Computation of systemic risk measures

Çağın Ararat Bilkent University, Ankara

joint work with Nurtai Meimanjanov (Bilkent)

September 4, 2018 Innovative Research in Mathematical Finance, Luminy

- Financial network with d institutions
- Future wealths of institutions: $X = (X_1, \dots, X_d) \in L^{\infty}_d(\Omega, \mathcal{F}, \mathbb{P})$ "random shock"

- Financial network with d institutions
- Future wealths of institutions: $X = (X_1, \dots, X_d) \in L^{\infty}_d(\Omega, \mathcal{F}, \mathbb{P})$ "random shock"
- Look for a capital allocation vector $y \in \mathbb{R}^d$ that is "inserted" to the system before the shock is realized in such a way that the system becomes safe enough.

- Financial network with *d* institutions
- Future wealths of institutions: $X = (X_1, \dots, X_d) \in L^{\infty}_d(\Omega, \mathcal{F}, \mathbb{P})$ "random shock"
- Look for a capital allocation vector $y \in \mathbb{R}^d$ that is "inserted" to the system before the shock is realized in such a way that the system becomes safe enough.
- Aggregation function $\Lambda \colon \mathbb{R}^d \to \mathbb{R}$:
 - Increasing function
 - $\Lambda\circ X\in L^\infty_1$ is a quantification of the impact of the wealths to society.
 - Simple examples: $\Lambda(x) = \sum_{i=1}^d x_i, \ \Lambda(x) = -\sum_{i=1}^d x_i^-$
 - More sophisticated examples to be considered: Eisenberg, Noe '01 and Rogers, Veraart '13 models.

- Financial network with *d* institutions
- Future wealths of institutions: $X = (X_1, \dots, X_d) \in L^{\infty}_d(\Omega, \mathcal{F}, \mathbb{P})$ "random shock"
- Look for a capital allocation vector $y \in \mathbb{R}^d$ that is "inserted" to the system before the shock is realized in such a way that the system becomes safe enough.
- Aggregation function $\Lambda \colon \mathbb{R}^d \to \mathbb{R}$:
 - Increasing function
 - $\Lambda\circ X\in L^\infty_1$ is a quantification of the impact of the wealths to society.
 - Simple examples: $\Lambda(x) = \sum_{i=1}^d x_i$, $\Lambda(x) = -\sum_{i=1}^d x_i^-$
 - More sophisticated examples to be considered: Eisenberg, Noe '01 and Rogers, Veraart '13 models.
- Scalar convex risk measure $\rho \colon L_1^{\infty} \to \mathbb{R}$ to test the acceptability of $\Lambda \circ X$:

$$\rho(Z) = \sup_{\mathbb{S} \ll \mathbb{P}} \left(\mathbb{E}^{\mathbb{S}} \left[-Z \right] - \alpha(\mathbb{S}) \right), \quad \alpha(\mathbb{S}) = \sup_{Z \in L_1^{\infty}} \left(\mathbb{E}^{\mathbb{S}} \left[-Z \right] - \rho(Z) \right)$$

• e.g. negative expectation, average-value-at-risk, optimized certainty equivalents, entropic risk measure, utility-based shortfall risk measures

• Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(X) = \rho(\Lambda \circ X) = \inf \left\{ \sum_{i=1}^d y_i \mid \rho\left(\Lambda \circ X + \sum_{i=1}^d y_i\right) \le 0 \right\}.$$

• Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(X) = \rho(\Lambda \circ X) = \inf\left\{\sum_{i=1}^d y_i \mid \rho\left(\Lambda \circ X + \sum_{i=1}^d y_i\right) \le 0\right\}.$$

• Systemic risk measure sensitive to capital levels (Feinstein et al. '17, Fouque et al. '18):

$$R^{\mathsf{sen}}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$$

• Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(X) = \rho(\Lambda \circ X) = \inf\left\{\sum_{i=1}^d y_i \mid \rho\left(\Lambda \circ X + \sum_{i=1}^d y_i\right) \le 0\right\}.$$

- Systemic risk measure sensitive to capital levels (Feinstein *et al.* '17, Fouque *et al.* '18): $R^{sen}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \leq 0 \right\}.$
- $R^{\rm sen}$ is a set-valued risk measure with dual representation (A., Rudloff '16):

$$R^{\mathsf{sen}}(X) = \bigcap_{\mathbb{Q} \in \mathcal{M}_d(\mathbb{P}), w \in \mathbb{R}^d_+ \setminus \{0\}} \mathbb{E}^{\mathbb{Q}}\left[-X\right] + \left\{z \in \mathbb{R}^d \mid w^{\mathsf{T}}z \ge -\alpha^{\mathsf{sys}}(\mathbb{Q}, w)\right\},$$

• Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\text{ins}}(X) = \rho(\Lambda \circ X) = \inf \left\{ \sum_{i=1}^d y_i \mid \rho\left(\Lambda \circ X + \sum_{i=1}^d y_i\right) \le 0 \right\}.$$

