Pricing without martingale measure

Innovative Research in Mathematical Finance, September 3-7 2018

Laurence Carassus, Léonard de Vinci Research Center and URCA, Joint work with Julien Baptiste and Emmanuel Lépinette.

Workshop Reduced Model and Magic Points

8-9 october 2018, Compiègne

- Bring together young and experienced researchers from the scientific communities of deterministic modeling (scientific computing) and random modeling around this theme.
- Program : Yvon Maday (Sorbonne University), Olga Mula (Dauphine University, PSL) and Kathrin Glau (Queen Mary University of London)
(1) Reduction of model for PDE's (ROM), Empirical Interpolation Model (EIM), Magic points, Generalized Empirical Interpolation Model (GEIM), Data assimilation
(2) Applications in Finance: option pricing with Fourier transform, magic points for pricing in one and two dimension
(3) State of art, perspective
- Free registraton is required.
- www.utc.fr/workshop-reduction-de-modele-et-magic-points.html
- The organnizing comitte : L. Carassus, F. De Vuyst, V. Hédou, G. Gayraud, O. Goubet and S. Salmon

Aim of the paper

- Investors trading in a multi-period and discrete-time financial market.

Aim of the paper

Aim of the paper

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.

Aim of the paper

Aim of the paper

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.

Aim of the paper

Aim of the paper

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.
- Study the link between Absence of Immediate Profit (AIP), (NA) and the absence of weak immediate profit (AWIP) conditions.

Aim of the paper

Aim of the paper

- Investors trading in a multi-period and discrete-time financial market.
- Analyse from scratch the set of super-hedging prices and its infimum value.
- Use the convex duality instead of the usual financial duality based on martingale measures under the (NA) condition.
- Study the link between Absence of Immediate Profit (AIP), (NA) and the absence of weak immediate profit (AWIP) conditions.
- Give some numerical illustrations : calibrate historical data of the french index CAC 40 to our model and implement the super-hedging strategy for a call option.

Framework and notations

- For any σ-algebra \mathcal{H} and any $k \geq 1$, we denote by $L^{0}\left(\mathbb{R}^{k}, \mathcal{H}\right)$ the set of \mathcal{H}-measurable and \mathbb{R}^{k}-valued random variables.

Framework and notations

- Consider two complete sub- σ-algebras of $\mathcal{F}_{T}: \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^{0}(\mathbb{R}, \mathcal{H})$ and $Y \in L^{0}(\mathbb{R}, \mathcal{F})$.

Framework and notations

- Consider two complete sub- σ-algebras of $\mathcal{F}_{T}: \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^{0}(\mathbb{R}, \mathcal{H})$ and $Y \in L^{0}(\mathbb{R}, \mathcal{F})$.
- Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$. The set $\mathcal{P}(g)$ of super-hedging prices of the contingent claim $g(Y)$ consists in the initial values of super-hedging strategies θ :

$$
\mathcal{P}(g)=\left\{x \in L^{0}(\mathbb{R}, \mathcal{H}), \exists \theta \in L^{0}(\mathbb{R}, \mathcal{H}), x+\theta(Y-y) \geq g(Y) \text { a.s. }\right\}
$$

Framework and notations

- Consider two complete sub- σ-algebras of $\mathcal{F}_{T}: \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^{0}(\mathbb{R}, \mathcal{H})$ and $Y \in L^{0}(\mathbb{R}, \mathcal{F})$.
- Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$. The set $\mathcal{P}(g)$ of super-hedging prices of the contingent claim $g(Y)$ consists in the initial values of super-hedging strategies θ :

$$
\mathcal{P}(g)=\left\{x \in L^{0}(\mathbb{R}, \mathcal{H}), \exists \theta \in L^{0}(\mathbb{R}, \mathcal{H}), x+\theta(Y-y) \geq g(Y) \text { a.s. }\right\}
$$

- Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).

Framework and notations

- Consider two complete sub- σ-algebras of $\mathcal{F}_{T}: \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^{0}(\mathbb{R}, \mathcal{H})$ and $Y \in L^{0}(\mathbb{R}, \mathcal{F})$.
- Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$. The set $\mathcal{P}(g)$ of super-hedging prices of the contingent claim $g(Y)$ consists in the initial values of super-hedging strategies θ :

$$
\mathcal{P}(g)=\left\{x \in L^{0}(\mathbb{R}, \mathcal{H}), \exists \theta \in L^{0}(\mathbb{R}, \mathcal{H}), x+\theta(Y-y) \geq g(Y) \text { a.s. }\right\} .
$$

- Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).
- The infimum super-hedging cost of $g(Y)$ is defined as

$$
p(g):=\operatorname{ess}^{\inf } \mathcal{H} \mathcal{P}(g)
$$

Framework and notations

- Consider two complete sub- σ-algebras of $\mathcal{F}_{T}: \mathcal{H} \subseteq \mathcal{F}$ and two non negative random variables $y \in L^{0}(\mathbb{R}, \mathcal{H})$ and $Y \in L^{0}(\mathbb{R}, \mathcal{F})$.
- Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$. The set $\mathcal{P}(g)$ of super-hedging prices of the contingent claim $g(Y)$ consists in the initial values of super-hedging strategies θ :

$$
\mathcal{P}(g)=\left\{x \in L^{0}(\mathbb{R}, \mathcal{H}), \exists \theta \in L^{0}(\mathbb{R}, \mathcal{H}), x+\theta(Y-y) \geq g(Y) \text { a.s. }\right\} .
$$

- Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).
- The infimum super-hedging cost of $g(Y)$ is defined as

$$
p(g):=\operatorname{ess}^{\inf } \mathcal{H} \mathcal{P}(g)
$$

- An infimum super-hedging cost is not necessarly a price!

Conditionnal essential supremum

- Let $\Gamma=\left(\gamma_{i}\right)_{i \in I}$ be a family of real-valued \mathcal{F}-measurable random variables. There exists a unique \mathcal{H}-measurable random variable $\gamma_{\mathcal{H}} \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ denoted $\operatorname{ess}^{\sup } \mathcal{H}_{\mathcal{H}} \Gamma$ which satisfies the following properties :

Conditionnal essential supremum

- Let $\Gamma=\left(\gamma_{i}\right)_{i \in I}$ be a family of real-valued \mathcal{F}-measurable random variables. There exists a unique \mathcal{H}-measurable random variable $\gamma_{\mathcal{H}} \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ denoted ess $\sup _{\mathcal{H}} \Gamma$ which satisfies the following properties:
(1) For every $i \in I, \gamma_{\mathcal{H}} \geq \gamma_{i}$ a.s.

Conditionnal essential supremum

- Let $\Gamma=\left(\gamma_{i}\right)_{i \in I}$ be a family of real-valued \mathcal{F}-measurable random variables. There exists a unique \mathcal{H}-measurable random variable $\gamma_{\mathcal{H}} \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ denoted $\operatorname{ess}^{\sup } \mathcal{H}_{\mathcal{H}} \Gamma$ which satisfies the following properties:
(1) For every $i \in I, \gamma_{\mathcal{H}} \geq \gamma_{i}$ a.s.
(2) If $\zeta \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ satisfies $\zeta \geq \gamma_{i}$ a.s. $\forall i \in I$, then $\zeta \geq \gamma_{\mathcal{H}}$ a.s.

Conditionnal essential supremum

- Let $\Gamma=\left(\gamma_{i}\right)_{i \in I}$ be a family of real-valued \mathcal{F}-measurable random variables. There exists a unique \mathcal{H}-measurable random variable $\gamma_{\mathcal{H}} \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ denoted $\operatorname{ess}^{\sup } \mathcal{H}_{\mathcal{H}} \Gamma$ which satisfies the following properties:
(c) For every $i \in I, \gamma_{\mathcal{H}} \geq \gamma_{i}$ a.s.
(2) If $\zeta \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ satisfies $\zeta \geq \gamma_{i}$ a.s. $\forall i \in I$, then $\zeta \geq \gamma_{\mathcal{H}}$ a.s.
- Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Lépinette E. and I. Molchanov (2017).

