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Aim of the paper

Aim of the paper

Investors trading in a multi-period and discrete-time �nancial market.

Analyse from scratch the set of super-hedging prices and its in�mum
value.

Use the convex duality instead of the usual �nancial duality based on
martingale measures under the (NA) condition.

Study the link between Absence of Immediate Pro�t (AIP), (NA)
and the absence of weak immediate pro�t (AWIP) conditions.

Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Aim of the paper

Aim of the paper

Aim of the paper

Investors trading in a multi-period and discrete-time �nancial market.

Analyse from scratch the set of super-hedging prices and its in�mum
value.

Use the convex duality instead of the usual �nancial duality based on
martingale measures under the (NA) condition.

Study the link between Absence of Immediate Pro�t (AIP), (NA)
and the absence of weak immediate pro�t (AWIP) conditions.

Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Aim of the paper

Aim of the paper

Aim of the paper

Investors trading in a multi-period and discrete-time �nancial market.

Analyse from scratch the set of super-hedging prices and its in�mum
value.

Use the convex duality instead of the usual �nancial duality based on
martingale measures under the (NA) condition.

Study the link between Absence of Immediate Pro�t (AIP), (NA)
and the absence of weak immediate pro�t (AWIP) conditions.

Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Aim of the paper

Aim of the paper

Aim of the paper

Investors trading in a multi-period and discrete-time �nancial market.

Analyse from scratch the set of super-hedging prices and its in�mum
value.

Use the convex duality instead of the usual �nancial duality based on
martingale measures under the (NA) condition.

Study the link between Absence of Immediate Pro�t (AIP), (NA)
and the absence of weak immediate pro�t (AWIP) conditions.

Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Aim of the paper

Aim of the paper

Aim of the paper

Investors trading in a multi-period and discrete-time �nancial market.

Analyse from scratch the set of super-hedging prices and its in�mum
value.

Use the convex duality instead of the usual �nancial duality based on
martingale measures under the (NA) condition.

Study the link between Absence of Immediate Pro�t (AIP), (NA)
and the absence of weak immediate pro�t (AWIP) conditions.

Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Aim of the paper

Framework and notations

For any σ-algebra H and any k ≥ 1, we denote by L0(Rk,H) the
set of H-measurable and Rk-valued random variables.
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Framework and notations

Framework and notations

Consider two complete sub-σ-algebras of FT : H ⊆ F and two non
negative random variables y ∈ L0(R,H) and Y ∈ L0(R,F).

Let g : Ω×R→ R. The set P(g) of super-hedging prices of the contingent
claim g(Y ) consists in the initial values of super-hedging strategies θ :

P(g) = {x ∈ L0(R,H), ∃ θ ∈ L0(R,H), x+ θ(Y − y) ≥ g(Y ) a.s.}.

Bensaid, B., Lesne J.P., Pagès H. and J. Scheinkman (1992).

The in�mum super-hedging cost of g(Y ) is de�ned as

p(g) := ess infHP(g).

An in�mum super-hedging cost is not necessarly a price !
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Conditionnal support and conditionnal essential supremum

Conditionnal essential supremum

Let Γ = (γi)i∈I be a family of real-valued F-measurable random
variables. There exists a unique H-measurable random variable
γH ∈ L0(R ∪ {∞},H) denoted ess supHΓ which satis�es the
following properties :

1 For every i ∈ I, γH ≥ γi a.s.
2 If ζ ∈ L0(R ∪ {∞},H) satis�es ζ ≥ γi a.s. ∀i ∈ I, then ζ ≥ γH a.s.

Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Lépinette E.
and I. Molchanov (2017).

x ∈ P(g)⇐⇒ ∃θ ∈ L0(R,H) s.t. x− θy ≥ g(Y )− θY a.s.

P(g) =
{

ess supH (g(Y )− θY ) + θy, θ ∈ L0(R,H)
}

+ L0(R+,H).
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Conditionnal support

Let X ∈ L0(Rd,F), conditional support of X with respect to H

suppHX(ω) :=
⋂{

A ⊂ Rd, closed, P (X ∈ A|H)(ω) = 1
}
.

suppHX is

1 non-empty, closed-valued,
2 H-measurable : {ω ∈ Ω, O ∩ suppHX(ω) 6= ∅} ∈ H, ∀O open set,
3 graph-measurable random set : Graph(suppHX) ∈ H⊗ B(Rd).