- Systemic risk measure sensitive to capital levels (Feinstein *et al.* '17, Fouque *et al.* '18): $R^{sen}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$
- R^{sen} is a set-valued risk measure with dual representation (A., Rudloff '16):

$$R^{\mathrm{sen}}(X) = \bigcap_{\mathbb{Q} \in \mathcal{M}_d(\mathbb{P}), w \in \mathbb{R}^d_+ \setminus \{0\}} \mathbb{E}^{\mathbb{Q}}\left[-X\right] + \left\{z \in \mathbb{R}^d \mid w^{\mathsf{T}}z \ge -\alpha^{\mathsf{sys}}(\mathbb{Q}, w)\right\},$$

where $\alpha^{\rm sys}$ is the systemic penalty function given by

$$\alpha^{\text{sys}}(\mathbb{Q}, w) = \inf_{\mathbb{S} \approx \mathbb{P}} \left(\alpha(\mathbb{S}) + \mathbb{E}^{\mathbb{S}} \left[g \left(w_1 \frac{d\mathbb{Q}_1}{d\mathbb{S}}, \dots, w_d \frac{d\mathbb{Q}_d}{d\mathbb{S}} \right) \right] \right)$$

- $\mathbb{S}\approx\mathbb{P}$ probability measure of society
- $\mathbb{Q}_i \ll \mathbb{P}$ probability meaure of bank i
- $g(y) = \sup_{x \in \mathbb{R}^d} \left(\Lambda(x) x^{\mathsf{T}} y \right)$ conjugate function
- multivariate g-divergence

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize y w.r.t. \mathbb{R}^d_+ subject to $\rho(\Lambda \circ (X+y)) \leq 0, y \in \mathbb{R}^d$.

• Today: How to compute

$$R^{\mathsf{sen}}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize y w.r.t. \mathbb{R}^d_+ subject to $\rho(\Lambda \circ (X+y)) \leq 0, y \in \mathbb{R}^d$.

- First trouble: Available algorithms for vector optimization work well mostly for 2-4 objectives.
- Remedy: Simplify the risk measure by categorizing the banks into few groups and choose the same capital allocation for all members of a group (Feinstein *et al.*'17).

• Today: How to compute

$$R^{\mathsf{sen}}(X) = \left\{ y \in \mathbb{R}^d \mid \rho \left(\Lambda \circ (X+y) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize y w.r.t. \mathbb{R}^d_+ subject to $\rho(\Lambda \circ (X+y)) \leq 0, y \in \mathbb{R}^d$.

- First trouble: Available algorithms for vector optimization work well mostly for 2-4 objectives.
- Remedy: Simplify the risk measure by categorizing the banks into few groups and choose the same capital allocation for all members of a group (Feinstein *et al.*'17).
- Suppose there are g groups. Use a 0-1 matrix $B \in \mathbb{R}^{d \times g}$ so that for a capital allocation vector $z \in \mathbb{R}^g$ for groups

$$Bz = (z_1, \ldots, z_1; \ldots; z_g, \ldots, z_g)^\mathsf{T} \in \mathbb{R}^d$$

gives the capital allocation vector for banks.

• From now on, let us redefine $R^{sen}(X)$ as

$$R^{\mathsf{sen}}(X) = \{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \} \,.$$

(The case d = g with B = I recovers the earlier definition.)

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize z w.r.t. \mathbb{R}^{g}_{+} subject to $\rho(\Lambda \circ (X + Bz)) \leq 0, z \in \mathbb{R}^{g}$.

• Second (the real) trouble: In typical network models, Λ is a nonsmooth and sometimes even nonconcave function defined in terms of a fixed point problem. We will consider two models:

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize z w.r.t. \mathbb{R}^{g}_{+} subject to $\rho(\Lambda \circ (X + Bz)) \leq 0, z \in \mathbb{R}^{g}$.

- Second (the real) trouble: In typical network models, Λ is a nonsmooth and sometimes even nonconcave function defined in terms of a fixed point problem. We will consider two models:
 - Eisenberg, Noe '01 model: Λ is concave and it can be calculated as the value of a linear programming problem.
 - Efficient calculation of the convex set $R^{\rm sen}(X)$ by exploiting the structure of the constraint using scenario decompositions

• Today: How to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\}.$$

in the case of finitely many scenarios?

• Vector optimization problem:

minimize z w.r.t. \mathbb{R}^{g}_{+} subject to $\rho(\Lambda \circ (X + Bz)) \leq 0, z \in \mathbb{R}^{g}$.