Conditionnal essential supremum

- Let $\Gamma=\left(\gamma_{i}\right)_{i \in I}$ be a family of real-valued \mathcal{F}-measurable random variables. There exists a unique \mathcal{H}-measurable random variable $\gamma_{\mathcal{H}} \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ denoted $\operatorname{ess}^{\sup } \mathcal{H}_{\mathcal{H}} \Gamma$ which satisfies the following properties:
(3) For every $i \in I, \gamma_{\mathcal{H}} \geq \gamma_{i}$ a.s.
(2) If $\zeta \in L^{0}(\mathbb{R} \cup\{\infty\}, \mathcal{H})$ satisfies $\zeta \geq \gamma_{i}$ a.s. $\forall i \in I$, then $\zeta \geq \gamma_{\mathcal{H}}$ a.s.
- Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Lépinette E. and I. Molchanov (2017).
- $x \in \mathcal{P}(g) \Longleftrightarrow \exists \theta \in L^{0}(\mathbb{R}, \mathcal{H})$ s.t. $x-\theta y \geq g(Y)-\theta Y$ a.s.

$$
\mathcal{P}(g)=\left\{\operatorname{esssup}_{\mathcal{H}}(g(Y)-\theta Y)+\theta y, \theta \in L^{0}(\mathbb{R}, \mathcal{H})\right\}+L^{0}\left(\mathbb{R}_{+}, \mathcal{H}\right) .
$$

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\} .
$$

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\} .
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\} .
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
(1) non-empty, closed-valued,

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\}
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
(1) non-empty, closed-valued,
(2) \mathcal{H}-measurable : $\left\{\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset\right\} \in \mathcal{H}, \forall O$ open set,

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\} .
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
(1) non-empty, closed-valued,
(2) \mathcal{H}-measurable : $\left\{\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset\right\} \in \mathcal{H}, \forall O$ open set,
(3) graph-measurable random set : $\operatorname{Graph}\left(\operatorname{supp}_{\mathcal{H}} X\right) \in \mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$.

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\}
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
(1) non-empty, closed-valued,
(2) \mathcal{H}-measurable : $\left\{\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset\right\} \in \mathcal{H}, \forall O$ open set,
(3) graph-measurable random set : $\operatorname{Graph}\left(\operatorname{supp}_{\mathcal{H}} X\right) \in \mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$.
- Assume that dom $\operatorname{supp}_{\mathcal{H}} X=\Omega$ and let $h: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a $\mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable function which is lower semi-continuous (I.s.c.) in x. Then,

$$
\operatorname{ess}_{\sup }^{\mathcal{H}} \mid h(X)=\sup _{x \in \operatorname{supp}_{\mathcal{H}} X} h(x) \text { a.s. }
$$

Conditionnal support

- Let $X \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}\right)$, conditional support of X with respect to \mathcal{H}

$$
\operatorname{supp}_{\mathcal{H}} X(\omega):=\bigcap\left\{A \subset \mathbb{R}^{d}, \text { closed, } P(X \in A \mid \mathcal{H})(\omega)=1\right\}
$$

- $\operatorname{supp}_{\mathcal{H}} X$ is
(1) non-empty, closed-valued,
(2) \mathcal{H}-measurable : $\left\{\omega \in \Omega, O \cap \operatorname{supp}_{\mathcal{H}} X(\omega) \neq \emptyset\right\} \in \mathcal{H}, \forall O$ open set,
(3) graph-measurable random set : $\operatorname{Graph}\left(\operatorname{supp}_{\mathcal{H}} X\right) \in \mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$.
- Assume that dom $\operatorname{supp}_{\mathcal{H}} X=\Omega$ and let $h: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a $\mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable function which is lower semi-continuous (I.s.c.) in x. Then,

$$
\operatorname{ess}_{\sup }^{\mathcal{H}} \mid h(X)=\sup _{x \in \operatorname{supp}_{\mathcal{H}} X} h(x) \text { a.s. }
$$

- Recall that if h is \mathcal{H}-normal integrand then h is $\mathcal{H} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable and is I.s.c. in x. The converse holds true if \mathcal{H} is complete for some measure.

First results I.

- Suppose that g is a \mathcal{H}-normal integrand. Then

$$
\operatorname{ess}_{\sup }^{\mathcal{H}} \mid(g(Y)-\theta Y)=\sup _{z \in \operatorname{supp}_{\mathcal{H}} Y}(g(z)-\theta z)=f^{*}(-\theta) \quad \text { a.s. }
$$

where f^{*} is the Fenchel-Legendre conjugate of f i.e.

$$
\begin{aligned}
f^{*}(\omega, x) & =\sup _{z \in \mathbb{R}}(x z-f(\omega, z)) \\
f(\omega, z) & =-g(\omega, z)+\delta_{\operatorname{supp}_{\mathcal{H}} Y}(\omega, z),
\end{aligned}
$$

where $\delta_{C}(\omega, z)=0$ if $z \in C(\omega)$ and $+\infty$ else. $f^{*}(\omega, \cdot)$ is proper, convex and f^{*} is a \mathcal{H}-normal integrand. Moreover, we have that

$$
\left.\begin{array}{rl}
p(g) & =\operatorname{essinf}_{\mathcal{H}}\left\{\operatorname{ess} \sup _{\mathcal{H}}(g(Y)-\theta Y)+\theta y, \theta \in L^{0}(\mathbb{R}, \mathcal{H})\right\} \\
& =-\operatorname{ess}_{\sup }^{\mathcal{H}}
\end{array}\left\{\theta y-f^{*}(\theta), \theta \in L^{0}(\mathbb{R}, \mathcal{H})\right\}=\right] \text { a.s. }
$$

where $f^{* *}$ is the Fenchel-Legendre biconjugate of f i.e.

$$
f^{* *}(\omega, x)=\sup _{z \in \mathbb{R}}\left(x z-f^{*}(\omega, z)\right)
$$

First results II.

- The classical biduality result states that if the concave envelop conv f is proper, then $f^{* *}$ is also proper, convex and I.s.c. and

$$
f^{* *}=\underline{\operatorname{conv} f}
$$

$\operatorname{conv} h(x)=\sup \{u(x), u$ convex and $u \leq h\} \underline{h}(x)=\liminf _{y \rightarrow x} h(y)$.

First results II.

- The classical biduality result states that if the concave envelop conv f is proper, then $f^{* *}$ is also proper, convex and I.s.c. and

$$
f^{* *}=\underline{\operatorname{conv} f}
$$

conv $h(x)=\sup \{u(x), u$ convex and $u \leq h\} \underline{h}(x)=\liminf _{y \rightarrow x} h(y)$.

- Pennanen T. and Perkkio A-P (2017)

First results II.

- The classical biduality result states that if the concave envelop conv f is proper, then $f^{* *}$ is also proper, convex and I.s.c. and

$$
f^{* *}=\underline{\operatorname{conv} f}
$$

$\operatorname{conv} h(x)=\sup \{u(x), u$ convex and $u \leq h\} \underline{h}(x)=\liminf _{y \rightarrow x} h(y)$.

- Pennanen T. and Perkkio A-P (2017)
- Suppose that g is a \mathcal{H}-normal integrand and that there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on convsupp $_{\mathcal{H}} Y$. Then,

$$
p(g)=-\underline{\operatorname{conv}} f(y)=\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y)-\delta_{\operatorname{convsupp}_{\mathcal{H}} Y}(y) \quad \text { a.s. }
$$

where $\operatorname{convsupp}_{\mathcal{H}} Y$ is the smallest convex set that contains $\operatorname{supp}_{\mathcal{H}} Y$ and the relative concave envelop is
$\operatorname{conc}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(x)=\inf \left\{v(x), v\right.$ is concave and $\left.v(z) \geq g(z), \forall z \in \operatorname{supp}_{\mathcal{H}} Y\right\}$.

(AIP)

- There is an immediate profit (IP) if $p(0) \leq 0$ with $P(p(0)<0)>0$. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if $p(0)=0$ a.s.

