (AIP), (NA) and the absence of weak immediate profit (AWIP) conditions.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
0						
Aim of the paper						
Aim of the paper						

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.
- Study the link between Absence of Immediate Profit (AIP), (NA) and the absence of weak immediate profit (AWIP) conditions.
- Give some numerical illustrations : calibrate historical data of the french index CAC 40 to our model and implement the super-hedging strategy for a call option.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00				
Aim of the	paper			
Fram	ework and notations	5		

• For any σ -algebra \mathcal{H} and any $k \geq 1$, we denote by $L^0(\mathbb{R}^k, \mathcal{H})$ the set of \mathcal{H} -measurable and \mathbb{R}^k -valued random variables.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
Fra mework	and notations			
Fram	ework and notations			

• Consider two complete sub- σ -algebras of $\mathcal{F}_T : \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^0(\mathbb{R}, \mathcal{H})$ and $Y \in L^0(\mathbb{R}, \mathcal{F})$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
Framewor	k and notations			
Fram	nework and notations			

- Consider two complete sub- σ -algebras of $\mathcal{F}_T : \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^0(\mathbb{R}, \mathcal{H})$ and $Y \in L^0(\mathbb{R}, \mathcal{F})$.
- Let $g: \Omega \times \mathbb{R} \to \mathbb{R}$. The set $\mathcal{P}(g)$ of super-hedging prices of the contingent claim g(Y) consists in the initial values of super-hedging strategies θ :

$$\mathcal{P}(g) = \{ x \in L^0(\mathbb{R}, \mathcal{H}), \exists \theta \in L^0(\mathbb{R}, \mathcal{H}), \ x + \theta(Y - y) \ge g(Y) \text{ a.s.} \}.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion				
	00000							
Frameworl	Framework and notations							
Fram	ework and notations							

- Consider two complete sub- σ -algebras of $\mathcal{F}_T : \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^0(\mathbb{R}, \mathcal{H})$ and $Y \in L^0(\mathbb{R}, \mathcal{F})$.
- Let g: Ω× ℝ → ℝ. The set P(g) of super-hedging prices of the contingent claim g(Y) consists in the initial values of super-hedging strategies θ:

$$\mathcal{P}(g) = \{ x \in L^0(\mathbb{R}, \mathcal{H}), \exists \theta \in L^0(\mathbb{R}, \mathcal{H}), \ x + \theta(Y - y) \ge g(Y) \text{ a.s.} \}.$$

• Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion				
	00000							
Frameworl	Framework and notations							
Fram	ework and notations							

- Consider two complete sub- σ -algebras of $\mathcal{F}_T : \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^0(\mathbb{R}, \mathcal{H})$ and $Y \in L^0(\mathbb{R}, \mathcal{F})$.
- Let g: Ω× ℝ → ℝ. The set P(g) of super-hedging prices of the contingent claim g(Y) consists in the initial values of super-hedging strategies θ:

$$\mathcal{P}(g) = \{ x \in L^0(\mathbb{R}, \mathcal{H}), \exists \theta \in L^0(\mathbb{R}, \mathcal{H}), \ x + \theta(Y - y) \ge g(Y) \text{ a.s.} \}.$$

- Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).
- The infimum super-hedging cost of g(Y) is defined as

 $p(g) := \operatorname{ess\,inf}_{\mathcal{H}} \mathcal{P}(g).$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
Framework	and notations			
Fram	ework and notations			

- Consider two complete sub- σ -algebras of $\mathcal{F}_T : \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^0(\mathbb{R}, \mathcal{H})$ and $Y \in L^0(\mathbb{R}, \mathcal{F})$.
- Let g : Ω × ℝ → ℝ. The set P(g) of super-hedging prices of the contingent claim g(Y) consists in the initial values of super-hedging strategies θ :

$$\mathcal{P}(g) = \{ x \in L^0(\mathbb{R}, \mathcal{H}), \exists \theta \in L^0(\mathbb{R}, \mathcal{H}), \ x + \theta(Y - y) \ge g(Y) \text{ a.s.} \}.$$

- Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).
- The infimum super-hedging cost of g(Y) is defined as

 $p(g) := \operatorname{ess\,inf}_{\mathcal{H}} \mathcal{P}(g).$

• An infimum super-hedging cost is not necessarly a price !

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	0000			
Conditionnal supp	ort and conditionnal essential supremum			
Conditio	nnal essential supre	emum		

1 For every $i \in I$, $\gamma_{\mathcal{H}} \geq \gamma_i$ a.s.

1 For every
$$i \in I$$
, $\gamma_{\mathcal{H}} \ge \gamma_i$ a.s.

$${f @}$$
 If $\zeta\in L^0({\Bbb R}\cup\{\infty\},{\cal H})$ satisfies $\zeta\geq\gamma_i$ a.s. $orall i\in I$, then $\zeta\geq\gamma_{\cal H}$ a.s.

- Let $\Gamma = (\gamma_i)_{i \in I}$ be a family of real-valued \mathcal{F} -measurable random variables. There exists a unique \mathcal{H} -measurable random variable $\gamma_{\mathcal{H}} \in L^0(\mathbb{R} \cup \{\infty\}, \mathcal{H})$ denoted $\operatorname{ess\,sup}_{\mathcal{H}}\Gamma$ which satisfies the following properties :
 - **1** For every $i \in I$, $\gamma_{\mathcal{H}} \geq \gamma_i$ a.s.
- Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Lépinette E. and I. Molchanov (2017).

1 For every
$$i \in I$$
, $\gamma_{\mathcal{H}} \geq \gamma_i$ a.s.

3 If $\zeta \in L^0(\mathbb{R} \cup \{\infty\}, \mathcal{H})$ satisfies $\zeta \geq \gamma_i$ a.s. $\forall i \in I$, then $\zeta \geq \gamma_{\mathcal{H}}$ a.s.

- Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Lépinette E. and I. Molchanov (2017).
- $x \in \mathcal{P}(g) \iff \exists \theta \in L^0(\mathbb{R}, \mathcal{H}) \text{ s.t. } x \theta y \ge g(Y) \theta Y \text{ a.s.}$

$$\mathcal{P}(g) = \left\{ \operatorname{ess\,sup}_{\mathcal{H}} \left(g(Y) - \theta Y \right) + \theta y, \ \theta \in L^{0}(\mathbb{R}, \mathcal{H}) \right\} + L^{0}(\mathbb{R}_{+}, \mathcal{H}).$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
Conditionnal support and conditionnal essential supremum				
Conditio	onnal support			

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
Conditionnal support and conditionnal essential supremum				
Conditic	onnal support			

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

• $\operatorname{supp}_{\mathcal{H}} X$ is

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion	
	00000				
Conditionnal support and conditionnal essential supremum					
Conditio	nnal support				

 $\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$

• $\operatorname{supp}_{\mathcal{H}} X$ is • non-empty, closed-valued,

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion	
	00000				
Conditionnal support and conditionnal essential supremum					
Condit	cionnal support				

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
 - non-empty, closed-valued,
 - $\textbf{2} \ \mathcal{H}\text{-measurable}: \{\omega \in \Omega, \ O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset\} \in \mathcal{H}, \ \forall O \text{ open set},$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion	
	00000				
Conditionnal support and conditionnal essential supremum					
Conditio	nnal support				