- Second (the real) trouble: In typical network models, Λ is a nonsmooth and sometimes even nonconcave function defined in terms of a fixed point problem. We will consider two models:
 - $\textcircled{\ } \textbf{Eisenberg, Noe '01 model: } \Lambda \textbf{ is concave and it can be calculated as the value of a linear programming problem.}$
 - Efficient calculation of the convex set $R^{\rm sen}(X)$ by exploiting the structure of the constraint using scenario decompositions
 - Ø Rogers, Veraart '13 model: We propose a mixed integer linear programming problem to calculate Λ(x).
 - Calculation of the nonconvex set $R^{\mathrm{sen}}(X)$ in the risk-neutral case $ho = -\mathbb{E}$

• Banks: nodes $1, \ldots, d$

• Banks: nodes $1, \ldots, d$

- Banks: nodes $1, \ldots, d$
- Wealth vector: $x = (x_1, \ldots, x_d)^{\mathsf{T}} \in \mathbb{R}^d_+$ (a realization of the random shock X)
- Nominal liabilities: $(\ell_{ij})_{1 \le i,j \le d}$

- Banks: nodes $1, \ldots, d$
- Wealth vector: $x = (x_1, \dots, x_d)^{\mathsf{T}} \in \mathbb{R}^d_+$ (a realization of the random shock X)
- Nominal liabilities: $(\ell_{ij})_{1 \le i,j \le d}$

- Banks: nodes $1, \ldots, d$
- Wealth vector: $x = (x_1, \ldots, x_d) \in \mathbb{R}^d_+$ (a realization of the random shock X)
- Matrix of nominal liabilities: $(\ell_{ij})_{1 \le i,j \le d}$
- Total liability of entity $i: \bar{p}_i = \sum_{j=0}^d \ell_{ij}$
- Relative liability of i to j: $A_{ij} = \frac{\ell_{ij}}{\bar{p}_i}$

- Clearing payment vector: $p = (p_1, \ldots, p_d)$
- Each bank pays either what it owes or what it has.

- Clearing payment vector: $p = (p_1, \ldots, p_d)$
- Each bank pays either what it owes or what it has.
- $p \in \mathbb{R}^d_+$ is the solution of the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^d A_{ji} p_j \right), \quad i \in \{1, \dots, d\},$$

i.e., $p = \overline{p} \wedge (x + A^{\mathsf{T}}p)$.

- Clearing payment vector: $p = (p_1, \dots, p_d)$
- Each bank pays either what it owes or what it has.
- $p \in \mathbb{R}^d_+$ is the solution of the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^d A_{ji} p_j \right), \quad i \in \{1, \dots, d\},$$

i.e., $p = \overline{p} \wedge (x + A^{\mathsf{T}}p)$.

- LP formulation: p can be computed as an optimal solution of the linear program maximize $\mathbf{1}^{\mathsf{T}}p$ subject to $p \leq x + A^{\mathsf{T}}p$, $0 \leq p \leq \bar{p}$.
- Clearing vector exists since the LP is bounded (or by Brouwer's fixed point theorem).
- Aggregation function: Define $\Lambda(x)$ to be the optimal value of the LP.
 - Total debt paid at clearing.
 - Other possibilities for $\Lambda(x):$ payment received by a special node ("society"), number of nondefaulting banks, etc.

• The aim is to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\},\$$

where Λ is the increasing concave but nonsmooth function defined by

$$\Lambda(x) = \sup \left\{ \mathbf{1}^{\mathsf{T}} p \mid (I - A)^{\mathsf{T}} p \le x, \ 0 \le p \le \bar{p} \right\}.$$

• The aim is to compute

$$R^{\operatorname{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \rho \left(\Lambda \circ (X + Bz) \right) \le 0 \right\},\$$

where Λ is the increasing concave but nonsmooth function defined by

$$\Lambda(x) = \sup \left\{ \mathbf{1}^{\mathsf{T}} p \mid (I - A)^{\mathsf{T}} p \le x, \ 0 \le p \le \bar{p} \right\}.$$

• Vector optimization problem:

minimize z w.r.t. \mathbb{R}^g_+ subject to $\rho(\Lambda \circ (X + Bz)) \leq 0, \ (X + Bz \geq 0), \ z \in \mathbb{R}^g.$

• Use Benson's algorithm for convex vector optimization problems (Löhne et al.'14).

The algorithm solves two types of scalar problems:

($P_1(w)$: weighted sum scalarization with weight vector $w \in \mathbb{R}^g_+ \setminus \{0\}$

$$\mathscr{P}_{1}(w) = \inf_{z \in R^{\mathrm{sen}}(X)} w^{\mathsf{T}} z = \inf_{z \in \mathbb{R}^{g}} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$$

(a) $P_2(v)$: scalarization by a reference variable $v \notin R^{sen}(X)$ Find the minimum step-length $\alpha \in \mathbb{R}$ to enter $R^{sen}(X)$ from v along the direction $\mathbf{1} \in \mathbb{R}^g$

$$\mathcal{P}_{2}(v) = \inf \left\{ \alpha \in \mathbb{R} \mid v + \alpha \mathbf{1} \in R^{\mathsf{sen}}(X) \right\}$$
$$= \inf \left\{ \alpha \in \mathbb{R} \mid \rho \left(\Lambda \circ (X + B(v + \alpha \mathbf{1})) \right) \le 0 \right\}$$

The algorithm solves two types of scalar problems:

($P_1(w)$: weighted sum scalarization with weight vector $w \in \mathbb{R}^g_+ \setminus \{0\}$

$$\mathscr{P}_{1}(w) = \inf_{z \in R^{\mathrm{sen}}(X)} w^{\mathsf{T}} z = \inf_{z \in \mathbb{R}^{g}} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$$