Assume that dom suppHX = Ω and let h : Ω× Rd → R be a
H⊗ B(Rd)-measurable function which is lower semi-continuous
(l.s.c.) in x. Then,

ess supHh(X) = sup
x∈suppHX

h(x) a.s.

Recall that if h is H-normal integrand then h is H⊗ B(Rd)-measurable

and is l.s.c. in x. The converse holds true if H is complete for some

measure.
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First results

First results I.

Suppose that g is a H-normal integrand. Then

ess supH (g(Y )− θY ) = sup
z∈suppHY

(g(z)− θz) = f∗(−θ) a.s.

where f∗ is the Fenchel-Legendre conjugate of f i.e.

f∗(ω, x) = sup
z∈R

(xz − f(ω, z))

f(ω, z) = −g(ω, z) + δsuppHY (ω, z),

where δC(ω, z) = 0 if z ∈ C(ω) and +∞ else. f∗(ω, ·) is proper,
convex and f∗ is a H-normal integrand. Moreover, we have that

p(g) = ess infH
{

ess supH (g(Y )− θY ) + θy, θ ∈ L0(R,H)
}

= −ess supH
{
θy − f∗(θ), θ ∈ L0(R,H)

}
=

= − sup
z∈R
{zy − f∗(z)} = −f∗∗(y) a.s.

where f∗∗ is the Fenchel-Legendre biconjugate of f i.e.

f∗∗(ω, x) = sup
z∈R

(xz − f∗(ω, z)) .
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First results

First results II.

The classical biduality result states that if the concave envelop
conv f is proper, then f∗∗ is also proper, convex and l.s.c. and

f∗∗ = conv f

conv h(x) = sup{u(x), u convex and u ≤ h} h(x) = lim infy→x h(y).

Pennanen T. and Perkkio A-P (2017)

Suppose that g is a H-normal integrand and that there exists some
concave function ϕ such that g ≤ ϕ on suppHY and ϕ <∞ on
convsuppHY . Then,

p(g) = −convf(y) = conc(g, suppHY )(y)− δconvsuppHY (y) a.s.

where convsuppHY is the smallest convex set that contains suppHY
and the relative concave envelop is

conc(g, suppHY )(x) = inf{v(x), v is concave and v(z) ≥ g(z), ∀z ∈ suppHY }.
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De�nition

(AIP)

(AIP)

There is an immediate pro�t (IP) if p(0) ≤ 0 with P (p(0) < 0) > 0.
On the contrary case, we say that the Absence of Immediate Pro�t
(AIP) condition holds if p(0) = 0 a.s.

As p(0) = −δconvsuppHY (y) a.s. (AIP) holds true if and only if
y ∈ convsuppHY = [ess infHY, ess supHY ] ∩ R a.s.

(AIP) condition holds true if and only if the in�mum super-hedging
cost of some European call option is non-negative.

(AIP) holds true if and only P(0) ∩ L0(R−,H) = {0}.
If there is an IP x ∈ P(0) ∩ L0(R−,H), with P (x < 0) > 0. Write
0 = −x+ x and make the immediate pro�t −x while you get 0 at
time 1 from x ∈ P(0).
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Comparison

(NA) and (AIP)

(NA) and (AIP)

The No Arbitrage (NA) condition holds true if for θ ∈ L0(R,H),
θ(Y − y) ≥ 0 a.s. implies that θ(Y − y) = 0 a.s. or equivalently
P(0) ∩ L0(R−,F) = {0} since

P(0) =
{
−θ(Y − y) + ε+, θ ∈ L0(R,H), ε+ ∈ L0(R+,F)

}
.

The (AIP) condition is striclty weaker than the (NA) one. It is clear
that (NA) implies (AIP). We now provide some examples where
(AIP) holds true and is strictly weaker than (NA).

1 If ess infHY = 0 and ess supHY =∞.
2 If there exists Q1, Q2 << P such that Y is a Q2-super martingale

and a Q1-sub martingale but that there is no equivalent martingale
measure. Using the FTAP, (NA) does not hold true but (AIP) holds
true. Indeed let Z1 = dQ1/dP. As ess supHY ≥ Y a.s. and
ess supHY is H-measurable,

ess supHY ≥
E(Z1Y |H)

E(Z1|H)
= EQ1(Y |H) ≥ y.
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Comparison

(NA) and (AIP)

Last example. Assume that Y = yZ where Z > 0 is such that
suppHZ = [0, 1] a.s. (or suppHZ = [1,∞) a.s.) and y > 0.