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
 - non-empty, closed-valued,
 - **2** \mathcal{H} -measurable : { $\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset$ } $\in \mathcal{H}, \forall O$ open set,
 - **3** graph-measurable random set : $Graph(\operatorname{supp}_{\mathcal{H}} X) \in \mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion		
	00000					
Conditionnal	Conditionnal support and conditionnal essential supremum					
Condi	tionnal support					

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
 - non-empty, closed-valued,
 - 2 \mathcal{H} -measurable : { $\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset$ } $\in \mathcal{H}, \forall O$ open set,
 - 3 graph-measurable random set : $Graph(\operatorname{supp}_{\mathcal{H}} X) \in \mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)$.
- Assume that dom $\operatorname{supp}_{\mathcal{H}} X = \Omega$ and let $h : \Omega \times \mathbb{R}^d \to \mathbb{R}$ be a $\mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)$ -measurable function which is lower semi-continuous (l.s.c.) in x. Then,

ess
$$\sup_{\mathcal{H}} h(X) = \sup_{x \in \operatorname{supp}_{\mathcal{H}} X} h(x)$$
 a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion	
	00000				
Conditionnal support and conditionnal essential supremum					
Conditi	onnal support				

$$\operatorname{supp}_{\mathcal{H}} X(\omega) := \bigcap \left\{ A \subset \mathbb{R}^d, \text{ closed}, \ P(X \in A | \mathcal{H})(\omega) = 1 \right\}.$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
 - non-empty, closed-valued,
 - 2 \mathcal{H} -measurable : { $\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset$ } $\in \mathcal{H}, \forall O$ open set,
 - 3 graph-measurable random set : $Graph(\operatorname{supp}_{\mathcal{H}} X) \in \mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)$.
- Assume that dom $\operatorname{supp}_{\mathcal{H}} X = \Omega$ and let $h : \Omega \times \mathbb{R}^d \to \mathbb{R}$ be a $\mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)$ -measurable function which is lower semi-continuous (l.s.c.) in x. Then,

ess
$$\sup_{\mathcal{H}} h(X) = \sup_{x \in \operatorname{supp}_{\mathcal{H}} X} h(x)$$
 a.s.

 Recall that if h is H-normal integrand then h is H⊗B(ℝ^d)-measurable and is l.s.c. in x. The converse holds true if H is complete for some measure.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
First results				
First res	ults I.			

• Suppose that g is a \mathcal{H} -normal integrand. Then

$$\operatorname{ess\,sup}_{\mathcal{H}}(g(Y) - \theta Y) = \sup_{z \in \operatorname{supp}_{\mathcal{H}} Y} (g(z) - \theta z) = f^*(-\theta) \quad \text{a.s.}$$

where f^* is the Fenchel-Legendre conjugate of f i.e.

$$f^*(\omega, x) = \sup_{z \in \mathbb{R}} (xz - f(\omega, z))$$

$$f(\omega, z) = -g(\omega, z) + \delta_{\operatorname{supp}_{\mathcal{H}} Y}(\omega, z),$$

where $\delta_C(\omega, z) = 0$ if $z \in C(\omega)$ and $+\infty$ else. $f^*(\omega, \cdot)$ is proper, convex and f^* is a \mathcal{H} -normal integrand. Moreover, we have that

$$p(g) = \operatorname{ess\,inf}_{\mathcal{H}} \left\{ \operatorname{ess\,sup}_{\mathcal{H}} (g(Y) - \theta Y) + \theta y, \ \theta \in L^{0}(\mathbb{R}, \mathcal{H}) \right\}$$
$$= -\operatorname{ess\,sup}_{\mathcal{H}} \left\{ \theta y - f^{*}(\theta), \ \theta \in L^{0}(\mathbb{R}, \mathcal{H}) \right\} =$$
$$= -\sup_{z \in \mathbb{R}} \left\{ zy - f^{*}(z) \right\} = -f^{**}(y) \quad \text{a.s.}$$

where f^{**} is the Fenchel-Legendre biconjugate of f i.e.

$$f^{**}(\omega, x) = \sup_{z \in \mathbb{R}} \left(xz - f^*(\omega, z) \right).$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	0000			
First results				
First res	ults II.			

• The classical biduality result states that if the concave envelop $\operatorname{conv} f$ is proper, then f^{**} is also proper, convex and l.s.c. and

 $f^{**} = \underline{\operatorname{conv} f}$

 $\operatorname{conv} h(x) = \sup\{u(x), \ u \text{ convex and } u \leq h\} \ \underline{h}(x) = \liminf_{y \to x} h(y).$

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
	0000			
First results				
First res	ults II.			

• The classical biduality result states that if the concave envelop $\operatorname{conv} f$ is proper, then f^{**} is also proper, convex and l.s.c. and

 $f^{**} = \underline{\operatorname{conv} f}$

conv $h(x) = \sup\{u(x), u \text{ convex and } u \leq h\}$ $\underline{h}(x) = \liminf_{y \to x} h(y).$ • Pennanen T. and Perkkio A-P (2017)

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	00000			
First results				
First res	ults II.			

• The classical biduality result states that if the concave envelop $\operatorname{conv} f$ is proper, then f^{**} is also proper, convex and l.s.c. and

 $f^{**} = \operatorname{conv} f$

 $\operatorname{conv} h(x) = \sup\{u(x), \ u \text{ convex and } u \leq h\} \ \underline{h}(x) = \liminf_{y \to x} h(y).$

- Pennanen T. and Perkkio A-P (2017)
- Suppose that g is a \mathcal{H} -normal integrand and that there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$p(g) = -\underline{\mathrm{conv}} f(y) = \overline{\mathrm{conc}}(g, \mathrm{supp}_{\mathcal{H}} Y)(y) - \delta_{\mathrm{convsupp}_{\mathcal{H}} Y}(y) \quad \mathrm{a.s.}$$

where $\operatorname{convsupp}_{\mathcal{H}} Y$ is the smallest convex set that $\operatorname{contains} \operatorname{supp}_{\mathcal{H}} Y$ and the relative concave envelop is

 $\operatorname{conc}(g, \operatorname{supp}_{\mathcal{H}} Y)(x) = \inf\{v(x), v \text{ is concave and } v(z) \ge g(z), \forall z \in \operatorname{supp}_{\mathcal{H}} Y\}.$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Definition				
(AIP)				

• There is an immediate profit (IP) if $p(0) \le 0$ with P(p(0) < 0) > 0. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if p(0) = 0 a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Definition				
(AIP)				

- There is an immediate profit (IP) if $p(0) \le 0$ with P(p(0) < 0) > 0. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if p(0) = 0 a.s.
- As $p(0) = -\delta_{\operatorname{convsupp}_{\mathcal{H}}Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsupp}_{\mathcal{H}}Y = [\operatorname{ess\,inf}_{\mathcal{H}}Y, \operatorname{ess\,sup}_{\mathcal{H}}Y] \cap \mathbb{R}$ a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Definition				
(AIP)				

- There is an immediate profit (IP) if $p(0) \le 0$ with P(p(0) < 0) > 0. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if p(0) = 0 a.s.
- As $p(0) = -\delta_{\operatorname{convsupp}_{\mathcal{H}}Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsupp}_{\mathcal{H}}Y = [\operatorname{ess\,inf}_{\mathcal{H}}Y, \operatorname{ess\,sup}_{\mathcal{H}}Y] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Definition				
(AIP)				

- There is an immediate profit (IP) if $p(0) \le 0$ with P(p(0) < 0) > 0. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if p(0) = 0 a.s.
- As $p(0) = -\delta_{\operatorname{convsupp}_{\mathcal{H}}Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsupp}_{\mathcal{H}}Y = [\operatorname{ess\,inf}_{\mathcal{H}}Y, \operatorname{ess\,sup}_{\mathcal{H}}Y] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.
- (AIP) holds true if and only $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{H}) = \{0\}.$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Definition				
(AIP)				