(a) $P_2(v)$: scalarization by a reference variable $v \notin R^{sen}(X)$ Find the minimum step-length $\alpha \in \mathbb{R}$ to enter $R^{sen}(X)$ from v along the direction $\mathbf{1} \in \mathbb{R}^g$

$$\mathcal{P}_{2}(v) = \inf \left\{ \alpha \in \mathbb{R} \mid v + \alpha \mathbf{1} \in R^{\mathsf{sen}}(X) \right\}$$
$$= \inf \left\{ \alpha \in \mathbb{R} \mid \rho \left(\Lambda \circ (X + B(v + \alpha \mathbf{1})) \right) \le 0 \right\}$$

- How to calculate $\mathscr{P}_1(w) = \inf_{z \in \mathbb{R}^g} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$?
- The input X + Bz of Λ has both a random part and a decision variable part!
 - Cannot simply give to convex optimization solver!

- How to calculate $\mathscr{P}_1(w) = \inf_{z \in \mathbb{R}^g} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$?
- The input X + Bz of Λ has both a random part and a decision variable part!
 - Cannot simply give to convex optimization solver!
- Lagrange dualize the constraint (after justifying strong duality).

$$\mathscr{P}_{1}(w) = \sup_{\gamma \ge 0} \inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z + \gamma \rho(\Lambda \circ (X + Bz)) \right)$$

- How to calculate $\mathscr{P}_1(w) = \inf_{z \in \mathbb{R}^g} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$?
- The input X + Bz of Λ has both a random part and a decision variable part!
 - Cannot simply give to convex optimization solver!
- Lagrange dualize the constraint (after justifying strong duality).

$$\mathscr{P}_{1}(w) = \sup_{\gamma \ge 0} \inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z + \gamma \rho(\Lambda \circ (X + Bz)) \right)$$

• Use the dual representation of ρ and Sion's minimax theorem.

$$\mathscr{P}_{1}(w) = \sup_{\boldsymbol{\gamma} \ge 0, \mathbb{S} \ll \mathbb{P}} \left(\inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z - \boldsymbol{\gamma} \mathbb{E}^{\mathbb{S}} \left[\Lambda \circ (X + Bz) \right] \right) - \boldsymbol{\gamma} \alpha(\mathbb{S}) \right)$$

- How to calculate $\mathscr{P}_1(w) = \inf_{z \in \mathbb{R}^g} \left\{ w^{\mathsf{T}} z \mid \rho \left(\Lambda \circ (X + Bz) \right) \leq 0 \right\}$?
- The input X + Bz of Λ has both a random part and a decision variable part!
 - Cannot simply give to convex optimization solver!
- Lagrange dualize the constraint (after justifying strong duality).

$$\mathscr{P}_{1}(w) = \sup_{\gamma \ge 0} \inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z + \gamma \rho(\Lambda \circ (X + Bz)) \right)$$

• Use the dual representation of ρ and Sion's minimax theorem.

$$\mathscr{P}_{1}(w) = \sup_{\gamma \geq 0, \mathbb{S} \ll \mathbb{P}} \left(\inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z - \gamma \mathbb{E}^{\mathbb{S}} \left[\Lambda \circ (X + Bz) \right] \right) - \gamma \alpha(\mathbb{S}) \right)$$

• To have a concave maximization problem, pass to finite measures via $M \coloneqq \gamma \frac{d\mathbb{S}}{d\mathbb{P}}$ and $\alpha(M) \coloneqq \gamma \alpha(\mathbb{S})$ by slight abuse of notation.

$$\mathscr{P}_{1}(w) = \sup_{M \in L^{1}_{+}} \left(\inf_{z \in \mathbb{R}^{g}} \left(w^{\mathsf{T}} z - \mathbb{E} \left[M \Lambda \circ (X + Bz) \right] \right) - \alpha(M) \right)$$

• Recall the definition of Λ as a \sup and use the famous Theorem 14.60 in Rockafellar, Wets '97 to swap $\sup -\mathbb{E}.$

$$\mathscr{P}_{1}(w) = \sup_{M \in L^{1}_{+}} \left(\inf_{\substack{P \in [0,\bar{p}], \\ z \in \mathbb{R}^{g}}} \left\{ w^{\mathsf{T}} z - \mathbb{E} \left[M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - B z \leq X \right\} - \alpha(M) \right)$$

• Recall the definition of Λ as a \sup and use the famous Theorem 14.60 in Rockafellar, Wets '97 to swap $\sup -\mathbb{E}$.

$$\mathscr{P}_{1}(w) = \sup_{M \in L^{1}_{+}} \left(\inf_{\substack{P \in [0,\bar{p}], \\ z \in \mathbb{R}^{g}}} \left\{ w^{\mathsf{T}} z - \mathbb{E} \left[M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - B z \leq X \right\} - \alpha(M) \right)$$

• Last step: In the inner problem, randomize z as Z, add the constraint $Z = \mathbb{E}Z$, and Lagrange dualize it.