(AIP)

- There is an immediate profit (IP) if $p(0) \leq 0$ with $P(p(0)<0)>0$. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if $p(0)=0$ a.s.
- As $p(0)=-\delta_{\text {convsupp }_{\mathcal{H}} Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsu_{p}} \mathcal{H}_{\mathcal{H}} Y=\left[\operatorname{ess} \inf _{\mathcal{H}} Y, \operatorname{ess}_{\sup _{\mathcal{H}}} Y\right] \cap \mathbb{R}$ a.s.

(AIP)

- There is an immediate profit (IP) if $p(0) \leq 0$ with $P(p(0)<0)>0$. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if $p(0)=0$ a.s.
- As $p(0)=-\delta_{\text {convsupp }_{\mathcal{H}}} Y(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsupp}_{\mathcal{H}} Y=\left[\operatorname{ess} \inf _{\mathcal{H}} Y, \operatorname{ess} \sup _{\mathcal{H}} Y\right] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.

(AIP)

- There is an immediate profit (IP) if $p(0) \leq 0$ with $P(p(0)<0)>0$. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if $p(0)=0$ a.s.
- As $p(0)=-\delta_{\text {convsupp }_{\mathcal{H}} Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsu_{p}} \mathcal{H}_{\mathcal{H}} Y=\left[\operatorname{ess} \inf _{\mathcal{H}} Y, \operatorname{ess} \sup _{\mathcal{H}} Y\right] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.
- (AIP) holds true if and only $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{H}\right)=\{0\}$.

(AIP)

- There is an immediate profit (IP) if $p(0) \leq 0$ with $P(p(0)<0)>0$. On the contrary case, we say that the Absence of Immediate Profit (AIP) condition holds if $p(0)=0$ a.s.
- As $p(0)=-\delta_{\text {convsupp }_{\mathcal{H}} Y}(y)$ a.s. (AIP) holds true if and only if $y \in \operatorname{convsu_{p}} \mathcal{H}_{\mathcal{H}} Y=\left[\operatorname{ess} \inf _{\mathcal{H}} Y, \operatorname{ess} \sup _{\mathcal{H}} Y\right] \cap \mathbb{R}$ a.s.
- (AIP) condition holds true if and only if the infimum super-hedging cost of some European call option is non-negative.
- (AIP) holds true if and only $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{H}\right)=\{0\}$.
- If there is an IP $x \in \mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{H}\right)$, with $P(x<0)>0$. Write $0=-x+x$ and make the immediate profit $-x$ while you get 0 at time 1 from $x \in \mathcal{P}(0)$.

(NA) and (AIP)

(NA) and (AIP)

- The No Arbitrage (NA) condition holds true if for $\theta \in L^{0}(\mathbb{R}, \mathcal{H})$, $\theta(Y-y) \geq 0$ a.s. implies that $\theta(Y-y)=0$ a.s. or equivalently $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}\right)=\{0\}$ since

$$
\mathcal{P}(0)=\left\{-\theta(Y-y)+\epsilon^{+}, \theta \in L^{0}(\mathbb{R}, \mathcal{H}), \epsilon^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}\right)\right\} .
$$

(NA) and (AIP)

(NA) and (AIP)

- The No Arbitrage (NA) condition holds true if for $\theta \in L^{0}(\mathbb{R}, \mathcal{H})$, $\theta(Y-y) \geq 0$ a.s. implies that $\theta(Y-y)=0$ a.s. or equivalently $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}\right)=\{0\}$ since

$$
\mathcal{P}(0)=\left\{-\theta(Y-y)+\epsilon^{+}, \theta \in L^{0}(\mathbb{R}, \mathcal{H}), \epsilon^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}\right)\right\} .
$$

- The (AIP) condition is striclty weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).

(NA) and (AIP)

(NA) and (AIP)

- The No Arbitrage (NA) condition holds true if for $\theta \in L^{0}(\mathbb{R}, \mathcal{H})$, $\theta(Y-y) \geq 0$ a.s. implies that $\theta(Y-y)=0$ a.s. or equivalently $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}\right)=\{0\}$ since

$$
\mathcal{P}(0)=\left\{-\theta(Y-y)+\epsilon^{+}, \theta \in L^{0}(\mathbb{R}, \mathcal{H}), \epsilon^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}\right)\right\} .
$$

- The (AIP) condition is striclty weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).
(1) If $\operatorname{ess}_{\inf _{\mathcal{H}}} Y=0$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=\infty$.

(NA) and (AIP)

(NA) and (AIP)

- The No Arbitrage (NA) condition holds true if for $\theta \in L^{0}(\mathbb{R}, \mathcal{H})$, $\theta(Y-y) \geq 0$ a.s. implies that $\theta(Y-y)=0$ a.s. or equivalently $\mathcal{P}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}\right)=\{0\}$ since

$$
\mathcal{P}(0)=\left\{-\theta(Y-y)+\epsilon^{+}, \theta \in L^{0}(\mathbb{R}, \mathcal{H}), \epsilon^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}\right)\right\} .
$$

- The (AIP) condition is striclty weaker than the (NA) one. It is clear that (NA) implies (AIP). We now provide some examples where (AIP) holds true and is strictly weaker than (NA).
(1) If $\operatorname{essinf}_{\mathcal{H}} Y=0$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=\infty$.
(2) If there exists $Q_{1}, Q_{2} \ll P$ such that Y is a Q_{2}-super martingale and a Q_{1}-sub martingale but that there is no equivalent martingale measure. Using the FTAP, (NA) does not hold true but (AIP) holds true. Indeed let $Z_{1}=d Q_{1} / d P$. As ess $\sup _{\mathcal{H}} Y \geq Y$ a.s. and ess $\sup _{\mathcal{H}} Y$ is \mathcal{H}-measurable,

$$
\operatorname{ess} \sup _{\mathcal{H}} Y \geq \frac{E\left(Z_{1} Y \mid \mathcal{H}\right)}{E\left(Z_{1} \mid \mathcal{H}\right)}=E_{Q_{1}}(Y \mid \mathcal{H}) \geq y
$$

(NA) and (AIP)

- Last example. Assume that $Y=y Z$ where $Z>0$ is such that $\operatorname{supp}_{\mathcal{H}} Z=[0,1]$ a.s. $\left(\right.$ or $\operatorname{supp}_{\mathcal{H}} Z=[1, \infty)$ a.s.) and $y>0$.

(NA) and (AIP)

- Last example. Assume that $Y=y Z$ where $Z>0$ is such that $\operatorname{supp}_{\mathcal{H}} Z=[0,1]$ a.s. (or $\operatorname{supp}_{\mathcal{H}} Z=[1, \infty)$ a.s.) and $y>0$.
- Then (AIP) holds true :
$\operatorname{ess} \inf _{\mathcal{H}} Y=y$ ess $\inf _{\mathcal{H}} Z=0 \leq y$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=y$ ess $\sup _{\mathcal{H}} Z=y \geq y$.
- Last example. Assume that $Y=y Z$ where $Z>0$ is such that $\operatorname{supp}_{\mathcal{H}} Z=[0,1]$ a.s. $\left(\right.$ or $\operatorname{supp}_{\mathcal{H}} Z=[1, \infty)$ a.s. $)$ and $y>0$.
- Then (AIP) holds true :
$\operatorname{ess} \inf _{\mathcal{H}} Y=y \operatorname{ess} \inf _{\mathcal{H}} Z=0 \leq y$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=y \operatorname{ess} \sup _{\mathcal{H}} Z=y \geq y$.
- Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.

(NA) and (AIP)

- Last example. Assume that $Y=y Z$ where $Z>0$ is such that $\operatorname{supp}_{\mathcal{H}} Z=[0,1]$ a.s. $\left(\right.$ or $\operatorname{supp}_{\mathcal{H}} Z=[1, \infty)$ a.s. $)$ and $y>0$.
- Then (AIP) holds true :
$\operatorname{ess} \inf _{\mathcal{H}} Y=y \operatorname{ess} \inf _{\mathcal{H}} Z=0 \leq y$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=y \operatorname{ess} \sup _{\mathcal{H}} Z=y \geq y$.
- Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.
- Indeed, in the contrary case, there exists a $\rho_{1}>0$ with $1=E_{P}\left(\rho_{1} \mid \mathcal{H}\right)$ such that $E_{P}\left(\rho_{1} Y \mid \mathcal{H}\right)=y$ or equivalently $E_{P}\left(\rho_{1} Z \mid \mathcal{H}\right)=1$.