Then (AIP) holds true :

ess infHY = y ess infHZ = 0 ≤ y and ess supHY = y ess supHZ = y ≥ y.

Nevertheless, this kind of model does not admit a risk-neutral
probability measure and the (NA) condition does not hold true using
the FTAP.

Indeed, in the contrary case, there exists a ρ1 > 0 with
1 = EP (ρ1|H) such that EP (ρ1Y |H) = y or equivalently
EP (ρ1Z|H) = 1.

We deduce that EP (ρ1(1− Z)|H) = 0. Since Z ≤ 1 a.s.
ρ1(1− Z) = 0 a.s. hence Z = 1 which yields a contradiction.
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Comparison

Last results

Suppose that (AIP) holds true, g is a H-normal integrand and there
exists some concave function ϕ such that g ≤ ϕ on suppHY and
ϕ <∞ on convsuppHY . Then,

p(g) = conc(g, suppHY )(y)

= inf {αy + β, α, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppHY }.

Beiglböck, M. and M. Nutz (2014)
If g is concave and u.s.c., we get under (AIP) that p(g) = g(y) a.s.
If g is convex and limx→∞ x−1g(x) = M ∈ R, the relative concave
envelop of g is the a�ne function that coincides with g on the
extreme points of the interval convsuppHY i.e. a.s.

p(g) = θ∗y + β∗ = g(ess infHY ) + θ∗ (y − ess infHY ) ,

θ∗ =
g(ess supHY )− g(ess infHY )

ess supHY − ess infHY
,

with the conventions θ∗ = 0
0 = 0 if ess supHY = ess infHY a.s. and

θ∗ = g(∞)
∞ = M if ess infHY < ess supHY = +∞ a.s.

Here p(g) + θ∗(Y − y) ≥ g a.s. and p(g) ∈ P(g).
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Explicit Dynamic programming

Explicit Dynamic programming under (AIP)

Suppose that the model is de�ned by ess infFt−1
St = kdt−1St−1 and

ess supFt−1
St = kut−1St−1 where kd0 , · · · , kdT−1 and ku0 , · · · , kuT−1 are

deterministic non negative numbers. Then :

The (AIP) condition holds true if and only if kdt ∈ [0, 1] and
kut ∈ [1,+∞] for all 0 ≤ t ≤ T − 1.

Suppose (AIP). If h : R→ R is a non-negative convex function with

Dom h = R such that limz→+∞
h(z)
z ∈ [0,∞), then

πt,T (h) = h(t, St) ∈ Pt,T (h(ST )) a.s. where

h(T, x) = h(x)

h(t− 1, x) = λt−1h
(
t, kdt−1x

)
+ (1− λt−1)h

(
t, kut−1x

)
,

where λt−1 =
ku
t−1−1

ku
t−1−kd

t−1

∈ [0, 1].

The in�mum super-hedging cost of h(ST ) is the binomial price when
St ∈ {kdt−1,tSt−1, k

u
t−1,tSt−1} a.s., t = 1, · · · , T .

Carassus, L., Gobet, E. and E. Temam (06) and Carassus L. and T.
Vargiolu.
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Asymptotic behaviour

Asymptotic behaviour I

Study the asymptotic behaviour of the super-hedging costs when the
number of discrete dates converges to ∞.

Use the discretization tni = (T/n)i, i ∈ {0, 1, · · · , n} and assume
that kutni−1

= 1 + σtni−1

√
∆tni and kdtni−1

= 1− σtni−1

√
∆tni ≥ 0 where

t 7→ σt is a positive Lipschitz-continuous function on [0, T ].

The assumptions on the multipliers kutni−1
and kdtni−1

imply that∣∣∣∣Stni+1

Stni

− 1

∣∣∣∣ ≤ σtni √∆tni+1, a.s.
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that kutni−1

= 1 + σtni−1

√
∆tni and kdtni−1
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Asymptotic behaviour

Asymptotic behaviour II

For every n ≥ 1, we get a function hn, s.t. hn(T, x) = (x−K)+ and

hn(tni−1, x) = λtni−1
hn(tni , k

d
tni−1

x) + (1− λtni−1
)hn(tni , k

u
tni−1

x).