- There is an immediate profit (IP) if $p(0) \le 0$ with P(p(0) < 0) > 0. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if p(0) = 0 a.s.
- As $p(0) = -\delta_{\operatorname{convsupp}_{\mathcal{H}}Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsupp}_{\mathcal{H}}Y = [\operatorname{ess\,inf}_{\mathcal{H}}Y, \operatorname{ess\,sup}_{\mathcal{H}}Y] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.
- (AIP) holds true if and only $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{H}) = \{0\}.$
- If there is an IP $x \in \mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{H})$, with P(x < 0) > 0. Write 0 = -x + x and make the immediate profit -x while you get 0 at time 1 from $x \in \mathcal{P}(0)$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
(NA) a	and (AIP)			

(NA) and (AIP)

• The No Arbitrage (NA) condition holds true if for $\theta \in L^0(\mathbb{R}, \mathcal{H})$, $\theta(Y - y) \ge 0$ a.s. implies that $\theta(Y - y) = 0$ a.s. or equivalently $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}) = \{0\}$ since

$$\mathcal{P}(0) = \left\{ -\theta(Y - y) + \epsilon^+, \ \theta \in L^0(\mathbb{R}, \mathcal{H}), \ \epsilon^+ \in L^0(\mathbb{R}_+, \mathcal{F}) \right\}.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
(NA) a	nd (AIP)			

(NA) and (AIP)

• The No Arbitrage (NA) condition holds true if for $\theta \in L^0(\mathbb{R}, \mathcal{H})$, $\theta(Y - y) \ge 0$ a.s. implies that $\theta(Y - y) = 0$ a.s. or equivalently $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}) = \{0\}$ since

$$\mathcal{P}(0) = \left\{ -\theta(Y - y) + \epsilon^+, \ \theta \in L^0(\mathbb{R}, \mathcal{H}), \ \epsilon^+ \in L^0(\mathbb{R}_+, \mathcal{F}) \right\}.$$

• The (AIP) condition is strictly weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).
Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
(NA) a	ind (AIP)			

(NA) and (AIP)

• The No Arbitrage (NA) condition holds true if for $\theta \in L^0(\mathbb{R}, \mathcal{H})$, $\theta(Y - y) \ge 0$ a.s. implies that $\theta(Y - y) = 0$ a.s. or equivalently $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}) = \{0\}$ since

$$\mathcal{P}(0) = \left\{ -\theta(Y - y) + \epsilon^+, \ \theta \in L^0(\mathbb{R}, \mathcal{H}), \ \epsilon^+ \in L^0(\mathbb{R}_+, \mathcal{F}) \right\}.$$

• The (AIP) condition is strictly weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).

If $\operatorname{ess\,inf}_{\mathcal{H}} Y = 0$ and $\operatorname{ess\,sup}_{\mathcal{H}} Y = \infty$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
(NA) a	ind (AIP)			

(NA) and (AIP)

• The No Arbitrage (NA) condition holds true if for $\theta \in L^0(\mathbb{R}, \mathcal{H})$, $\theta(Y - y) \ge 0$ a.s. implies that $\theta(Y - y) = 0$ a.s. or equivalently $\mathcal{P}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}) = \{0\}$ since

$$\mathcal{P}(0) = \left\{-\theta(Y-y) + \epsilon^+, \ \theta \in L^0(\mathbb{R}, \mathcal{H}), \ \epsilon^+ \in L^0(\mathbb{R}_+, \mathcal{F})\right\}.$$

• The (AIP) condition is striclty weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).

If
$$\operatorname{ess\,inf}_{\mathcal{H}} Y = 0$$
 and $\operatorname{ess\,sup}_{\mathcal{H}} Y = \infty$.

2 If there exists $Q_1, Q_2 << P$ such that Y is a Q_2 -super martingale and a Q_1 -sub martingale but that there is no equivalent martingale measure. Using the FTAP, (NA) does not hold true but (AIP) holds true. Indeed let $Z_1 = dQ_1/dP$. As $\operatorname{ess\,sup}_{\mathcal{H}} Y \ge Y$ a.s. and $\operatorname{ess\,sup}_{\mathcal{H}} Y$ is \mathcal{H} -measurable,

$$\operatorname{ess\,sup}_{\mathcal{H}} Y \ge \frac{E(Z_1 Y | \mathcal{H})}{E(Z_1 | \mathcal{H})} = E_{Q_1}(Y | \mathcal{H}) \ge y.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
(NA) ar	nd (AIP)			

• Last example. Assume that Y = yZ where Z > 0 is such that $\operatorname{supp}_{\mathcal{H}} Z = [0, 1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z = [1, \infty)$ a.s.) and y > 0.

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
		0000		
Comparison				
(NA) ar	nd (AIP)			

- Last example. Assume that Y = yZ where Z > 0 is such that $\operatorname{supp}_{\mathcal{H}} Z = [0, 1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z = [1, \infty)$ a.s.) and y > 0.
- Then (AIP) holds true :

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
		0000		
Comparison				
(NA) ar	nd (AIP)			

- Last example. Assume that Y = yZ where Z > 0 is such that $\operatorname{supp}_{\mathcal{H}} Z = [0, 1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z = [1, \infty)$ a.s.) and y > 0.
- Then (AIP) holds true :

 Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
		0000		
Comparison				
(NA) ar	nd (AIP)			

- Last example. Assume that Y = yZ where Z > 0 is such that $\operatorname{supp}_{\mathcal{H}} Z = [0,1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z = [1,\infty)$ a.s.) and y > 0.
- Then (AIP) holds true :

- Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.
- Indeed, in the contrary case, there exists a $\rho_1 > 0$ with $1 = E_P(\rho_1 | \mathcal{H})$ such that $E_P(\rho_1 Y | \mathcal{H}) = y$ or equivalently $E_P(\rho_1 Z | \mathcal{H}) = 1$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
		0000		
Comparison				
(NA) ar	nd (AIP)			

- Last example. Assume that Y = yZ where Z > 0 is such that $\operatorname{supp}_{\mathcal{H}} Z = [0,1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z = [1,\infty)$ a.s.) and y > 0.
- Then (AIP) holds true :

- Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.
- Indeed, in the contrary case, there exists a $\rho_1 > 0$ with $1 = E_P(\rho_1 | \mathcal{H})$ such that $E_P(\rho_1 Y | \mathcal{H}) = y$ or equivalently $E_P(\rho_1 Z | \mathcal{H}) = 1$.
- We deduce that $E_P(\rho_1(1-Z)|\mathcal{H}) = 0$. Since $Z \le 1$ a.s. $\rho_1(1-Z) = 0$ a.s. hence Z = 1 which yields a contradiction.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
Last re	esults			

• Suppose that (AIP) holds true, g is a \mathcal{H} -normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

 $p(g) = \overline{\operatorname{conc}}(g, \operatorname{supp}_{\mathcal{H}} Y)(y)$ = $\inf \{ \alpha y + \beta, \alpha, \beta \in \mathbb{R}, \alpha x + \beta \ge g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y \}.$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
Last re	sults			