$$\inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[w^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X, Z = \mathbb{E} \left[Z \right] \right\}$$

$$= \sup_{\substack{U \in L_g^1}} \inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[w^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] + \mathbb{E} \left[U^{\mathsf{T}} (Z - \mathbb{E}Z) \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X \right\}$$

• Recall the definition of Λ as a \sup and use the famous Theorem 14.60 in Rockafellar, Wets '97 to swap $\sup -\mathbb{E}$.

$$\mathscr{P}_{1}(w) = \sup_{M \in L^{1}_{+}} \left(\inf_{\substack{P \in [0,\bar{p}], \\ z \in \mathbb{R}^{g}}} \left\{ w^{\mathsf{T}} z - \mathbb{E} \left[M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - B z \leq X \right\} - \alpha(M) \right)$$

• Last step: In the inner problem, randomize z as Z, add the constraint $Z = \mathbb{E}Z$, and Lagrange dualize it.

$$\inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[w^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X, Z = \mathbb{E} [Z] \right\}$$

$$= \sup_{\substack{U \in L_g^1}} \inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[w^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] + \mathbb{E} \left[U^{\mathsf{T}} (Z - \mathbb{E}Z) \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X \right\}$$

$$= \sup_{\substack{U \in L_g^1}} \inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[w^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] + \mathbb{E} \left[(U - \mathbb{E}U)^{\mathsf{T}} Z \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X \right\}$$

$$= \sup_{\substack{U \in L_g^1 : \mathbb{E}U = 0}} \inf_{\substack{P \in [0,\bar{p}], \\ Z \in L_g^{\infty}}} \left\{ \mathbb{E} \left[(w + U)^{\mathsf{T}} Z - M \mathbf{1}^{\mathsf{T}} P \right] \mid (I - A)^{\mathsf{T}} P - BZ \leq X \right\}.$$

• Long story short: We decomposed the nonsmooth objective function of the dual (sup) problem into scenario subproblems (minus the penalty term):

$$\mathscr{P}_1(w) = \sup_{\substack{M \in L^1_+, \\ U \in L^1_q : \mathbb{E}[U] = 0}} \left(\mathbb{E} \left[F \circ (U, M) \right] - \alpha(M) \right),$$

Solving $P_1(w)$

• Long story short: We decomposed the nonsmooth objective function of the dual (sup) problem into scenario subproblems (minus the penalty term):

$$\mathscr{P}_1(w) = \sup_{\substack{M \in L_+^1, \\ U \in L_q^1 : \mathbb{E}[U] = 0}} \left(\mathbb{E} \left[F \circ (U, M) \right] - \alpha(M) \right),$$

where $F: \Omega \times \mathbb{R}^g \times \mathbb{R} \to \overline{\mathbb{R}}$ is defined by

$$F(\omega, u, m) \coloneqq \inf_{\substack{p \in \mathbb{R}^d, \\ z \in \mathbb{R}^g}} \left\{ (w+u)^{\mathsf{T}} z - m \mathbf{1}^{\mathsf{T}} p \mid (I-A)^{\mathsf{T}} p - Bz \le X(\omega), \ p \in [0, \bar{p}] \right\}.$$

• $F(\omega, u, m)$ is finite if and only if $u \ge -w$. So add $U \ge -w$ as a constraint.

• Long story short: We decomposed the nonsmooth objective function of the dual (sup) problem into scenario subproblems (minus the penalty term):

$$\mathscr{P}_{1}(w) = \sup_{\substack{M \in L_{+}^{1}, \\ U \in L_{q}^{1} : \mathbb{E}[U] = 0}} \left(\mathbb{E} \left[F \circ (U, M) \right] - \alpha(M) \right),$$

where $F: \Omega \times \mathbb{R}^g \times \mathbb{R} \to \overline{\mathbb{R}}$ is defined by

$$F(\omega, u, m) \coloneqq \inf_{\substack{p \in \mathbb{R}^d, \\ z \in \mathbb{R}^g}} \left\{ (w+u)^{\mathsf{T}} z - m \mathbf{1}^{\mathsf{T}} p \mid (I-A)^{\mathsf{T}} p - Bz \le X(\omega), \ p \in [0, \bar{p}] \right\}.$$

- F(ω, u, m) is finite if and only if u ≥ −w. So add U ≥ −w as a constraint.
- Such problems are solved efficiently using bundle methods. In a nutshell, these methods
 - obtain piecewise-affine upper approximations of $F(\omega,\cdot,\cdot), -\alpha(\cdot)$ at a feasible point $(U^{(k)}, M^{(k)})$, call them $\tilde{F}^{(k)}, -\tilde{\alpha}^{(k)}$,
 - solve the master problem

$$\sup_{\substack{M \in L_{+}^{1}, \\ U \in L_{g}^{1} : \mathbb{E}[U] = 0}} \left(\mathbb{E} \left[\tilde{F}^{(k)} \circ (U, M) \right] - \tilde{\alpha}^{(k)}(M) - (\text{quadratic term}) \right)$$

to find a "better" solution $(U^{(k+1)}, M^{(k+1)})$,

stop when the approximation is good enough.