λtni−1
(x) =

kutni−1
− 1

kutni−1
− kdtni−1

=
1

2
.

Extend hn on [0, T ] in such a way that hn is constant on each
interval [tni , t

n
i+1[, i ∈ {0, · · · , n}.

Such a scheme is proposed by Milstein, G.N. (2002). The sequence
of functions (hn(t, x))n converges uniformly to h(t, x), solution to
the di�usion equation :

∂th(t, x) + σ2
t

x2

2
∂xxh(t, x) = 0, h(T, x) = (x−K)+.

Baptiste J. and E. Lépinette (2018) for payo� function not smooth
provided that the successive derivatives of the P.D.E.'s solution do
not explode too much.
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Numerical experiments

Numerical experiment : Calibration I

If ∆tni is closed to 0, the observed prices of the Call option are
assumed to be given by the solution h(t, St) of the di�usion
equation.

By calibration, deduce an evaluation of the the deterministic
function t 7→ σt and test∣∣∣∣Stni+1

Stni

− 1

∣∣∣∣ ≤ σtni √∆tni+1, a.s. (1)

The data set is composed of historical values of the french index
CAC 40 from the 23rd of October 2017 to the 19th of January 2018.
For several strikes, we compute the proportion of observations
satisfying (1).
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Numerical experiments

Numerical experiment : Calibration II

Figure : Distribution of the observed prices.

Figure : Ratio of observations satisfying (1) as a function of the strike.
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Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging I

Test the in�mum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

The interval [0, T ] corresponds to one week composed of 5 days so
that the discrete dates are ti, i ∈ {0, · · · , 4}.

σti = max

(∣∣∣∣Sti+1

Sti

− 1

∣∣∣∣ /√∆ti+1,

)
i ∈ {0, · · · , 3},

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

kuti = 1 + σti
√

∆ti+1 and kdti = 1− σti
√

∆ti+1.

Estimation does not depend on the strike as before.

Estimate the volatility on 52 weeks and implement our hedging
strategy on the �fty third one.

Repeat the procedure by sliding the window of one week, i.e. on
each of the weeks from the 11th of January 2015 to the 5th of
March 2018.



Aim The one-period framework (AIP) DPP, numerical results Conclusion

Numerical experiments

Numerical experiment : super hedging II

We study below the super-hedging error

εT = h(0, S0) +

3∑
i=0

θ∗t4i
∆St4i+1

− (ST −K)+

Case K = 4700. The empirical average of εT is 12.63 and its
standard deviation is 21.65 (empirical mean of S0 = 4044). The
empirical probability of {εT < 0} is equal to 15.18% but the Value
at Risk at 95 % is −10.33 which con�rms that our strategy is
conservative.

Figure : Distribution of the super-hedging error εT for K = 4700.
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We study below the super-hedging error
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Case K = 4700. The empirical average of εT is 12.63 and its
standard deviation is 21.65 (empirical mean of S0 = 4044). The
empirical probability of {εT < 0} is equal to 15.18% but the Value
at Risk at 95 % is −10.33 which con�rms that our strategy is
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Figure : Distribution of the super-hedging error εT for K = 4700.
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Numerical experiments

Numerical experiment : super hedging III

The empirical average of V0/S0 is 5.63% and its standard deviation
is 5.14%.

Figure : Distribution of the ratio V0/S0.
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Conclusion

New approach to the superreplication price, based on convex duality.

(AIP) condition instead of (NA) condition.

Extend the Binomial model to a more general one where the prices
at the next instant may take an in�nite number of values : For
convex payo�s, the prices are the same than the one of the Binomial
model keeping only the conditional essup and essinf under the weak
(AIP) condition.

Con�rmed by real data.

The implementation of the super-hedging strategy is very simple and
e�cient on real data.
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Multi-periods hedging prices I

For every t ∈ {0, . . . , T} the set of all claims that can be
super-replicated from 0 initial endowment at time t is

RT
t :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L0(R,Fu−1), ε+T ∈ L
0(R+,FT )

}
.

