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Systemic risk measures

Financial network with d institutions

Future wealths of institutions: X = (X1, . . . , Xd) ∈ L∞d (Ω,F ,P) “random shock”

Look for a capital allocation vector y ∈ Rd that is “inserted” to the system before
the shock is realized in such a way that the system becomes safe enough.

Aggregation function Λ: Rd → R:

- Increasing function

- Λ ◦X ∈ L∞1 is a quantification of the impact of the wealths to society.

- Simple examples: Λ(x) =
∑d
i=1 xi, Λ(x) = −

∑d
i=1 x

−
i

- More sophisticated examples to be considered:
Eisenberg, Noe ’01 and Rogers, Veraart ’13 models.

Scalar convex risk measure ρ : L∞1 → R to test the acceptability of Λ ◦X:

ρ(Z) = sup
S�P

(
ES [−Z]− α(S)

)
, α(S) = sup

Z∈L∞
1

(
ES [−Z]− ρ(Z)

)
e.g. negative expectation, average-value-at-risk, optimized certainty equivalents,
entropic risk measure, utility-based shortfall risk measures
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Systemic risk measures

Systemic risk measure insensitive to capital levels (Chen et al. ’13):

ρins(X) = ρ(Λ ◦X) = inf

{
d∑
i=1

yi | ρ

(
Λ ◦X +

d∑
i=1

yi

)
≤ 0

}
.

Systemic risk measure sensitive to capital levels (Feinstein et al. ’17, Fouque et al. ’18):

Rsen(X) =
{
y ∈ Rd | ρ (Λ ◦ (X + y)) ≤ 0

}
.

Rsen is a set-valued risk measure with dual representation (A., Rudloff ’16):

Rsen(X) =
⋂

Q∈Md(P),w∈Rd
+\{0}

EQ [−X] +
{
z ∈ Rd | wTz ≥ −αsys(Q, w)

}
,

where αsys is the systemic penalty function given by

αsys(Q, w) = inf
S≈P

(
α(S) + ES

[
g

(
w1
dQ1

dS
, . . . , wd

dQd
dS

)])
.

- S ≈ P probability measure of society

- Qi � P probability meaure of bank i

- g(y) = supx∈Rd

(
Λ(x)− xTy

)
conjugate function

- multivariate g-divergence
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Systemic risk measures

Today: How to compute

Rsen(X) =
{
y ∈ Rd | ρ (Λ ◦ (X + y)) ≤ 0

}
.

in the case of finitely many scenarios?

Vector optimization problem:

minimize y w.r.t. Rd+ subject to ρ(Λ ◦ (X + y)) ≤ 0, y ∈ Rd.

First trouble: Available algorithms for vector optimization work well mostly for 2-4
objectives.

Remedy: Simplify the risk measure by categorizing the banks into few groups and
choose the same capital allocation for all members of a group (Feinstein et al.’17).

Suppose there are g groups. Use a 0-1 matrix B ∈ Rd×g so that for a capital
allocation vector z ∈ Rg for groups

Bz = (z1, . . . , z1; . . . ; zg, . . . , zg)
T ∈ Rd

gives the capital allocation vector for banks.

From now on, let us redefine Rsen(X) as

Rsen(X) = {z ∈ Rg | ρ (Λ ◦ (X +Bz)) ≤ 0} .

(The case d = g with B = I recovers the earlier definition.)
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in the case of finitely many scenarios?

Vector optimization problem:

minimize z w.r.t. Rg+ subject to ρ(Λ ◦ (X +Bz)) ≤ 0, z ∈ Rg.

Second (the real) trouble: In typical network models, Λ is a nonsmooth and
sometimes even nonconcave function defined in terms of a fixed point problem. We
will consider two models:

1 Eisenberg, Noe ’01 model: Λ is concave and it can be calculated as the value of a
linear programming problem.

- Efficient calculation of the convex set Rsen(X) by exploiting the structure of
the constraint using scenario decompositions

2 Rogers, Veraart ’13 model: We propose a mixed integer linear programming
problem to calculate Λ(x).

- Calculation of the nonconvex set Rsen(X) in the risk-neutral case ρ = −E
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Eisenberg-Noe ’01 Model

Banks: nodes 1, . . . , d

Wealth vector: x = (x1, . . . , xd)
T ∈ Rd+ (a realization of the random shock X)

Nominal liabilities: (`ij)1≤i,j≤d

x1

x2

x3

`12 = 2

`13 = 3
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Eisenberg-Noe ’01 Model

Banks: nodes 1, . . . , d

Wealth vector: x = (x1, . . . , xd) ∈ Rd+ (a realization of the random shock X)

Matrix of nominal liabilities: (`ij)1≤i,j≤d

Total liability of entity i: p̄i =
∑d
j=0 `ij

Relative liability of i to j: Aij =
`ij
p̄i

x1

x2

x3

A12 = 0.4

A13 = 0.6
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Eisenberg-Noe ’01 Model

Clearing payment vector: p = (p1, . . . , pd)

Each bank pays either what it owes or what it has.

p ∈ Rd+ is the solution of the fixed point problem

pi = p̄i ∧

(
xi +

d∑
j=1

Ajipj

)
, i ∈ {1, . . . , d} ,

i.e., p = p̄ ∧
(
x+ATp

)
.