• Suppose that (AIP) holds true, g is a \mathcal{H} -normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$\begin{split} p(g) &= \ \overline{\operatorname{conc}}(g, \operatorname{supp}_{\mathcal{H}} Y)(y) \\ &= \ \inf \left\{ \alpha y + \beta, \ \alpha, \ \beta \in \mathbb{R}, \ \alpha x + \beta \geq g(x), \ \forall x \in \operatorname{supp}_{\mathcal{H}} Y \right\}. \end{split}$$

• Beiglböck, M. and M. Nutz (2014)

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
Last res	sults			

• Suppose that (AIP) holds true, g is a \mathcal{H} -normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

 $p(g) = \overline{\operatorname{conc}}(g, \operatorname{supp}_{\mathcal{H}} Y)(y)$ = $\inf \{ \alpha y + \beta, \, \alpha, \, \beta \in \mathbb{R}, \, \alpha x + \beta \ge g(x), \, \forall x \in \operatorname{supp}_{\mathcal{H}} Y \}.$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that p(g) = g(y) a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
Last re	esults			

• Suppose that (AIP) holds true, g is a \mathcal{H} -normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\mathrm{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\mathrm{convsupp}_{\mathcal{H}} Y$. Then,

 $p(g) = \overline{\operatorname{conc}}(g, \operatorname{supp}_{\mathcal{H}} Y)(y)$ = $\inf \{ \alpha y + \beta, \, \alpha, \, \beta \in \mathbb{R}, \, \alpha x + \beta \ge g(x), \, \forall x \in \operatorname{supp}_{\mathcal{H}} Y \}.$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that p(g) = g(y) a.s.
- If g is convex and $\lim_{x\to\infty} x^{-1}g(x) = M \in \mathbb{R}$, the relative concave envelop of g is the affine function that coincides with g on the extreme points of the interval convsupp_HY i.e. a.s.

$$p(g) = \theta^* y + \beta^* = g(\operatorname{ess\,inf}_{\mathcal{H}} Y) + \theta^* (y - \operatorname{ess\,inf}_{\mathcal{H}} Y),$$

$$\theta^* = \frac{g(\operatorname{ess\,sup}_{\mathcal{H}} Y) - g(\operatorname{ess\,inf}_{\mathcal{H}} Y)}{\operatorname{ess\,sup}_{\mathcal{H}} Y - \operatorname{ess\,inf}_{\mathcal{H}} Y},$$

with the conventions $\theta^* = \frac{0}{0} = 0$ if $\operatorname{ess\,sup}_{\mathcal{H}} Y = \operatorname{ess\,inf}_{\mathcal{H}} Y$ a.s. and $\theta^* = \frac{g(\infty)}{\infty} = M$ if $\operatorname{ess\,sup}_{\mathcal{H}} Y < \operatorname{ess\,sup}_{\mathcal{H}} Y = +\infty$ a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
		0000		
Comparison				
Last re	esults			

• Suppose that (AIP) holds true, g is a \mathcal{H} -normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\mathrm{supp}_{\mathcal{H}} Y$ and $\varphi < \infty$ on $\mathrm{convsupp}_{\mathcal{H}} Y$. Then,

 $p(g) = \overline{\operatorname{conc}}(g, \operatorname{supp}_{\mathcal{H}} Y)(y)$ = $\inf \{ \alpha y + \beta, \, \alpha, \, \beta \in \mathbb{R}, \, \alpha x + \beta \ge g(x), \, \forall x \in \operatorname{supp}_{\mathcal{H}} Y \}.$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that p(g) = g(y) a.s.
- If g is convex and $\lim_{x\to\infty} x^{-1}g(x) = M \in \mathbb{R}$, the relative concave envelop of g is the affine function that coincides with g on the extreme points of the interval $\operatorname{convsupp}_{\mathcal{H}} Y$ i.e. a.s.

$$p(g) = \theta^* y + \beta^* = g(\operatorname{ess\,inf}_{\mathcal{H}} Y) + \theta^* (y - \operatorname{ess\,inf}_{\mathcal{H}} Y),$$

$$\theta^* = \frac{g(\operatorname{ess\,sup}_{\mathcal{H}} Y) - g(\operatorname{ess\,inf}_{\mathcal{H}} Y)}{\operatorname{ess\,sup}_{\mathcal{H}} Y - \operatorname{ess\,inf}_{\mathcal{H}} Y},$$

with the conventions $\theta^* = \frac{0}{0} = 0$ if $\operatorname{ess\,sup}_{\mathcal{H}} Y = \operatorname{ess\,inf}_{\mathcal{H}} Y$ a.s. and $\theta^* = \frac{g(\infty)}{\infty} = M$ if $\operatorname{ess\,inf}_{\mathcal{H}} Y < \operatorname{ess\,sup}_{\mathcal{H}} Y = +\infty$ a.s. • Here $p(g) + \theta^*(Y - y) \ge g$ a.s. and $p(g) \in \mathcal{P}(g)$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Explicit Dynami	c programming			

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by $\operatorname{ess\,inf}_{\mathcal{F}_{t-1}}S_t = k_{t-1}^dS_{t-1}$ and $\operatorname{ess\,sup}_{\mathcal{F}_{t-1}}S_t = k_{t-1}^uS_{t-1}$ where k_0^d, \cdots, k_{T-1}^d and k_0^u, \cdots, k_{T-1}^u are deterministic non negative numbers. Then :

• The (AIP) condition holds true if and only if $k_t^d \in [0, 1]$ and $k_t^u \in [1, +\infty]$ for all $0 \le t \le T - 1$.

Aim The one-period framework (AIP) DPP, numerical results Conclusion 00 00000 00000 €0000000 Explicit Dynamic programming

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by $\mathrm{ess}\inf_{\mathcal{F}_{t-1}}S_t=k_{t-1}^dS_{t-1}$ and $\mathrm{ess}\sup_{\mathcal{F}_{t-1}}S_t=k_{t-1}^uS_{t-1}$ where k_0^d,\cdots,k_{T-1}^d and k_0^u,\cdots,k_{T-1}^u are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_t^d \in [0, 1]$ and $k_t^u \in [1, +\infty]$ for all $0 \le t \le T 1$.
- Suppose (AIP). If $h : \mathbb{R} \to \mathbb{R}$ is a non-negative convex function with $\operatorname{Dom} h = \mathbb{R}$ such that $\lim_{z \to +\infty} \frac{h(z)}{z} \in [0,\infty)$, then $\pi_{t,T}(h) = h(t,S_t) \in \mathcal{P}_{t,T}(h(S_T))$ a.s. where

$$h(T, x) = h(x) h(t-1, x) = \lambda_{t-1}h(t, k_{t-1}^d x) + (1 - \lambda_{t-1})h(t, k_{t-1}^u x),$$

where $\lambda_{t-1} = \frac{k_{t-1}^u - 1}{k_{t-1}^u - k_{t-1}^d} \in [0, 1].$

Aim The one-period framework (AIP) DPP, numerical results Conclusion 00 00000 00000 €0000000 Explicit Dynamic programming

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by $\mathrm{ess}\inf_{\mathcal{F}_{t-1}}S_t=k_{t-1}^dS_{t-1}$ and $\mathrm{ess}\sup_{\mathcal{F}_{t-1}}S_t=k_{t-1}^uS_{t-1}$ where k_0^d,\cdots,k_{T-1}^d and k_0^u,\cdots,k_{T-1}^u are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_t^d \in [0, 1]$ and $k_t^u \in [1, +\infty]$ for all $0 \le t \le T 1$.
- Suppose (AIP). If $h : \mathbb{R} \to \mathbb{R}$ is a non-negative convex function with $\operatorname{Dom} h = \mathbb{R}$ such that $\lim_{z \to +\infty} \frac{h(z)}{z} \in [0,\infty)$, then $\pi_{t,T}(h) = h(t,S_t) \in \mathcal{P}_{t,T}(h(S_T))$ a.s. where

$$h(T, x) = h(x) h(t-1, x) = \lambda_{t-1} h(t, k_{t-1}^d x) + (1 - \lambda_{t-1}) h(t, k_{t-1}^u x),$$

where $\lambda_{t-1} = \frac{k_{t-1}^u - 1}{k_{t-1}^u - k_{t-1}^d} \in [0, 1].$

• The infimum super-hedging cost of $h(S_T)$ is the binomial price when $S_t \in \{k_{t-1,t}^d S_{t-1}, k_{t-1,t}^u S_{t-1}\}$ a.s., $t = 1, \cdots, T$.