(NA) and (AIP)

- Last example. Assume that $Y=y Z$ where $Z>0$ is such that $\operatorname{supp}_{\mathcal{H}} Z=[0,1]$ a.s. $\left(\right.$ or $\operatorname{supp}_{\mathcal{H}} Z=[1, \infty)$ a.s.) and $y>0$.
- Then (AIP) holds true :
$\operatorname{ess} \inf _{\mathcal{H}} Y=y \operatorname{ess} \inf _{\mathcal{H}} Z=0 \leq y$ and $\operatorname{ess} \sup _{\mathcal{H}} Y=y \operatorname{ess} \sup _{\mathcal{H}} Z=y \geq y$.
- Nevertheless, this kind of model does not admit a risk-neutral probability measure and the (NA) condition does not hold true using the FTAP.
- Indeed, in the contrary case, there exists a $\rho_{1}>0$ with $1=E_{P}\left(\rho_{1} \mid \mathcal{H}\right)$ such that $E_{P}\left(\rho_{1} Y \mid \mathcal{H}\right)=y$ or equivalently $E_{P}\left(\rho_{1} Z \mid \mathcal{H}\right)=1$.
- We deduce that $E_{P}\left(\rho_{1}(1-Z) \mid \mathcal{H}\right)=0$. Since $Z \leq 1$ a.s. $\rho_{1}(1-Z)=0$ a.s. hence $Z=1$ which yields a contradiction.

Last results

- Suppose that (AIP) holds true, g is a \mathcal{H}-normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$
\begin{aligned}
p(g) & =\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y) \\
& =\inf \left\{\alpha y+\beta, \alpha, \beta \in \mathbb{R}, \alpha x+\beta \geq g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y\right\} .
\end{aligned}
$$

Last results

- Suppose that (AIP) holds true, g is a \mathcal{H}-normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$
\begin{aligned}
p(g) & =\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y) \\
& =\inf \left\{\alpha y+\beta, \alpha, \beta \in \mathbb{R}, \alpha x+\beta \geq g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y\right\} .
\end{aligned}
$$

- Beiglböck, M. and M. Nutz (2014)

Last results

- Suppose that (AIP) holds true, g is a \mathcal{H}-normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$
\begin{aligned}
p(g) & =\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y) \\
& =\inf \left\{\alpha y+\beta, \alpha, \beta \in \mathbb{R}, \alpha x+\beta \geq g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y\right\} .
\end{aligned}
$$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that $p(g)=g(y)$ a.s.

Last results

- Suppose that (AIP) holds true, g is a \mathcal{H}-normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$
\begin{aligned}
p(g) & =\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y) \\
& =\inf \left\{\alpha y+\beta, \alpha, \beta \in \mathbb{R}, \alpha x+\beta \geq g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y\right\} .
\end{aligned}
$$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that $p(g)=g(y)$ a.s.
- If g is convex and $\lim _{x \rightarrow \infty} x^{-1} g(x)=M \in \mathbb{R}$, the relative concave envelop of g is the affine function that coincides with g on the extreme points of the interval convsupp $\mathcal{H}_{\mathcal{H}} Y$ i.e. a.s.

$$
\begin{aligned}
& p(g)=\theta^{*} y+\beta^{*}=g\left(\operatorname{essinf}_{\mathcal{H}} Y\right)+\theta^{*}\left(y-\operatorname{ess}_{\inf }^{\mathcal{H}} \mid ~ Y\right), \\
& \theta^{*}=\frac{g\left(\operatorname{ess} \sup _{\mathcal{H}} Y\right)-g\left(\operatorname{essinf}_{\mathcal{H}} Y\right)}{\operatorname{ess}_{\sup _{\mathcal{H}} Y-\operatorname{ess} \inf _{\mathcal{H}} Y},}
\end{aligned}
$$

with the conventions $\theta^{*}=\frac{0}{0}=0$ if $\operatorname{ess} \sup _{\mathcal{H}} Y=\operatorname{ess}_{\inf }^{\mathcal{H}} \mid Y$ a.s. and $\theta^{*}=\frac{g(\infty)}{\infty}=M$ if $\operatorname{ess}_{\inf _{\mathcal{H}}} Y<\operatorname{ess}_{\sup _{\mathcal{H}}} Y=+\infty$ a.s.

Last results

- Suppose that (AIP) holds true, g is a \mathcal{H}-normal integrand and there exists some concave function φ such that $g \leq \varphi$ on $\operatorname{supp}_{\mathcal{H}} Y$ and $\varphi<\infty$ on $\operatorname{convsupp}_{\mathcal{H}} Y$. Then,

$$
\begin{aligned}
p(g) & =\overline{\operatorname{conc}}\left(g, \operatorname{supp}_{\mathcal{H}} Y\right)(y) \\
& =\inf \left\{\alpha y+\beta, \alpha, \beta \in \mathbb{R}, \alpha x+\beta \geq g(x), \forall x \in \operatorname{supp}_{\mathcal{H}} Y\right\} .
\end{aligned}
$$

- Beiglböck, M. and M. Nutz (2014)
- If g is concave and u.s.c., we get under (AIP) that $p(g)=g(y)$ a.s.
- If g is convex and $\lim _{x \rightarrow \infty} x^{-1} g(x)=M \in \mathbb{R}$, the relative concave envelop of g is the affine function that coincides with g on the extreme points of the interval convsupp $\mathcal{H}_{\mathcal{H}} Y$ i.e. a.s.

$$
\begin{aligned}
& p(g)=\theta^{*} y+\beta^{*}=g\left(\operatorname{ess} \inf _{\mathcal{H}} Y\right)+\theta^{*}\left(y-\operatorname{ess}_{\inf }^{\mathcal{H}} \mid ~ Y\right), \\
& \theta^{*}=\frac{g\left(\operatorname{esssup}_{\mathcal{H}} Y\right)-g\left(\operatorname{essinf}_{\mathcal{H}} Y\right)}{\operatorname{ess}_{\sup _{\mathcal{H}} Y-\operatorname{ess} \inf _{\mathcal{H}} Y},}
\end{aligned}
$$

with the conventions $\theta^{*}=\frac{0}{0}=0$ if $\operatorname{ess} \sup _{\mathcal{H}} Y=\operatorname{essinf}_{\mathcal{H}} Y$ a.s. and $\theta^{*}=\frac{g(\infty)}{\infty}=M$ if $\operatorname{ess}_{\inf }^{\mathcal{H}} \mid<\operatorname{ess}_{\sup _{\mathcal{H}}} Y=+\infty$ a.s.

- Here $p(g)+\theta^{*}(Y-y) \geq g$ a.s. and $p(g) \in \mathcal{P}(g)$.

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by essinf $\mathcal{F}_{t-1} S_{t}=k_{t-1}^{d} S_{t-1}$ and ess $\sup _{\mathcal{F}_{t-1}} S_{t}=k_{t-1}^{u} S_{t-1}$ where $k_{0}^{d}, \cdots, k_{T-1}^{d}$ and $k_{0}^{u}, \cdots, k_{T-1}^{u}$ are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_{t}^{d} \in[0,1]$ and $k_{t}^{u} \in[1,+\infty]$ for all $0 \leq t \leq T-1$.