• A similar dual formulation can be derived for

$$\mathscr{P}_2(v) = \inf \left\{ \alpha \in \mathbb{R} \mid \rho \left(\Lambda \circ \left(X + B(v + \alpha \mathbf{1}) \right) \right) \le 0 \right\}.$$

• A similar dual formulation can be derived for

$$\mathscr{P}_2(v) = \inf \left\{ \alpha \in \mathbb{R} \mid \rho \left(\Lambda \circ (X + B(v + \alpha \mathbf{1})) \right) \le 0 \right\}.$$

We obtain

$$\mathscr{P}_{2}(v) = \sup_{\substack{M \in L_{+}^{1}, \\ Q \in L^{1}: \mathbb{E}[Q] = 0}} \left(\mathbb{E} \left[G \circ (Q, M) \right] - \alpha(M) \right),$$

where $G \colon \Omega \times \mathbb{R} \times \mathbb{R} \to \overline{\mathbb{R}}$ is defined by

$$G(\omega, q, m) = \inf_{\substack{s \in \mathbb{R}, \\ p \in \mathbb{R}^d}} \left\{ (1+q)s - m\mathbf{1}^\mathsf{T} p \mid (I-A)^\mathsf{T} p - (B\mathbf{1})s \le X(\omega) + Bv, p \in [0, \bar{p}] \right\}.$$

- $G(\omega,q,m)$ is finite if and only if $q \ge -1$. So add $Q \ge -1$ as a constraint.
- Solve efficiently using a bundle method.

• A similar dual formulation can be derived for

$$\mathscr{P}_{2}(v) = \inf \left\{ \alpha \in \mathbb{R} \mid \rho \left(\Lambda \circ (X + B(v + \alpha \mathbf{1})) \right) \leq 0 \right\}.$$

We obtain

$$\mathscr{P}_{2}(v) = \sup_{\substack{M \in L_{+}^{1}, \\ Q \in L^{1}: \mathbb{E}[Q] = 0}} \left(\mathbb{E} \left[G \circ (Q, M) \right] - \alpha(M) \right),$$

where $G \colon \Omega \times \mathbb{R} \times \mathbb{R} \to \overline{\mathbb{R}}$ is defined by

$$G(\omega, q, m) = \inf_{\substack{s \in \mathbb{R}, \\ p \in \mathbb{R}^d}} \left\{ (1+q)s - m\mathbf{1}^\mathsf{T} p \mid (I-A)^\mathsf{T} p - (B\mathbf{1})s \le X(\omega) + Bv, p \in [0, \bar{p}] \right\}.$$

- $G(\omega,q,m)$ is finite if and only if $q \ge -1$. So add $Q \ge -1$ as a constraint.
- Solve efficiently using a bundle method.
- Overall method: Run convex Benson's algorithm with these subroutines for $P_1(w)$ and $P_2(v)$.

- Same setup as in Eisenberg-Noe '01 model
- $\bullet \ d \text{ banks}$
- Total liabilities vector: $\bar{p} \in \mathbb{R}^d_+$
- Relative liabilities matrix: $A \in \mathbb{R}^{d \times d}$ (zero diagonal elements)

- Same setup as in Eisenberg-Noe '01 model
- d banks
- Total liabilities vector: $\bar{p} \in \mathbb{R}^d_+$
- Relative liabilities matrix: $A \in \mathbb{R}^{d \times d}$ (zero diagonal elements)
- New feature: Assume x ∈ ℝ^d has possibly negative entries, i.e., some banks might have external liabilities (e.g. operating costs) yielding a negative net exposure.
- Easy fix proposed in Eiseberg, Noe '01: "Those operating costs could be captured by appending to the financial system a "sink node," labeled, say, node 0."
- For us, this would mean changing the network structure both randomly and as part of the decision variable (recall $\Lambda \circ (X + Bz)$). \rightarrow too complicated
- Major drawback: No seniority between interbank liabilities and external liabilities of a node.
- We propose an extension where external liabilities have a seniority over interbank liabilities, i.e., bank *i* pays some/all of its interbank liabilities only when $x_i + \sum_{j=1}^{d} A_{ji} p_j > 0$. (No worries when $x_i \ge 0$, as expected.)

• Clearing payment vector $p \in \mathbb{R}^d_+$ solves the fixed point problem

$$p_{i} = \Phi_{i}(p) \coloneqq \begin{cases} \bar{p}_{i} & \text{if } \bar{p}_{i} < x_{i} + \sum_{j=1}^{d} A_{ji}p_{j}, \\ x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} & \text{if } \bar{p}_{i} \ge x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} > 0, \quad i \in \{1, \dots, d\}, \\ 0 & \text{if } x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} \le 0, \end{cases}$$

i.e., $p = \Phi(p) \coloneqq (\bar{p} \land (x + A^{\mathsf{T}}p))^+$.

• Clearing payment vector $p \in \mathbb{R}^d_+$ solves the fixed point problem

$$p_{i} = \Phi_{i}(p) \coloneqq \begin{cases} \bar{p}_{i} & \text{if } \bar{p}_{i} < x_{i} + \sum_{j=1}^{d} A_{ji}p_{j}, \\ x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} & \text{if } \bar{p}_{i} \ge x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} > 0, \quad i \in \{1, \dots, d\}, \\ 0 & \text{if } x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} \le 0, \end{cases}$$

i.e., $p = \Phi(p) \coloneqq (\bar{p} \land (x + A^{\mathsf{T}}p))^+$.