Aim The one-period framework (AIP) DPP, numerical results Conclusion 00 00000 00000 €0000000 Explicit Dynamic programming

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by $\mathrm{ess}\inf_{\mathcal{F}_{t-1}}S_t=k_{t-1}^dS_{t-1}$ and $\mathrm{ess}\sup_{\mathcal{F}_{t-1}}S_t=k_{t-1}^uS_{t-1}$ where k_0^d,\cdots,k_{T-1}^d and k_0^u,\cdots,k_{T-1}^u are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_t^d \in [0, 1]$ and $k_t^u \in [1, +\infty]$ for all $0 \le t \le T 1$.
- Suppose (AIP). If $h : \mathbb{R} \to \mathbb{R}$ is a non-negative convex function with $\operatorname{Dom} h = \mathbb{R}$ such that $\lim_{z \to +\infty} \frac{h(z)}{z} \in [0,\infty)$, then $\pi_{t,T}(h) = h(t,S_t) \in \mathcal{P}_{t,T}(h(S_T))$ a.s. where

$$h(T, x) = h(x) h(t-1, x) = \lambda_{t-1} h(t, k_{t-1}^d x) + (1 - \lambda_{t-1}) h(t, k_{t-1}^u x),$$

where $\lambda_{t-1} = \frac{k_{t-1}^u - 1}{k_{t-1}^u - k_{t-1}^d} \in [0, 1].$

- The infimum super-hedging cost of $h(S_T)$ is the binomial price when $S_t \in \{k_{t-1,t}^d S_{t-1}, k_{t-1,t}^u S_{t-1}\}$ a.s., $t = 1, \cdots, T$.
- Carassus, L., Gobet, E. and E. Temam (06) and Carassus L. and T. Vargiolu.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Asymptotic	behaviour			
Asym	ptotic behaviour l			

• Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞ .

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
			0000000	
Asymptotic	behaviour			
Asym	ptotic behaviour l			

- Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞ .
- Use the discretization $t_i^n = (T/n)i$, $i \in \{0, 1, \dots, n\}$ and assume that $k_{t_{i-1}^n}^u = 1 + \sigma_{t_{i-1}^n} \sqrt{\Delta t_i^n}$ and $k_{t_{i-1}^n}^d = 1 \sigma_{t_{i-1}^n} \sqrt{\Delta t_i^n} \ge 0$ where $t \mapsto \sigma_t$ is a positive Lipschitz-continuous function on [0, T].

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
			0000000	
Asymptotic b	ehaviour			
Asymp	ototic behaviour I			

- Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞ .
- Use the discretization $t_i^n = (T/n)i$, $i \in \{0, 1, \dots, n\}$ and assume that $k_{t_{i-1}^n}^u = 1 + \sigma_{t_{i-1}^n} \sqrt{\Delta t_i^n}$ and $k_{t_{i-1}^n}^d = 1 \sigma_{t_{i-1}^n} \sqrt{\Delta t_i^n} \ge 0$ where $t \mapsto \sigma_t$ is a positive Lipschitz-continuous function on [0, T].
- ullet The assumptions on the multipliers $k^u_{t^n_{i-1}}$ and $k^d_{t^n_{i-1}}$ imply that

$$\left|\frac{S_{t_{i+1}^n}}{S_{t_i^n}} - 1\right| \le \sigma_{t_i^n} \sqrt{\Delta t_{i+1}^n}, \text{a.s.}$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Asymptotic	: behaviour			
Δevm	ntotic hebaviour II			

 $\bullet\,$ For every $n\geq 1,$ we get a function h^n , s.t. $h^n(T,x)=(x-K)_+$ and

$$\begin{split} h^n(t^n_{i-1},x) &= \lambda_{t^n_{i-1}}h^n(t^n_i,k^d_{t^n_{i-1}}x) + (1-\lambda_{t^n_{i-1}})h^n(t^n_i,k^u_{t^n_{i-1}}x).\\ \lambda_{t^n_{i-1}}(x) &= \frac{k^u_{t^n_{i-1}}-1}{k^u_{t^n_{i-1}}-k^d_{t^n_{i-1}}} = \frac{1}{2}. \end{split}$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Asymptotic	: behaviour			
Acum	ntatic habaviour II			

 $\bullet\,$ For every $n\geq 1,$ we get a function h^n , s.t. $h^n(T,x)=(x-K)_+$ and

$$\begin{split} h^n(t^n_{i-1},x) &= \lambda_{t^n_{i-1}}h^n(t^n_i,k^d_{t^n_{i-1}}x) + (1-\lambda_{t^n_{i-1}})h^n(t^n_i,k^u_{t^n_{i-1}}x).\\ \lambda_{t^n_{i-1}}(x) &= \frac{k^u_{t^n_{i-1}}-1}{k^u_{t^n_{i-1}}-k^d_{t^n_{i-1}}} = \frac{1}{2}. \end{split}$$

• Extend h^n on [0,T] in such a way that h^n is constant on each interval $[t^n_i,t^n_{i+1}[,i\in\{0,\cdots,n\}]$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Asymptotic	c behaviour			
Asym	ntatic hebaviaur II			

 $\bullet\,$ For every $n\geq 1,$ we get a function h^n , s.t. $h^n(T,x)=(x-K)_+$ and

$$\begin{split} h^n(t^n_{i-1},x) &= \lambda_{t^n_{i-1}}h^n(t^n_i,k^d_{t^n_{i-1}}x) + (1-\lambda_{t^n_{i-1}})h^n(t^n_i,k^u_{t^n_{i-1}}x).\\ \lambda_{t^n_{i-1}}(x) &= \frac{k^u_{t^n_{i-1}}-1}{k^u_{t^n_{i-1}}-k^d_{t^n_{i-1}}} = \frac{1}{2}. \end{split}$$

- Extend h^n on [0,T] in such a way that h^n is constant on each interval $[t^n_i,t^n_{i+1}[,i\in\{0,\cdots,n\}.$
- Such a scheme is proposed by Milstein, G.N. (2002). The sequence of functions $(h^n(t,x))_n$ converges uniformly to h(t,x), solution to the diffusion equation :

$$\partial_t h(t,x) + \sigma_t^2 \frac{x^2}{2} \partial_{xx} h(t,x) = 0, \quad h(T,x) = (x-K)_+.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Asymptotic	: behaviour			
Asym	ntatic hebaviaur II			