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by essinf $\mathcal{F}_{\mathcal{F}_{t-1}} S_{t}=k_{t-1}^{d} S_{t-1}$ and ess $\sup _{\mathcal{F}_{t-1}} S_{t}=k_{t-1}^{u} S_{t-1}$ where $k_{0}^{d}, \cdots, k_{T-1}^{d}$ and $k_{0}^{u}, \cdots, k_{T-1}^{u}$ are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_{t}^{d} \in[0,1]$ and $k_{t}^{u} \in[1,+\infty]$ for all $0 \leq t \leq T-1$.
- Suppose (AIP). If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a non-negative convex function with Dom $h=\mathbb{R}$ such that $\lim _{z \rightarrow+\infty} \frac{h(z)}{z} \in[0, \infty)$, then $\pi_{t, T}(h)=h\left(t, S_{t}\right) \in \mathcal{P}_{t, T}\left(h\left(S_{T}\right)\right)$ a.s. where

$$
\begin{aligned}
h(T, x) & =h(x) \\
h(t-1, x) & =\lambda_{t-1} h\left(t, k_{t-1}^{d} x\right)+\left(1-\lambda_{t-1}\right) h\left(t, k_{t-1}^{u} x\right),
\end{aligned}
$$

where $\lambda_{t-1}=\frac{k_{t-1}^{u}-1}{k_{t-1}^{u}-k_{t-1}^{d}} \in[0,1]$.

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by essinf $\mathcal{F}_{t-1} S_{t}=k_{t-1}^{d} S_{t-1}$ and $\operatorname{esssup}_{\mathcal{F}_{t-1}} S_{t}=k_{t-1}^{u} S_{t-1}$ where $k_{0}^{d}, \cdots, k_{T-1}^{d}$ and $k_{0}^{u}, \cdots, k_{T-1}^{u}$ are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_{t}^{d} \in[0,1]$ and $k_{t}^{u} \in[1,+\infty]$ for all $0 \leq t \leq T-1$.
- Suppose (AIP). If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a non-negative convex function with Dom $h=\mathbb{R}$ such that $\lim _{z \rightarrow+\infty} \frac{h(z)}{z} \in[0, \infty)$, then $\pi_{t, T}(h)=h\left(t, S_{t}\right) \in \mathcal{P}_{t, T}\left(h\left(S_{T}\right)\right)$ a.s. where

$$
\begin{aligned}
h(T, x) & =h(x) \\
h(t-1, x) & =\lambda_{t-1} h\left(t, k_{t-1}^{d} x\right)+\left(1-\lambda_{t-1}\right) h\left(t, k_{t-1}^{u} x\right)
\end{aligned}
$$

where $\lambda_{t-1}=\frac{k_{t-1}^{u}-1}{k_{t-1}^{u}-k_{t-1}^{d}} \in[0,1]$.

- The infimum super-hedging cost of $h\left(S_{T}\right)$ is the binomial price when $S_{t} \in\left\{k_{t-1, t}^{d} S_{t-1}, k_{t-1, t}^{u} S_{t-1}\right\}$ a.s., $t=1, \cdots, T$.

Explicit Dynamic programming under (AIP)

Suppose that the model is defined by essinf $\mathcal{F}_{t-1} S_{t}=k_{t-1}^{d} S_{t-1}$ and $\operatorname{esssup}_{\mathcal{F}_{t-1}} S_{t}=k_{t-1}^{u} S_{t-1}$ where $k_{0}^{d}, \cdots, k_{T-1}^{d}$ and $k_{0}^{u}, \cdots, k_{T-1}^{u}$ are deterministic non negative numbers. Then :

- The (AIP) condition holds true if and only if $k_{t}^{d} \in[0,1]$ and $k_{t}^{u} \in[1,+\infty]$ for all $0 \leq t \leq T-1$.
- Suppose (AIP). If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a non-negative convex function with Dom $h=\mathbb{R}$ such that $\lim _{z \rightarrow+\infty} \frac{h(z)}{z} \in[0, \infty)$, then $\pi_{t, T}(h)=h\left(t, S_{t}\right) \in \mathcal{P}_{t, T}\left(h\left(S_{T}\right)\right)$ a.s. where

$$
\begin{aligned}
h(T, x) & =h(x) \\
h(t-1, x) & =\lambda_{t-1} h\left(t, k_{t-1}^{d} x\right)+\left(1-\lambda_{t-1}\right) h\left(t, k_{t-1}^{u} x\right)
\end{aligned}
$$

where $\lambda_{t-1}=\frac{k_{t-1}^{u}-1}{k_{t-1}^{u}-k_{t-1}^{d}} \in[0,1]$.

- The infimum super-hedging cost of $h\left(S_{T}\right)$ is the binomial price when $S_{t} \in\left\{k_{t-1, t}^{d} S_{t-1}, k_{t-1, t}^{u} S_{t-1}\right\}$ a.s., $t=1, \cdots, T$.
- Carassus, L., Gobet, E. and E. Temam (06) and Carassus L. and T. Vargiolu.

Asymptotic behaviour I

- Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞.

Asymptotic behaviour I

- Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞.
- Use the discretization $t_{i}^{n}=(T / n) i, i \in\{0,1, \cdots, n\}$ and assume that $k_{t_{i-1}^{n}}^{u}=1+\sigma_{t_{i-1}^{n}} \sqrt{\Delta t_{i}^{n}}$ and $k_{t_{i-1}^{n}}^{d}=1-\sigma_{t_{i-1}^{n}} \sqrt{\Delta t_{i}^{n}} \geq 0$ where $t \mapsto \sigma_{t}$ is a positive Lipschitz-continuous function on $[0, T]$.

Asymptotic behaviour I

- Study the asymptotic behaviour of the super-hedging costs when the number of discrete dates converges to ∞.
- Use the discretization $t_{i}^{n}=(T / n) i, i \in\{0,1, \cdots, n\}$ and assume that $k_{t_{i-1}^{n}}^{u}=1+\sigma_{t_{i-1}^{n}} \sqrt{\Delta t_{i}^{n}}$ and $k_{t_{i-1}^{n}}^{d}=1-\sigma_{t_{i-1}^{n}} \sqrt{\Delta t_{i}^{n}} \geq 0$ where $t \mapsto \sigma_{t}$ is a positive Lipschitz-continuous function on $[0, T]$.
- The assumptions on the multipliers $k_{t_{i-1}^{n}}^{u}$ and $k_{t_{i-1}^{n}}^{d}$ imply that

$$
\left|\frac{S_{t_{i+1}^{n}}}{S_{t_{i}^{n}}}-1\right| \leq \sigma_{t_{i}^{n}} \sqrt{\Delta t_{i+1}^{n}} \text {, a.s. }
$$

Asymptotic behaviour II

- For every $n \geq 1$, we get a function h^{n}, s.t. $h^{n}(T, x)=(x-K)_{+}$and

$$
\begin{aligned}
h^{n}\left(t_{i-1}^{n}, x\right) & =\lambda_{t_{i-1}^{n}} h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{d} x\right)+\left(1-\lambda_{t_{i-1}^{n}}\right) h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{u} x\right) . \\
\lambda_{t_{i-1}^{n}}(x) & =\frac{k_{t_{i-1}^{n}}^{n}-1}{k_{t_{i-1}^{n}}^{n}-k_{t_{i-1}^{n}}^{d}}=\frac{1}{2} .
\end{aligned}
$$

Asymptotic behaviour II

- For every $n \geq 1$, we get a function h^{n}, s.t. $h^{n}(T, x)=(x-K)_{+}$and

$$
\begin{aligned}
h^{n}\left(t_{i-1}^{n}, x\right) & =\lambda_{t_{i-1}^{n}} h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{d} x\right)+\left(1-\lambda_{t_{i-1}^{n}}\right) h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{u} x\right) . \\
\lambda_{t_{i-1}^{n}}(x) & =\frac{k_{t_{n-1}^{n}}^{n}-1}{k_{t_{i-1}^{n}}^{n}-k_{t_{i-1}^{n}}^{d}}=\frac{1}{2} .
\end{aligned}
$$

- Extend h^{n} on $[0, T]$ in such a way that h^{n} is constant on each interval $\left[t_{i}^{n}, t_{i+1}^{n}[, i \in\{0, \cdots, n\}\right.$.