LP formulation: p can be computed as an optimal solution of the linear program

maximize 1Tp subject to p ≤ x+ATp, 0 ≤ p ≤ p̄.

Clearing vector exists since the LP is bounded (or by Brouwer’s fixed point theorem).

Aggregation function: Define Λ(x) to be the optimal value of the LP.

Total debt paid at clearing.

Other possibilities for Λ(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.
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Back to computation of Rsen(X)

The aim is to compute

Rsen(X) = {z ∈ Rg | ρ (Λ ◦ (X +Bz)) ≤ 0} ,

where Λ is the increasing concave but nonsmooth function defined by

Λ(x) = sup
{
1Tp | (I −A)Tp ≤ x, 0 ≤ p ≤ p̄

}
.

Vector optimization problem:

minimize z w.r.t. Rg+ subject to ρ(Λ ◦ (X +Bz)) ≤ 0, (X +Bz ≥ 0), z ∈ Rg.

Use Benson’s algorithm for convex vector optimization problems (Löhne et al.’14).
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Convex Benson algorithm

The algorithm solves two types of scalar problems:

1 P1(w): weighted sum scalarization with weight vector w ∈ Rg+\{0}

P1(w) = inf
z∈Rsen(X)

wTz = inf
z∈Rg

{
wTz | ρ (Λ ◦ (X +Bz)) ≤ 0

}
2 P2(v): scalarization by a reference variable v /∈ Rsen(X)

Find the minimum step-length α ∈ R to enter Rsen(X) from v along the direction
1 ∈ Rg

P2(v) = inf {α ∈ R | v + α1 ∈ Rsen(X)}
= inf {α ∈ R | ρ (Λ ◦ (X +B(v + α1))) ≤ 0}

Marseille Computation of systemic risk measures September 4, 2018



Convex Benson algorithm

The algorithm solves two types of scalar problems:

1 P1(w): weighted sum scalarization with weight vector w ∈ Rg+\{0}

P1(w) = inf
z∈Rsen(X)

wTz = inf
z∈Rg

{
wTz | ρ (Λ ◦ (X +Bz)) ≤ 0

}
2 P2(v): scalarization by a reference variable v /∈ Rsen(X)

Find the minimum step-length α ∈ R to enter Rsen(X) from v along the direction
1 ∈ Rg

P2(v) = inf {α ∈ R | v + α1 ∈ Rsen(X)}
= inf {α ∈ R | ρ (Λ ◦ (X +B(v + α1))) ≤ 0}

Marseille Computation of systemic risk measures September 4, 2018



Solving P1(w)

How to calculate P1(w) = infz∈Rg

{
wTz | ρ (Λ ◦ (X +Bz)) ≤ 0

}
?

The input X +Bz of Λ has both a random part and a decision variable part!

Cannot simply give to convex optimization solver!

Lagrange dualize the constraint (after justifying strong duality).

P1(w) = sup
γ≥0

inf
z∈Rg

(
wTz + γρ(Λ ◦ (X +Bz))

)

Use the dual representation of ρ and Sion’s minimax theorem.

P1(w) = sup
γ≥0,S�P

(
inf
z∈Rg

(
wTz − γES [Λ ◦ (X +Bz)]

)
− γα(S)

)

To have a concave maximization problem, pass to finite measures via M := γ dS
dP and

α(M) := γα(S) by slight abuse of notation.

P1(w) = sup
M∈L1

+

(
inf
z∈Rg

(
wTz − E [MΛ ◦ (X +Bz)]

)
− α(M)

)
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Solving P1(w)

Recall the definition of Λ as a sup and use the famous Theorem 14.60 in
Rockafellar, Wets ’97 to swap sup−E.

P1(w) = sup
M∈L1

+

 inf
P∈[0,p̄],
z∈Rg

{
wTz − E

[
M1TP

]
| (I −A)TP −Bz ≤ X

}
− α(M)



Last step: In the inner problem, randomize z as Z, add the constraint Z = EZ, and
Lagrange dualize it.

inf
P∈[0,p̄],
Z∈L∞

g

{
E
[
wTZ −M1TP

]
| (I −A)TP −BZ ≤ X,Z = E [Z]

}
= sup
U∈L1

g

inf
P∈[0,p̄],
Z∈L∞

g

{
E
[
wTZ −M1TP

]
+ E

[
UT(Z − EZ)

]
| (I −A)TP −BZ ≤ X

}

= sup
U∈L1

g

inf
P∈[0,p̄],
Z∈L∞

g

{
E
[
wTZ −M1TP

]
+ E

[
(U − EU)TZ

]
| (I −A)TP −BZ ≤ X

}
= sup
U∈L1

g : EU=0

inf
P∈[0,p̄],
Z∈L∞

g

{
E
[
(w + U)T Z −M1TP

]
| (I −A)TP −BZ ≤ X

}
.
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Solving P1(w)

Long story short: We decomposed the nonsmooth objective function of the dual
(sup) problem into scenario subproblems (minus the penalty term):

P1(w) = sup
M∈L1

+,

U∈L1
g : E[U ]=0

(E [F ◦ (U,M)]− α(M)) ,

where F : Ω× Rg × R→ R̄ is defined by

F (ω, u,m) := inf
p∈Rd,
z∈Rg

{
(w + u)T z −m1Tp | (I −A)Tp−Bz ≤ X(ω), p ∈ [0, p̄]

}
.