• For every $n\geq 1$, we get a function h^n , s.t. $h^n(T,x)=(x-K)_+$ and

$$\begin{split} h^n(t^n_{i-1},x) &= \lambda_{t^n_{i-1}}h^n(t^n_i,k^d_{t^n_{i-1}}x) + (1-\lambda_{t^n_{i-1}})h^n(t^n_i,k^u_{t^n_{i-1}}x).\\ \lambda_{t^n_{i-1}}(x) &= \frac{k^u_{t^n_{i-1}}-1}{k^u_{t^n_{i-1}}-k^d_{t^n_{i-1}}} = \frac{1}{2}. \end{split}$$

- Extend h^n on [0,T] in such a way that h^n is constant on each interval $[t^n_i,t^n_{i+1}[,i\in\{0,\cdots,n\}.$
- Such a scheme is proposed by Milstein, G.N. (2002). The sequence of functions $(h^n(t,x))_n$ converges uniformly to h(t,x), solution to the diffusion equation :

$$\partial_t h(t,x) + \sigma_t^2 \frac{x^2}{2} \partial_{xx} h(t,x) = 0, \quad h(T,x) = (x-K)_+.$$

 Baptiste J. and E. Lépinette (2018) for payoff function not smooth provided that the successive derivatives of the P.D.E.'s solution do not explode too much.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Numerical experin	nents			
Numeric	al experiment : Cal	ibration I		

• If Δt_i^n is closed to 0, the observed prices of the Call option are assumed to be given by the solution $h(t, S_t)$ of the diffusion equation.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Numerical	experiments			
Num	erical experiment · (alibration		

- If Δt_i^n is closed to 0, the observed prices of the Call option are assumed to be given by the solution $h(t, S_t)$ of the diffusion equation.
- By calibration, deduce an evaluation of the the deterministic function $t\mapsto\sigma_t$ and test

$$\left|\frac{S_{t_{i+1}^n}}{S_{t_i^n}} - 1\right| \le \sigma_{t_i^n} \sqrt{\Delta t_{i+1}^n}, \text{a.s.}$$
(1)

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			0000000	
Numerical	experiments			
Num	erical experiment · (Calibration		

- If Δt_i^n is closed to 0, the observed prices of the Call option are assumed to be given by the solution $h(t, S_t)$ of the diffusion equation.
- By calibration, deduce an evaluation of the the deterministic function $t\mapsto\sigma_t$ and test

$$\left| \frac{S_{t_{i+1}^n}}{S_{t_i^n}} - 1 \right| \le \sigma_{t_i^n} \sqrt{\Delta t_{i+1}^n}, \text{a.s.}$$
(1)

• The data set is composed of historical values of the french index CAC 40 from the 23rd of October 2017 to the 19th of January 2018. For several strikes, we compute the proportion of observations satisfying (1).

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical e	xperiments			
Nume	erical experiment · (Calibration	n	

Figure : Distribution of the observed prices.

Figure : Ratio of observations satisfying (1) as a function of the strike.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical exp	periments			
Nume	rical experiment : s	super hed	ging I	

• Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1		

Numerical experiment : super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval [0, T] corresponds to one week composed of 5 days so that the discrete dates are $t_i, i \in \{0, \dots, 4\}$.

$$\sigma_{t_i} = \overline{\max}\left(\left| \frac{S_{t_{i+1}}}{S_{t_i}} - 1 \right| / \sqrt{\Delta t_{i+1}}, \right) \quad i \in \{0, \cdots, 3\},$$

where $\overline{\max}$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1		

Numerical experiment : super hedging l

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval [0, T] corresponds to one week composed of 5 days so that the discrete dates are $t_i, i \in \{0, \dots, 4\}$.

$$\sigma_{t_i} = \overline{\max}\left(\left| \frac{S_{t_{i+1}}}{S_{t_i}} - 1 \right| / \sqrt{\Delta t_{i+1}}, \right) \quad i \in \{0, \cdots, 3\},$$

where $\overline{\max}$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

•
$$k_{t_i}^u = 1 + \sigma_{t_i} \sqrt{\Delta t_{i+1}}$$
 and $k_{t_i}^d = 1 - \sigma_{t_i} \sqrt{\Delta t_{i+1}}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1		

Numerical experiment : super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval [0, T] corresponds to one week composed of 5 days so that the discrete dates are t_i , $i \in \{0, \dots, 4\}$.

$$\sigma_{t_i} = \overline{\max}\left(\left| \frac{S_{t_{i+1}}}{S_{t_i}} - 1 \right| / \sqrt{\Delta t_{i+1}}, \right) \quad i \in \{0, \cdots, 3\},$$

where $\overline{\max}$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

•
$$k_{t_i}^u = 1 + \sigma_{t_i} \sqrt{\Delta t_{i+1}}$$
 and $k_{t_i}^d = 1 - \sigma_{t_i} \sqrt{\Delta t_{i+1}}$.

• Estimation does not depend on the strike as before.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1	• • • • • • • • • • • • • • • • • • •	

Numerical experiment : super hedging 1

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval [0, T] corresponds to one week composed of 5 days so that the discrete dates are $t_i, i \in \{0, \dots, 4\}$.

$$\sigma_{t_i} = \overline{\max}\left(\left| \frac{S_{t_{i+1}}}{S_{t_i}} - 1 \right| / \sqrt{\Delta t_{i+1}}, \right) \quad i \in \{0, \cdots, 3\},$$

where $\overline{\max}$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

•
$$k_{t_i}^u = 1 + \sigma_{t_i} \sqrt{\Delta t_{i+1}}$$
 and $k_{t_i}^d = 1 - \sigma_{t_i} \sqrt{\Delta t_{i+1}}$.

- Estimation does not depend on the strike as before.
- Estimate the volatility on 52 weeks and implement our hedging strategy on the fifty third one.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1	• • • • • • • • • • • • • • • • • • •	

Numerical experiment : super hedging 1

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval [0, T] corresponds to one week composed of 5 days so that the discrete dates are $t_i, i \in \{0, \dots, 4\}$.

$$\sigma_{t_i} = \overline{\max}\left(\left| \frac{S_{t_{i+1}}}{S_{t_i}} - 1 \right| / \sqrt{\Delta t_{i+1}}, \right) \quad i \in \{0, \cdots, 3\},$$

where $\overline{\max}$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

•
$$k_{t_i}^u = 1 + \sigma_{t_i} \sqrt{\Delta t_{i+1}}$$
 and $k_{t_i}^d = 1 - \sigma_{t_i} \sqrt{\Delta t_{i+1}}$.

- Estimation does not depend on the strike as before.
- Estimate the volatility on 52 weeks and implement our hedging strategy on the fifty third one.
- Repeat the procedure by sliding the window of one week, i.e. on each of the weeks from the 11th of January 2015 to the 5th of March 2018.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	xperiments			
Murra	ricol over origo opt	unar had		

Numerical experiment : super hedging II

• We study below the super-hedging error

$$\varepsilon_T = h(0, S_0) + \sum_{i=0}^3 \theta_{t_i^4}^* \Delta S_{t_{i+1}^4} - (S_T - K)^+$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
NI	and the second	1 1	1	

Numerical experiment : super hedging II

• We study below the super-hedging error

$$\varepsilon_T = h(0, S_0) + \sum_{i=0}^3 \theta_{t_i^4}^* \Delta S_{t_{i+1}^4} - (S_T - K)^+$$

• Case K = 4700. The empirical average of ε_T is 12.63 and its standard deviation is 21.65 (empirical mean of $S_0 = 4044$). The empirical probability of $\{\varepsilon_T < 0\}$ is equal to 15.18% but the Value at Risk at 95 % is -10.33 which confirms that our strategy is conservative.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			00000000	
Numerical	experiments			
N 1	and the second	1 1	1	

Numerical experiment : super hedging II

• We study below the super-hedging error

$$\varepsilon_T = h(0, S_0) + \sum_{i=0}^3 \theta_{t_i^4}^* \Delta S_{t_{i+1}^4} - (S_T - K)^+$$

• Case K = 4700. The empirical average of ε_T is 12.63 and its standard deviation is 21.65 (empirical mean of $S_0 = 4044$). The empirical probability of $\{\varepsilon_T < 0\}$ is equal to 15.18% but the Value at Risk at 95 % is -10.33 which confirms that our strategy is conservative.