Asymptotic behaviour II

- For every $n \geq 1$, we get a function h^{n}, s.t. $h^{n}(T, x)=(x-K)_{+}$and

$$
\begin{aligned}
h^{n}\left(t_{i-1}^{n}, x\right) & =\lambda_{t_{i-1}^{n}} h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{d} x\right)+\left(1-\lambda_{t_{i-1}^{n}}\right) h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{u} x\right) . \\
\lambda_{t_{i-1}^{n}}(x) & =\frac{k_{t_{i-1}^{n}}^{n}-1}{k_{t_{i-1}^{n}}^{n}-k_{t_{i-1}^{n}}^{d}}=\frac{1}{2} .
\end{aligned}
$$

- Extend h^{n} on $[0, T]$ in such a way that h^{n} is constant on each interval $\left[t_{i}^{n}, t_{i+1}^{n}[, i \in\{0, \cdots, n\}\right.$.
- Such a scheme is proposed by Milstein, G.N. (2002). The sequence of functions $\left(h^{n}(t, x)\right)_{n}$ converges uniformly to $h(t, x)$, solution to the diffusion equation :

$$
\partial_{t} h(t, x)+\sigma_{t}^{2} \frac{x^{2}}{2} \partial_{x x} h(t, x)=0, \quad h(T, x)=(x-K)_{+}
$$

Asymptotic behaviour II

- For every $n \geq 1$, we get a function h^{n}, s.t. $h^{n}(T, x)=(x-K)_{+}$and

$$
\begin{aligned}
h^{n}\left(t_{i-1}^{n}, x\right) & =\lambda_{t_{i-1}^{n}} h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{d} x\right)+\left(1-\lambda_{t_{i-1}^{n}}\right) h^{n}\left(t_{i}^{n}, k_{t_{i-1}^{n}}^{u} x\right) . \\
\lambda_{t_{i-1}^{n}}(x) & =\frac{k_{t_{i-1}^{n}}^{n}-1}{k_{t_{i-1}^{n}}^{n}-k_{t_{i-1}^{n}}^{d}}=\frac{1}{2} .
\end{aligned}
$$

- Extend h^{n} on $[0, T]$ in such a way that h^{n} is constant on each interval $\left[t_{i}^{n}, t_{i+1}^{n}[, i \in\{0, \cdots, n\}\right.$.
- Such a scheme is proposed by Milstein, G.N. (2002). The sequence of functions $\left(h^{n}(t, x)\right)_{n}$ converges uniformly to $h(t, x)$, solution to the diffusion equation :

$$
\partial_{t} h(t, x)+\sigma_{t}^{2} \frac{x^{2}}{2} \partial_{x x} h(t, x)=0, \quad h(T, x)=(x-K)_{+} .
$$

- Baptiste J. and E. Lépinette (2018) for payoff function not smooth provided that the successive derivatives of the P.D.E.'s solution do not explode too much.

Numerical experiment: Calibration I

- If Δt_{i}^{n} is closed to 0 , the observed prices of the Call option are assumed to be given by the solution $h\left(t, S_{t}\right)$ of the diffusion equation.

Numerical experiment: Calibration I

- If Δt_{i}^{n} is closed to 0 , the observed prices of the Call option are assumed to be given by the solution $h\left(t, S_{t}\right)$ of the diffusion equation.
- By calibration, deduce an evaluation of the the deterministic function $t \mapsto \sigma_{t}$ and test

$$
\begin{equation*}
\left|\frac{S_{t_{i+1}^{n}}}{S_{t_{i}^{n}}}-1\right| \leq \sigma_{t_{i}^{n}} \sqrt{\Delta t_{i+1}^{n}} \text {, a.s. } \tag{1}
\end{equation*}
$$

Numerical experiment : Calibration I

- If Δt_{i}^{n} is closed to 0 , the observed prices of the Call option are assumed to be given by the solution $h\left(t, S_{t}\right)$ of the diffusion equation.
- By calibration, deduce an evaluation of the the deterministic function $t \mapsto \sigma_{t}$ and test

$$
\begin{equation*}
\left|\frac{S_{t_{i+1}^{n}}}{S_{t_{i}^{n}}}-1\right| \leq \sigma_{t_{i}^{n}} \sqrt{\Delta t_{i+1}^{n}}, \text { a.s. } \tag{1}
\end{equation*}
$$

- The data set is composed of historical values of the french index CAC 40 from the 23rd of October 2017 to the 19th of January 2018. For several strikes, we compute the proportion of observations satisfying (1).

Numerical experiment : Calibration II

Figure: Distribution of the observed prices.

Figure : Ratio of observations satisfying (1) as a function of the strike.

Numerical experiment: super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.

Numerical experiment : super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval $[0, T]$ corresponds to one week composed of 5 days so that the discrete dates are $t_{i}, i \in\{0, \cdots, 4\}$.

$$
\sigma_{t_{i}}=\overline{\max }\left(\left|\frac{S_{t_{i+1}}}{S_{t_{i}}}-1\right| / \sqrt{\Delta t_{i+1}}\right) \quad i \in\{0, \cdots, 3\}
$$

where $\overline{\max }$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

Numerical experiment: super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval $[0, T]$ corresponds to one week composed of 5 days so that the discrete dates are $t_{i}, i \in\{0, \cdots, 4\}$.

$$
\sigma_{t_{i}}=\overline{\max }\left(\left|\frac{S_{t_{i+1}}}{S_{t_{i}}}-1\right| / \sqrt{\Delta t_{i+1}},\right) \quad i \in\{0, \cdots, 3\}
$$

where $\overline{\max }$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

- $k_{t_{i}}^{u}=1+\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$ and $k_{t_{i}}^{d}=1-\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$.

Numerical experiment: super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval $[0, T]$ corresponds to one week composed of 5 days so that the discrete dates are $t_{i}, i \in\{0, \cdots, 4\}$.

$$
\sigma_{t_{i}}=\overline{\max }\left(\left|\frac{S_{t_{i+1}}}{S_{t_{i}}}-1\right| / \sqrt{\Delta t_{i+1}}\right) \quad i \in\{0, \cdots, 3\}
$$

where $\overline{\max }$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

- $k_{t_{i}}^{u}=1+\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$ and $k_{t_{i}}^{d}=1-\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$.
- Estimation does not depend on the strike as before.

Numerical experiment : super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval $[0, T]$ corresponds to one week composed of 5 days so that the discrete dates are $t_{i}, i \in\{0, \cdots, 4\}$.

$$
\sigma_{t_{i}}=\overline{\max }\left(\left|\frac{S_{t_{i+1}}}{S_{t_{i}}}-1\right| / \sqrt{\Delta t_{i+1}}\right) \quad i \in\{0, \cdots, 3\}
$$

where $\overline{\max }$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

- $k_{t_{i}}^{u}=1+\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$ and $k_{t_{i}}^{d}=1-\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$.
- Estimation does not depend on the strike as before.
- Estimate the volatility on 52 weeks and implement our hedging strategy on the fifty third one.

Numerical experiment : super hedging I

- Test the infimum super-hedging cost on some data set composed of historical daily closing values of the french index CAC 40 from the 5th of January 2015 to the 12th of March 2018.
- The interval $[0, T]$ corresponds to one week composed of 5 days so that the discrete dates are $t_{i}, i \in\{0, \cdots, 4\}$.

$$
\sigma_{t_{i}}=\overline{\max }\left(\left|\frac{S_{t_{i+1}}}{S_{t_{i}}}-1\right| / \sqrt{\Delta t_{i+1}}\right) \quad i \in\{0, \cdots, 3\}
$$

where $\overline{\max }$ is the empirical maximum taken over a one year sliding sample window of 52 weeks.

- $k_{t_{i}}^{u}=1+\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$ and $k_{t_{i}}^{d}=1-\sigma_{t_{i}} \sqrt{\Delta t_{i+1}}$.
- Estimation does not depend on the strike as before.
- Estimate the volatility on 52 weeks and implement our hedging strategy on the fifty third one.
- Repeat the procedure by sliding the window of one week, i.e. on each of the weeks from the 11th of January 2015 to the 5th of March 2018.