• Unlike the case $x \ge 0$, an LP characterization of a clearing vector is not possible.

• Clearing payment vector $p \in \mathbb{R}^d_+$ solves the fixed point problem

$$p_{i} = \Phi_{i}(p) \coloneqq \begin{cases} \bar{p}_{i} & \text{if } \bar{p}_{i} < x_{i} + \sum_{j=1}^{d} A_{ji}p_{j}, \\ x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} & \text{if } \bar{p}_{i} \ge x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} > 0, \quad i \in \{1, \dots, d\}, \\ 0 & \text{if } x_{i} + \sum_{j=1}^{d} A_{ji}p_{j} \le 0, \end{cases}$$

i.e., $p = \Phi(p) \coloneqq (\bar{p} \wedge (x + A^{\mathsf{T}}p))^+$.

- Unlike the case $x \ge 0$, an LP characterization of a clearing vector is not possible.
- Instead: We show that a clearing vector p can be calculated as an optimal solution of the following mixed integer linear programming (MILP) problem.

$$\begin{aligned} \text{maximize } & \sum_{i=1}^{d} p_i \\ \text{s.t. } & p_i \le x_i + \sum_{j=1}^{d} A_{ji} p_j + M(1-s_i), \quad i \in \{1, \dots, d\} \\ & x_i + \sum_{j=1}^{d} A_{ji} p_j \le M s_i, \quad i \in \{1, \dots, d\} \\ & 0 \le p_i \le \bar{p}_i s_i, \quad i \in \{1, \dots, d\} \\ & s_i \in \{0, 1\}, \quad i \in \{1, \dots, d\}. \end{aligned}$$

- Let $\Lambda(x)$ be the optimal value of the MILP.
- Λ is decreasing but not quasiconcave in general.
- $R^{sen}(X)$ may be a nonconvex set.

- Let $\Lambda(x)$ be the optimal value of the MILP.
- Λ is decreasing but not quasiconcave in general.
- $R^{sen}(X)$ may be a nonconvex set.
- Nevertheless, we can calculate $R^{\rm sen}(X)$ at least in the case where ρ is shifted negative expectation, that is,

$$R^{\mathrm{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \mathbb{E}\left[\Lambda \circ (X + Bz) \right] \ge \gamma \mathbf{1}^{\mathsf{T}} \bar{p} \right\},\$$

where $\gamma \in [0,1]$ is the average fraction of total debt that should be paid at clearing.

• Calculate by nonconvex Benson's algorithm (Nobakhtian, Shafiei '17): solves $P_1(w)$ and $P_2(v)$ like the convex one but replaces supporting halfspaces with supporting (shifted) cones.

- Same setup as in Eisenberg-Noe '01 model
- d banks
- Wealth vector: $x \in \mathbb{R}^d_+$ (classical case)
- Total liabilities vector: $\bar{p} \in \mathbb{R}^d_+$
- Relative liabilities matrix: $A \in \mathbb{R}^{d \times d}_+$ (zero diagonal elements)

- Same setup as in Eisenberg-Noe '01 model
- d banks
- Wealth vector: $x \in \mathbb{R}^d_+$ (classical case)
- Total liabilities vector: $\bar{p} \in \mathbb{R}^d_+$
- Relative liabilities matrix: $A \in \mathbb{R}^{d \times d}_+$ (zero diagonal elements)
- New feature: A defaulting bank can use only a fraction of its liquid assets, say $\theta \in (0, 1]$ of its wealth and $\beta \in (0, 1]$ of what it receives from other banks.

- Same setup as in Eisenberg-Noe '01 model
- d banks
- Wealth vector: $x \in \mathbb{R}^d_+$ (classical case)
- Total liabilities vector: $\bar{p} \in \mathbb{R}^d_+$
- Relative liabilities matrix: $A \in \mathbb{R}^{d \times d}_+$ (zero diagonal elements)
- New feature: A defaulting bank can use only a fraction of its liquid assets, say $\theta \in (0,1]$ of its wealth and $\beta \in (0,1]$ of what it receives from other banks.
- Clearing payment vector $p \in \mathbb{R}^d_+$ solves the fixed point problem

$$p_i = \Phi_i(p) \coloneqq \begin{cases} \bar{p}_i & \text{if } \bar{p}_i \le x_i + \sum_{j=1}^d A_{ji} p_j, \\ \frac{\theta x_i + \beta \sum_{j=1}^d A_{ji} p_j}{\theta x_i + \beta \sum_{j=1}^d A_{ji} p_j} & \text{if } \bar{p}_i > x_i + \sum_{j=1}^d A_{ji} p_j, \end{cases} \quad i \in \{1, \dots, d\}.$$