Figure : Distribution of the super-hedging error ε_T for K = 4700.

• The empirical average of V_0/S_0 is 5.63% and its standard deviation is 5.14%

Figure : Distribution of the ratio V_0/S_0 .

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	00000000	
Conclus	sion			

• New approach to the superreplication price, based on convex duality.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	
Concl	usion			

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	00000000	
Conclus	sion			

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values : For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	00000000	
Conclus	sion			

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values : For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.
- Confirmed by real data.

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Conclus	sion			

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values : For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.
- Confirmed by real data.
- The implementation of the super-hedging strategy is very simple and efficient on real data.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
N/L.L+	i nariada hadaina nr			

Multi-periods hedging prices I

• For every $t \in \{0, ..., T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$\mathcal{R}_t^T := \left\{ \sum_{u=t+1}^T \theta_{u-1} \Delta S_u - \epsilon_T^+, \ \theta_{u-1} \in L^0(\mathbb{R}, \mathcal{F}_{u-1}), \ \epsilon_T^+ \in L^0(\mathbb{R}_+, \mathcal{F}_T) \right\}.$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion

Multi-periods hedging prices I

• For every $t \in \{0, \dots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$\mathcal{R}_t^T := \left\{ \sum_{u=t+1}^T \theta_{u-1} \Delta S_u - \epsilon_T^+, \ \theta_{u-1} \in L^0(\mathbb{R}, \mathcal{F}_{u-1}), \ \epsilon_T^+ \in L^0(\mathbb{R}_+, \mathcal{F}_T) \right\}.$$

• Let
$$g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$$
, then

$$\begin{aligned} \Pi_{T,T}(g_T) &= \{g_T\} \text{ and } \pi_{T,T}(g_T) = g_T \\ \Pi_{t,T}(g_T) &= \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \ \exists R \in \mathcal{R}_t^T, \ x_t + R = g_T \text{ a.s.} \} \\ \pi_{t,T}(g_T) &= \operatorname{ess\,inf}_{\mathcal{F}_t} \Pi_{t,T}(g_T). \end{aligned}$$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion

Multi-periods hedging prices I

• For every $t \in \{0, \dots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$\mathcal{R}_t^T := \left\{ \sum_{u=t+1}^T \theta_{u-1} \Delta S_u - \epsilon_T^+, \ \theta_{u-1} \in L^0(\mathbb{R}, \mathcal{F}_{u-1}), \ \epsilon_T^+ \in L^0(\mathbb{R}_+, \mathcal{F}_T) \right\}.$$

• Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$, then

$$\begin{aligned} \Pi_{T,T}(g_T) &= \{g_T\} \text{ and } \pi_{T,T}(g_T) = g_T \\ \Pi_{t,T}(g_T) &= \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \, \exists R \in \mathcal{R}_t^T, \, x_t + R = g_T \text{ a.s.} \} \\ \pi_{t,T}(g_T) &= \operatorname{ess\,inf}_{\mathcal{F}_t} \Pi_{t,T}(g_T). \end{aligned}$$

• Again, the infimum super-hedging cost is not necessarily a price as $\pi_{t,T}(g_T) \notin \Pi_{t,T}(g_T)$ when $\Pi_{t,T}(g_T)$ is not closed.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
	and the second			

Multi-periods hedging prices l

• For every $t \in \{0, \dots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$\mathcal{R}_t^T := \left\{ \sum_{u=t+1}^T \theta_{u-1} \Delta S_u - \epsilon_T^+, \ \theta_{u-1} \in L^0(\mathbb{R}, \mathcal{F}_{u-1}), \ \epsilon_T^+ \in L^0(\mathbb{R}_+, \mathcal{F}_T) \right\}.$$

• Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$, then

$$\begin{aligned} \Pi_{T,T}(g_T) &= \{g_T\} \text{ and } \pi_{T,T}(g_T) = g_T \\ \Pi_{t,T}(g_T) &= \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \, \exists R \in \mathcal{R}_t^T, \, x_t + R = g_T \text{ a.s.} \} \\ \pi_{t,T}(g_T) &= \operatorname{ess\,inf}_{\mathcal{F}_t} \Pi_{t,T}(g_T). \end{aligned}$$

- Again, the infimum super-hedging cost is not necessarily a price as $\pi_{t,T}(g_T) \notin \Pi_{t,T}(g_T)$ when $\Pi_{t,T}(g_T)$ is not closed.
- Note that for all $t \in \{0, \dots, T-1\}$

 $\Pi_{t,T}(g_T) = \{ x_t, \; \exists \theta_t, \; \exists p_{t+1} \in \mathcal{P}_{t+1,T}(g_T), \; x_t + \theta_t \Delta S_{t+1} \ge p_{t+1} \text{ a.s.} \}.$

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Multi-p	eriods hedging pri	ces II		

 $\mathcal{P}_{t,t+1}(g_{t+1}) = \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \exists \theta_t \in L^0(\mathbb{R}, \mathcal{F}_t), x_t + \theta_t \Delta S_{t+1} \ge g_{t+1} \text{ a.s.} \}$ $\pi_{t,t+1}(g_{t+1}) = \operatorname{ess\,inf}_{\mathcal{F}_t} \mathcal{P}_{t,t+1}(g_{t+1}).$

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Multi-p	eriods hedging pri	ces II		

 $\mathcal{P}_{t,t+1}(g_{t+1}) = \{ x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \exists \theta_t \in L^0(\mathbb{R}, \mathcal{F}_t), x_t + \theta_t \Delta S_{t+1} \ge g_{t+1} \text{ a.s.} \}$ $\pi_{t,t+1}(g_{t+1}) = \operatorname{ess\,inf}_{\mathcal{F}_t} \mathcal{P}_{t,t+1}(g_{t+1}).$

• Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$ and $t \in \{0, \dots, T-1\}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	00000000	
Multi-p	eriods hedging pr	ces II		

 $\mathcal{P}_{t,t+1}(g_{t+1}) = \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \exists \theta_t \in L^0(\mathbb{R}, \mathcal{F}_t), x_t + \theta_t \Delta S_{t+1} \ge g_{t+1} \text{ a.s.} \}$ $\pi_{t,t+1}(g_{t+1}) = \operatorname{ess\,inf}_{\mathcal{F}_t} \mathcal{P}_{t,t+1}(g_{t+1}).$

- Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$ and $t \in \{0, \dots, T-1\}$.
- Then $\mathcal{P}_{t,T}(g_T) \subset \mathcal{P}_{t,t+1}(\pi_{t+1,T}(g_T)).$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	
	and the second			
Multi	-periods hedging pr	ices II		

 $\mathcal{P}_{t,t+1}(g_{t+1}) = \{ x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \exists \theta_t \in L^0(\mathbb{R}, \mathcal{F}_t), x_t + \theta_t \Delta S_{t+1} \ge g_{t+1} \text{ a.s.} \}$ $\pi_{t,t+1}(g_{t+1}) = \operatorname{ess\,inf}_{\mathcal{F}_t} \mathcal{P}_{t,t+1}(g_{t+1}).$

- Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$ and $t \in \{0, \dots, T-1\}$.
- Then $\mathcal{P}_{t,T}(g_T) \subset \mathcal{P}_{t,t+1}(\pi_{t+1,T}(g_T)).$
- If $\pi_{t+1,T}(g_T) \in \Pi_{t+1,T}(g_T)$, then $\mathcal{P}_{t,T}(g_T) = \mathcal{P}_{t,t+1}(\pi_{t+1,T}(g_T))$ and $\pi_{t,T}(g_T) = \pi_{t,t+1}(\pi_{t+1,T}(g_T))$.