Numerical experiment : super hedging II

- We study below the super-hedging error

$$
\varepsilon_{T}=h\left(0, S_{0}\right)+\sum_{i=0}^{3} \theta_{t_{i}^{4}}^{*} \Delta S_{t_{i+1}^{4}}-\left(S_{T}-K\right)^{+}
$$

Numerical experiment : super hedging II

- We study below the super-hedging error

$$
\varepsilon_{T}=h\left(0, S_{0}\right)+\sum_{i=0}^{3} \theta_{t_{i}^{4}}^{*} \Delta S_{t_{i+1}^{4}}-\left(S_{T}-K\right)^{+}
$$

- Case $K=4700$. The empirical average of ε_{T} is 12.63 and its standard deviation is 21.65 (empirical mean of $S_{0}=4044$). The empirical probability of $\left\{\varepsilon_{T}<0\right\}$ is equal to 15.18% but the Value at Risk at 95% is -10.33 which confirms that our strategy is conservative.

Numerical experiment : super hedging II

- We study below the super-hedging error

$$
\varepsilon_{T}=h\left(0, S_{0}\right)+\sum_{i=0}^{3} \theta_{t_{i}^{4}}^{*} \Delta S_{t_{i+1}^{4}}-\left(S_{T}-K\right)^{+}
$$

- Case $K=4700$. The empirical average of ε_{T} is 12.63 and its standard deviation is 21.65 (empirical mean of $S_{0}=4044$). The empirical probability of $\left\{\varepsilon_{T}<0\right\}$ is equal to 15.18% but the Value at Risk at 95% is -10.33 which confirms that our strategy is conservative.

Figure : Distribution of the super-hedging error ε_{T} for $K=4700$.

Numerical experiment : super hedging III

- The empirical average of V_{0} / S_{0} is 5.63% and its standard deviation is 5.14%.

Figure: Distribution of the ratio V_{0} / S_{0}.

Conclusion

- New approach to the superreplication price, based on convex duality.

Conclusion

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.

Conclusion

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values: For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.

Conclusion

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values: For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.
- Confirmed by real data.

Conclusion

- New approach to the superreplication price, based on convex duality.
- (AIP) condition instead of (NA) condition.
- Extend the Binomial model to a more general one where the prices at the next instant may take an infinite number of values: For convex payoffs, the prices are the same than the one of the Binomial model keeping only the conditional essup and essinf under the weak (AIP) condition.
- Confirmed by real data.
- The implementation of the super-hedging strategy is very simple and efficient on real data.

Multi-periods hedging prices I

- For every $t \in\{0, \ldots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$
\mathcal{R}_{t}^{T}:=\left\{\sum_{u=t+1}^{T} \theta_{u-1} \Delta S_{u}-\epsilon_{T}^{+}, \theta_{u-1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{u-1}\right), \epsilon_{T}^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)\right\} .
$$

Multi-periods hedging prices I

- For every $t \in\{0, \ldots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$
\mathcal{R}_{t}^{T}:=\left\{\sum_{u=t+1}^{T} \theta_{u-1} \Delta S_{u}-\epsilon_{T}^{+}, \theta_{u-1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{u-1}\right), \epsilon_{T}^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)\right\} .
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$, then

$$
\begin{aligned}
\Pi_{T, T}\left(g_{T}\right) & =\left\{g_{T}\right\} \text { and } \pi_{T, T}\left(g_{T}\right)=g_{T} \\
\Pi_{t, T}\left(g_{T}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists R \in \mathcal{R}_{t}^{T}, x_{t}+R=g_{T} \text { a.s. }\right\} \\
\pi_{t, T}\left(g_{T}\right) & =\text { ess } \inf _{\mathcal{F}_{t}} \Pi_{t, T}\left(g_{T}\right) .
\end{aligned}
$$

Multi-periods hedging prices I

- For every $t \in\{0, \ldots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$
\mathcal{R}_{t}^{T}:=\left\{\sum_{u=t+1}^{T} \theta_{u-1} \Delta S_{u}-\epsilon_{T}^{+}, \theta_{u-1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{u-1}\right), \epsilon_{T}^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)\right\} .
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$, then

$$
\begin{aligned}
\Pi_{T, T}\left(g_{T}\right) & =\left\{g_{T}\right\} \text { and } \pi_{T, T}\left(g_{T}\right)=g_{T} \\
\Pi_{t, T}\left(g_{T}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists R \in \mathcal{R}_{t}^{T}, x_{t}+R=g_{T} \text { a.s. }\right\} \\
\pi_{t, T}\left(g_{T}\right) & =\text { ess } \inf _{\mathcal{F}_{t}} \Pi_{t, T}\left(g_{T}\right)
\end{aligned}
$$

- Again, the infimum super-hedging cost is not necessarily a price as $\pi_{t, T}\left(g_{T}\right) \notin \Pi_{t, T}\left(g_{T}\right)$ when $\Pi_{t, T}\left(g_{T}\right)$ is not closed.

Multi-periods hedging prices I

- For every $t \in\{0, \ldots, T\}$ the set of all claims that can be super-replicated from 0 initial endowment at time t is

$$
\mathcal{R}_{t}^{T}:=\left\{\sum_{u=t+1}^{T} \theta_{u-1} \Delta S_{u}-\epsilon_{T}^{+}, \theta_{u-1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{u-1}\right), \epsilon_{T}^{+} \in L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)\right\} .
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$, then

$$
\begin{aligned}
\Pi_{T, T}\left(g_{T}\right) & =\left\{g_{T}\right\} \text { and } \pi_{T, T}\left(g_{T}\right)=g_{T} \\
\Pi_{t, T}\left(g_{T}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists R \in \mathcal{R}_{t}^{T}, x_{t}+R=g_{T} \text { a.s. }\right\} \\
\pi_{t, T}\left(g_{T}\right) & =\text { ess } \inf _{\mathcal{F}_{t}} \Pi_{t, T}\left(g_{T}\right)
\end{aligned}
$$

- Again, the infimum super-hedging cost is not necessarily a price as $\pi_{t, T}\left(g_{T}\right) \notin \Pi_{t, T}\left(g_{T}\right)$ when $\Pi_{t, T}\left(g_{T}\right)$ is not closed.
- Note that for all $t \in\{0, \ldots, T-1\}$

$$
\Pi_{t, T}\left(g_{T}\right)=\left\{x_{t}, \exists \theta_{t}, \exists p_{t+1} \in \mathcal{P}_{t+1, T}\left(g_{T}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq p_{t+1} \text { a.s. }\right\} .
$$

Multi-periods hedging prices II

- Local version of super-hedging prices. Let $g_{t+1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t+1}\right)$,

$$
\begin{aligned}
& \mathcal{P}_{t, t+1}\left(g_{t+1}\right)=\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists \theta_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq g_{t+1} \text { a.s. }\right\} \\
& \pi_{t, t+1}\left(g_{t+1}\right)=\operatorname{essinf}_{\mathcal{F}_{t}} \mathcal{P}_{t, t+1}\left(g_{t+1}\right) .
\end{aligned}
$$

Multi-periods hedging prices II

- Local version of super-hedging prices. Let $g_{t+1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t+1}\right)$,

$$
\begin{aligned}
\mathcal{P}_{t, t+1}\left(g_{t+1}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists \theta_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq g_{t+1} \text { a.s. }\right\} \\
\pi_{t, t+1}\left(g_{t+1}\right) & =\operatorname{essinf}_{\mathcal{F}_{t}} \mathcal{P}_{t, t+1}\left(g_{t+1}\right) .
\end{aligned}
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$ and $t \in\{0, \ldots, T-1\}$.

Multi-periods hedging prices II

- Local version of super-hedging prices. Let $g_{t+1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t+1}\right)$,

$$
\begin{aligned}
\mathcal{P}_{t, t+1}\left(g_{t+1}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists \theta_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq g_{t+1} \text { a.s. }\right\} \\
\pi_{t, t+1}\left(g_{t+1}\right) & =\operatorname{essinf}_{\mathcal{F}_{t}} \mathcal{P}_{t, t+1}\left(g_{t+1}\right) .
\end{aligned}
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$ and $t \in\{0, \ldots, T-1\}$.
- Then $\mathcal{P}_{t, T}\left(g_{T}\right) \subset \mathcal{P}_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$.