- Φ_i has a discontinuity whenever $\bar{p}_i = x_i + \sum_{j=1}^d A_{ji} p_j$.
- Existence of solution is still guaranteed by Knaster-Tarski theorem.
- Greatest clearing vector algorithm / Gaussian elimination (El Bitar, Kabanov, Mokbel '18)

• Unlike in Eisenberg, Noe '01 model, an LP characterization of a clearing vector is not possible due to the jumps in Φ .

n

- Unlike in Eisenberg, Noe '01 model, an LP characterization of a clearing vector is not possible due to the jumps in Φ.
- Instead: We introduce binary variables for the jumps and find a clearing vector by solving the following MILP:

$$\begin{array}{l} \text{maximize } \sum_{i=1}^{d} p_i \\ \text{s.t. } p_i \leq \theta x_i + \beta \sum_{j=1}^{d} A_{ji} p_j + \bar{p}_i s_i, \quad i \in \{1, \dots, d\} \\ p_i s_i \leq x_i + \sum_{j=1}^{d} A_{ji} p_j, \quad i \in \{1, \dots, d\} \\ 0 \leq p_i \leq \bar{p}_i, \quad i \in \{1, \dots, d\} \\ s_i \in \{0, 1\}, \quad i \in \{1, \dots, d\}. \end{array}$$

- Unlike in Eisenberg, Noe '01 model, an LP characterization of a clearing vector is not possible due to the jumps in Φ.
- Instead: We introduce binary variables for the jumps and find a clearing vector by solving the following MILP:

$$\begin{array}{l} \text{maximize } \sum_{i=1}^{d} p_i \\ \text{s.t. } p_i \leq \theta x_i + \beta \sum_{j=1}^{d} A_{ji} p_j + \bar{p}_i s_i, \quad i \in \{1, \dots, d\} \\ p_i s_i \leq x_i + \sum_{j=1}^{d} A_{ji} p_j, \quad i \in \{1, \dots, d\} \\ 0 \leq p_i \leq \bar{p}_i, \quad i \in \{1, \dots, d\} \\ s_i \in \{0, 1\}, \quad i \in \{1, \dots, d\}. \end{array}$$

• As before the optimal value gives the total debt paid in the system. Let us call it $\Lambda(x)$, the value of the aggregation function.

- Λ is increasing but fails to be quasiconcave in general.
- $X \mapsto R^{sen}(X) = \{z \in \mathbb{R}^g_+ \mid \rho(\Lambda \circ (X + Bz)) \le 0\}$ fails to be quasiconvex in general.
- Consequently, $R^{sen}(X)$ may be a nonconvex set.

- Λ is increasing but fails to be quasiconcave in general.
- $X \mapsto R^{sen}(X) = \{z \in \mathbb{R}^g_+ \mid \rho(\Lambda \circ (X + Bz)) \le 0\}$ fails to be quasiconvex in general.
- Consequently, $R^{sen}(X)$ may be a nonconvex set.
- Nevertheless, we can calculate $R^{sen}(X)$ at least when

$$R^{\mathrm{sen}}(X) = \left\{ z \in \mathbb{R}^g \mid \mathbb{E} \left[\Lambda \circ (X + Bz) \right] \ge \gamma \mathbf{1}^{\mathsf{T}} \bar{p} \right\},\$$

where $\gamma \in [0,1]$ is the average fraction of total debt that should be paid at clearing.

• Nonconvex Benson's algorithm (Nobakhtian, Shafiei '17).

- Two groups: big banks ("core") and small banks ("periphery")
- Random shock: Gaussian copula with gamma marginals (positive case), Gaussian random vector (signed case)
- Network structure generated as an instance of a random network with independent coin flips for connections and gamma distributed nominal liabilities
- Probabilities: core-core: high, core-periphery: medium, periphery-core: low, periphery-periphery: low
- Risk measure: Negative expectation, AVaR at 95%, entropic risk measure

- Eisenberg-Noe model with $X \geq 0$
- Negative expectation with $15 \mbox{ big banks}, 50 \mbox{ small banks}$

#scenarios	time (s)	#opt.	time/opt.	#bundle	#bunde/opt.
50	325	33	9.6	411	12.45
100	653	33	19.7	497	15.01
200	1376	33	41.5	545	16.52
400	2462	33	73.7	480	14.55
800	4836	33	142.2	446	13.52
1600	10339	35	277.4	458	13.01
3200	out of mem.				

• Other risk measures: some numerical issues with the bundle algorithm to be fixed

Eisenberg-Noe with positive random shock

- Two groups: 15 big banks ("core") and 50 small banks ("periphery")
- 50 scenarios, risk-neutral

Eisenberg-Noe with signed random shock

- Two groups: 7 big banks ("core") and 8 small banks ("periphery")
- 10 scenarios

Eisenberg-Noe with signed random shock

- Three groups: 3 big banks, 5 medium banks, 10 small banks
- 20 scenarios, $\gamma = 0.82$
- Inner approximation with 1289 vertices

Eisenberg-Noe with signed random shock

- Three groups: 3 big banks, 5 medium banks, 10 small banks
- 20 scenarios, $\gamma = 0.82$
- Complement of outer approximation with 2685 vertices

Happy birthday Yuri Kabanov!