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Multi-	periods hedging pr	ices II		

 $\mathcal{P}_{t,t+1}(g_{t+1}) = \{x_t \in L^0(\mathbb{R}, \mathcal{F}_t), \exists \theta_t \in L^0(\mathbb{R}, \mathcal{F}_t), x_t + \theta_t \Delta S_{t+1} \ge g_{t+1} \text{ a.s.} \}$ $\pi_{t,t+1}(g_{t+1}) = \operatorname{ess\,inf}_{\mathcal{F}_t} \mathcal{P}_{t,t+1}(g_{t+1}).$

- Let $g_T \in L^0(\mathbb{R}, \mathcal{F}_T)$ and $t \in \{0, \dots, T-1\}$.
- Then $\mathcal{P}_{t,T}(g_T) \subset \mathcal{P}_{t,t+1}(\pi_{t+1,T}(g_T)).$
- If $\pi_{t+1,T}(g_T) \in \prod_{t+1,T}(g_T)$, then $\mathcal{P}_{t,T}(g_T) = \mathcal{P}_{t,t+1}(\pi_{t+1,T}(g_T))$ and $\pi_{t,T}(g_T) = \pi_{t,t+1}(\pi_{t+1,T}(g_T))$.
- DPP. Under (AIP), if at each step, $\pi_{t+1,T}(g_T) \in \Pi_{t+1,T}(g_T)$ and if $\pi_{t+1,T}(g_T) = g_{t+1}(S_{t+1})$ for some "nice" \mathcal{F}_t -normal integrand g_{t+1} , we will get that $\pi_{t,T}(g_T) = \overline{\operatorname{conc}}(g_{t+1}, \operatorname{supp}_{\mathcal{F}_t} S_{t+1})(S_t)$ a.s.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	
Multi-	period (AIP) I			

• Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Con clusion
Multi	-period (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}.$

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
Multi-pe	eriod (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	
Multi-p	eriod (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	0000000	
Multi-p	eriod (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
Multi-p	eriod (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Multi-	period (AIP)			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-,\mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
 S_t ∈ convsupp_{T_t}S_{t+1} a.s., for all t ∈ {0,...,T-1}.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
Multi-p	eriod (AIP) I			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-,\mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
 - $S_t \in \text{convsupp}_{\mathcal{F}_t} S_{t+1} \text{ a.s., for all } t \in \{0, \dots, T-1\}.$
 - $sinf_{\mathcal{F}_t} S_{t+1} \leq S_t \leq sssp_{\mathcal{F}_t} S_{t+1} a.s., \text{ for all } t \in \{0, \dots, T-1\}.$

Aim 00	The one-period framework	(AIP) 0000	DPP, numerical results 00000000	Conclusion
Multi-	period (AIP)			

- Fix $t \in \{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t,T}(0) \cap L^0(\mathbb{R}_-, \mathcal{F}_t) = \{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t,t+1}(0) \cap L^0(\mathbb{R}_-,\mathcal{F}_t) = \{0\}.$
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in \{0, ..., T\}$.
- As $\Pi_{t,T}(0) = (-\mathcal{R}_t^T) \cap L^0(\mathbb{R}, \mathcal{F}_t)$, (AIP) reads as $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
 - S_t ∈ convsupp_{Ft}S_{t+1} a.s., for all t ∈ {0,...,T-1}.
 ess inf_{Ft}S_{t+1} ≤ S_t ≤ ess sup_{Ft}S_{t+1} a.s., for all t ∈ {0,...,T-1}.
 π_{t,T}(0) = 0 a.s. for all t ∈ {0,...,T-1}.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
00	00000	0000	00000000	
Multi ne	priod $(A P)$ $(N A)$	and $(\Delta M/IE$)	

• The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusion
			- >	

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$ for all $t \in \{0, \ldots, T\}$, where the closure of \mathcal{R}_t^T is taken with respect to the convergence in probability.

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$ for all $t \in \{0, \ldots, T\}$, where the closure of \mathcal{R}_t^T is taken with respect to the convergence in probability.
- The following statements are equivalent :

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$ for all $t \in \{0, \ldots, T\}$, where the closure of \mathcal{R}_t^T is taken with respect to the convergence in probability.
- The following statements are equivalent :
 - (AWIP) holds.

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$ for all $t \in \{0, \ldots, T\}$, where the closure of \mathcal{R}_t^T is taken with respect to the convergence in probability.
- The following statements are equivalent :
 - (AWIP) holds.
 - **2** For every $t \in \{0, ..., T\}$, there exists $Q \ll P$ with $E(dQ/dP|\mathcal{F}_t) = 1$ such that $(S_u)_{u \in \{t,...,T\}}$ is a Q-martingale.

- The (NA) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_T) = \{0\}$ for all $t \in \{0, \dots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_t^T \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$, for all $t \in \{0, \dots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}_+, \mathcal{F}_t) = \{0\}$ for all $t \in \{0, \ldots, T\}$, where the closure of \mathcal{R}_t^T is taken with respect to the convergence in probability.
- The following statements are equivalent :
 - (AWIP) holds.
 - **2** For every $t \in \{0, ..., T\}$, there exists $Q \ll P$ with $E(dQ/dP|\mathcal{F}_t) = 1$ such that $(S_u)_{u \in \{t,...,T\}}$ is a Q-martingale.
 - (AIP) holds and $\overline{\mathcal{R}_t^T} \cap L^0(\mathbb{R}, \mathcal{F}_t) = \mathcal{R}_t^T \cap L^0(\mathbb{R}, \mathcal{F}_t)$ for every $t \in \{0, \dots, T\}$.

• Suppose that $P(\text{ess inf}_{\mathcal{F}_t}S_{t+1} = S_t) = P(\text{ess sup}_{\mathcal{F}_t}S_{t+1} = S_t) = 0$ for all $t \in \{0..., T-1\}$. Then, (AWIP) is equivalent to (AIP) and, under these equivalent conditions, \mathcal{R}_t^T is closed in probability for every $t \in \{0..., T-1\}$. The infimum super-hedging cost is a super-hedging price.

Aim	The one-period framework	(AIP)	DPP, numerical results	Conclusio
00	00000	0000	0000000	

- Suppose that $P(\text{ess inf}_{\mathcal{F}_t}S_{t+1} = S_t) = P(\text{ess sup}_{\mathcal{F}_t}S_{t+1} = S_t) = 0$ for all $t \in \{0..., T-1\}$. Then, (AWIP) is equivalent to (AIP) and, under these equivalent conditions, \mathcal{R}_t^T is closed in probability for every $t \in \{0..., T-1\}$. The infimum super-hedging cost is a super-hedging price.
- The (AIP) condition is not necessarily equivalent to (AWIP).