Multi-periods hedging prices II

- Local version of super-hedging prices. Let $g_{t+1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t+1}\right)$,

$$
\begin{aligned}
\mathcal{P}_{t, t+1}\left(g_{t+1}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists \theta_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq g_{t+1} \text { a.s. }\right\} \\
\pi_{t, t+1}\left(g_{t+1}\right) & =\operatorname{essinf}_{\mathcal{F}_{t}} \mathcal{P}_{t, t+1}\left(g_{t+1}\right) .
\end{aligned}
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$ and $t \in\{0, \ldots, T-1\}$.
- Then $\mathcal{P}_{t, T}\left(g_{T}\right) \subset \mathcal{P}_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$.
- If $\pi_{t+1, T}\left(g_{T}\right) \in \Pi_{t+1, T}\left(g_{T}\right)$, then $\mathcal{P}_{t, T}\left(g_{T}\right)=\mathcal{P}_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$ and $\pi_{t, T}\left(g_{T}\right)=\pi_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$.

Multi-periods hedging prices II

- Local version of super-hedging prices. Let $g_{t+1} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t+1}\right)$,

$$
\begin{aligned}
\mathcal{P}_{t, t+1}\left(g_{t+1}\right) & =\left\{x_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), \exists \theta_{t} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right), x_{t}+\theta_{t} \Delta S_{t+1} \geq g_{t+1} \text { a.s. }\right\} \\
\pi_{t, t+1}\left(g_{t+1}\right) & =\operatorname{essinf}_{\mathcal{F}_{t}} \mathcal{P}_{t, t+1}\left(g_{t+1}\right) .
\end{aligned}
$$

- Let $g_{T} \in L^{0}\left(\mathbb{R}, \mathcal{F}_{T}\right)$ and $t \in\{0, \ldots, T-1\}$.
- Then $\mathcal{P}_{t, T}\left(g_{T}\right) \subset \mathcal{P}_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$.
- If $\pi_{t+1, T}\left(g_{T}\right) \in \Pi_{t+1, T}\left(g_{T}\right)$, then $\mathcal{P}_{t, T}\left(g_{T}\right)=\mathcal{P}_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$ and $\pi_{t, T}\left(g_{T}\right)=\pi_{t, t+1}\left(\pi_{t+1, T}\left(g_{T}\right)\right)$.
- DPP. Under (AIP), if at each step, $\pi_{t+1, T}\left(g_{T}\right) \in \Pi_{t+1, T}\left(g_{T}\right)$ and if $\pi_{t+1, T}\left(g_{T}\right)=g_{t+1}\left(S_{t+1}\right)$ for some "nice" \mathcal{F}_{t}-normal integrand g_{t+1}, we will get that $\pi_{t, T}\left(g_{T}\right)=\overline{\operatorname{conc}}\left(g_{t+1}, \operatorname{supp}_{\mathcal{F}_{t}} S_{t+1}\right)\left(S_{t}\right)$ a.s.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
(1) $S_{t} \in \operatorname{convsupp}_{\mathcal{F}_{t}} S_{t+1}$ a.s., for all $t \in\{0, \ldots, T-1\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
(1) $S_{t} \in \operatorname{convsupp}_{\mathcal{F}_{t}} S_{t+1}$ a.s., for all $t \in\{0, \ldots, T-1\}$.

Multi-period (AIP) I

- Fix $t \in\{0, \ldots, T\}$. (AIP) condition holds at time t if there is no global IP at t, i.e. if $\Pi_{t, T}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- We say that (ALIP) condition holds at time t if there is no local IP at t, i.e. if $\mathcal{P}_{t, t+1}(0) \cap L^{0}\left(\mathbb{R}_{-}, \mathcal{F}_{t}\right)=\{0\}$.
- Finally we say that the (AIP) condition holds true if the (AIP) condition holds at time t for all $t \in\{0, \ldots, T\}$.
- As $\Pi_{t, T}(0)=\left(-\mathcal{R}_{t}^{T}\right) \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$, (AIP) reads as $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- Equivalence between (ALIP) at time t and (AIP) at time t.
- (AIP) holds if and only if one of the the following assertions holds :
(1) $S_{t} \in \operatorname{convsupp}_{\mathcal{F}_{t}} S_{t+1}$ a.s., for all $t \in\{0, \ldots, T-1\}$.
(2) essinf $\mathcal{F}_{t} S_{t+1} \leq S_{t} \leq \operatorname{esssup}_{\mathcal{F}_{t}} S_{t+1}$ a.s., for all $t \in\{0, \ldots, T-1\}$.
(0) $\pi_{t, T}(0)=0$ a.s. for all $t \in\{0, \ldots, T-1\}$.

Multi-period (AIP), (NA) and (AWIP) I

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.

Multi-period (AIP), (NA) and (AWIP) I

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.

Multi-period (AIP), (NA) and (AWIP) I

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$, where the closure of \mathcal{R}_{t}^{T} is taken with respect to the convergence in probability.

Multi-period (AIP), (NA) and (AWIP) I

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$, where the closure of \mathcal{R}_{t}^{T} is taken with respect to the convergence in probability.
- The following statements are equivalent :

Multi-period (AIP), (NA) and (AWIP) I

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$, where the closure of \mathcal{R}_{t}^{T} is taken with respect to the convergence in probability.
- The following statements are equivalent :
(1) (AWIP) holds.

Multi-period (AIP), (NA) and (AWIP) |

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$, where the closure of \mathcal{R}_{t}^{T} is taken with respect to the convergence in probability.
- The following statements are equivalent :
(1) (AWIP) holds.
(2) For every $t \in\{0, \ldots, T\}$, there exists $Q \ll P$ with $E\left(d Q / d P \mid \mathcal{F}_{t}\right)=1$ such that $\left(S_{u}\right)_{u \in\{t, \ldots, T\}}$ is a Q-martingale.

Multi-period (AIP), (NA) and (AWIP) |

- The (NA) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{T}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$.
- The (AIP) condition holds true if $\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$, for all $t \in\{0, \ldots, T\}$.
- The absence of weak immediate profit (AWIP) condition holds true if $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}_{+}, \mathcal{F}_{t}\right)=\{0\}$ for all $t \in\{0, \ldots, T\}$, where the closure of \mathcal{R}_{t}^{T} is taken with respect to the convergence in probability.
- The following statements are equivalent :
(1) (AWIP) holds.
(2) For every $t \in\{0, \ldots, T\}$, there exists $Q \ll P$ with $E\left(d Q / d P \mid \mathcal{F}_{t}\right)=1$ such that $\left(S_{u}\right)_{u \in\{t, \ldots, T\}}$ is a Q-martingale.
(0) (AIP) holds and $\overline{\mathcal{R}_{t}^{T}} \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)=\mathcal{R}_{t}^{T} \cap L^{0}\left(\mathbb{R}, \mathcal{F}_{t}\right)$ for every $t \in\{0, \ldots, T\}$.

Multi-period (AIP), (NA) and (AWIP) II

- Suppose that $P\left(\operatorname{essinf}_{\mathcal{F}_{t}} S_{t+1}=S_{t}\right)=P\left(\operatorname{esssup}_{\mathcal{F}_{t}} S_{t+1}=S_{t}\right)=0$ for all $t \in\{0 \ldots, T-1\}$. Then, (AWIP) is equivalent to (AIP) and, under these equivalent conditions, \mathcal{R}_{t}^{T} is closed in probability for every $t \in\{0 \ldots, T-1\}$. The infimum super-hedging cost is a super-hedging price.

Multi-period (AIP), (NA) and (AWIP) II

- Suppose that $P\left(\operatorname{essinf}_{\mathcal{F}_{t}} S_{t+1}=S_{t}\right)=P\left(\operatorname{esssup}_{\mathcal{F}_{t}} S_{t+1}=S_{t}\right)=0$ for all $t \in\{0 \ldots, T-1\}$. Then, (AWIP) is equivalent to (AIP) and, under these equivalent conditions, \mathcal{R}_{t}^{T} is closed in probability for every $t \in\{0 \ldots, T-1\}$. The infimum super-hedging cost is a super-hedging price.
- The (AIP) condition is not necessarily equivalent to (AWIP).