Let gT ∈ L0(R,FT ), then

ΠT,T (gT ) = {gT } and πT,T (gT ) = gT

Πt,T (gT ) = {xt ∈ L0(R,Ft), ∃R ∈ RT
t , xt +R = gT a.s.}

πt,T (gT ) = ess infFtΠt,T (gT ).

Again, the in�mum super-hedging cost is not necessarily a price as
πt,T (gT ) /∈ Πt,T (gT ) when Πt,T (gT ) is not closed.

Note that for all t ∈ {0, . . . , T − 1}

Πt,T (gT ) = {xt, ∃θt, ∃pt+1 ∈ Pt+1,T (gT ), xt + θt∆St+1 ≥ pt+1 a.s.}.
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Multi-periods hedging prices II

Local version of super-hedging prices. Let gt+1 ∈ L0(R,Ft+1),

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft), ∃ θt ∈ L0(R,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infFtPt,t+1(gt+1).

Let gT ∈ L0(R,FT ) and t ∈ {0, . . . , T − 1}.
Then Pt,T (gT ) ⊂ Pt,t+1(πt+1,T (gT )).

If πt+1,T (gT ) ∈ Πt+1,T (gT ), then Pt,T (gT ) = Pt,t+1(πt+1,T (gT ))
and πt,T (gT ) = πt,t+1(πt+1,T (gT )).

DPP. Under (AIP), if at each step, πt+1,T (gT ) ∈ Πt+1,T (gT ) and if
πt+1,T (gT ) = gt+1(St+1) for some �nice� Ft-normal integrand gt+1,
we will get that πt,T (gT ) = conc(gt+1, suppFt

St+1)(St) a.s.
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St+1)(St) a.s.
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Multi-period (AIP) I

Fix t ∈ {0, . . . , T}. (AIP) condition holds at time t if there is no
global IP at t, i.e. if Πt,T (0) ∩ L0(R−,Ft) = {0}.

We say that (ALIP) condition holds at time t if there is no local IP
at t, i.e. if Pt,t+1(0) ∩ L0(R−,Ft) = {0}.
Finally we say that the (AIP) condition holds true if the (AIP)
condition holds at time t for all t ∈ {0, . . . , T}.
As Πt,T (0) = (−RT

t ) ∩ L0(R,Ft), (AIP) reads as
RT

t ∩ L0(R+,Ft) = {0}, for all t ∈ {0, . . . , T}.
Equivalence between (ALIP) at time t and (AIP) at time t.

(AIP) holds if and only if one of the the following assertions holds :

1 St ∈ convsuppFt
St+1 a.s., for all t ∈ {0, . . . , T − 1}.

2 ess infFtSt+1 ≤ St ≤ ess supFt
St+1 a.s., for all t ∈ {0, . . . , T − 1}.

3 πt,T (0) = 0 a.s. for all t ∈ {0, . . . , T − 1}.
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Multi-period (AIP), (NA) and (AWIP) I

The (NA) condition holds true if RT
t ∩ L0(R+,FT ) = {0} for all

t ∈ {0, . . . , T}.

The (AIP) condition holds true if RT
t ∩ L0(R+,Ft) = {0}, for all

t ∈ {0, . . . , T}.
The absence of weak immediate pro�t (AWIP) condition holds true

if RT
t ∩ L0(R+,Ft) = {0} for all t ∈ {0, . . . , T}, where the closure

of RT
t is taken with respect to the convergence in probability.

The following statements are equivalent :

1 (AWIP) holds.
2 For every t ∈ {0, . . . , T}, there exists Q << P with
E(dQ/dP |Ft) = 1 such that (Su)u∈{t,...,T} is a Q-martingale.

3 (AIP) holds and RT
t ∩ L0(R,Ft) = RT

t ∩ L0(R,Ft) for every
t ∈ {0, . . . , T}.
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Multi-period (AIP), (NA) and (AWIP) II

Suppose that P (ess infFt
St+1 = St) = P (ess supFt

St+1 = St) = 0
for all t ∈ {0 . . . , T − 1}. Then, (AWIP) is equivalent to (AIP) and,
under these equivalent conditions, RT

t is closed in probability for
every t ∈ {0 . . . , T − 1}.The in�mum super-hedging cost is a
super-hedging price.

The (AIP) condition is not necessarily equivalent to (AWIP).
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