F (ω, u,m) is finite if and only if u ≥ −w. So add U ≥ −w as a constraint.
Such problems are solved efficiently using bundle methods. In a nutshell, these
methods

obtain piecewise-affine upper approximations of F (ω, ·, ·),−α(·) at a feasible
point (U (k),M (k)), call them F̃ (k),−α̃(k),
solve the master problem

sup
M∈L1

+,

U∈L1
g : E[U ]=0

(
E
[
F̃ (k) ◦ (U,M)

]
− α̃(k)(M)− (quadratic term)

)

to find a “better” solution (U (k+1),M (k+1)),
stop when the approximation is good enough.
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Solving P2(v)

A similar dual formulation can be derived for

P2(v) = inf {α ∈ R | ρ (Λ ◦ (X +B(v + α1))) ≤ 0} .

We obtain
P2(v) = sup

M∈L1
+,

Q∈L1 : E[Q]=0

(E [G ◦ (Q,M)]− α(M)) ,

where G : Ω× R× R→ R̄ is defined by

G(ω, q,m) = inf
s∈R,
p∈Rd

{
(1 + q)s−m1Tp | (I −A)Tp− (B1)s ≤ X(ω) +Bv, p ∈ [0, p̄]

}
.

G(ω, q,m) is finite if and only if q ≥ −1. So add Q ≥ −1 as a constraint.

Solve efficiently using a bundle method.

Overall method: Run convex Benson’s algorithm with these subroutines for P1(w)
and P2(v).
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Eisenberg Noe’01 model with signed random shock

Same setup as in Eisenberg-Noe ’01 model

d banks

Total liabilities vector: p̄ ∈ Rd+
Relative liabilities matrix: A ∈ Rd×d (zero diagonal elements)

New feature: Assume x ∈ Rd has possibly negative entries, i.e., some banks might
have external liabilities (e.g. operating costs) yielding a negative net exposure.

Easy fix proposed in Eiseberg, Noe ’01: “Those operating costs could be captured by
appending to the financial system a ”sink node,” labeled, say, node 0.”

For us, this would mean changing the network structure both randomly and as part
of the decision variable (recall Λ ◦ (X +Bz)). → too complicated

Major drawback: No seniority between interbank liabilities and external liabilities of
a node.

We propose an extension where external liabilities have a seniority over interbank
liabilities, i.e., bank i pays some/all of its interbank liabilities only when
xi +

∑d
j=1 Ajipj > 0. (No worries when xi ≥ 0, as expected.)
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Eisenberg Noe’01 model with signed random shock

Clearing payment vector p ∈ Rd+ solves the fixed point problem

pi = Φi(p) :=


p̄i if p̄i < xi +

∑d
j=1 Ajipj ,

xi +
∑d
j=1 Ajipj if p̄i ≥ xi +

∑d
j=1 Ajipj > 0,

0 if xi +
∑d
j=1 Ajipj ≤ 0,

i ∈ {1, . . . , d} ,

i.e., p = Φ(p) := (p̄ ∧ (x+ATp))+.

Unlike the case x ≥ 0, an LP characterization of a clearing vector is not possible.
Instead: We show that a clearing vector p can be calculated as an optimal solution
of the following mixed integer linear programming (MILP) problem.

maximize
d∑
i=1

pi

s.t. pi ≤ xi +

d∑
j=1

Ajipj +M(1− si), i ∈ {1, . . . , d}

xi +

d∑
j=1

Ajipj ≤Msi, i ∈ {1, . . . , d}

0 ≤ pi ≤ p̄isi, i ∈ {1, . . . , d}
si ∈ {0, 1} , i ∈ {1, . . . , d} .
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Eisenberg Noe’01 model with signed random shock

Let Λ(x) be the optimal value of the MILP.

Λ is decreasing but not quasiconcave in general.

Rsen(X) may be a nonconvex set.

Nevertheless, we can calculate Rsen(X) at least in the case where ρ is shifted
negative expectation, that is,

Rsen(X) =
{
z ∈ Rg | E [Λ ◦ (X +Bz)] ≥ γ1Tp̄

}
,

where γ ∈ [0, 1] is the average fraction of total debt that should be paid at clearing.

Calculate by nonconvex Benson’s algorithm (Nobakhtian, Shafiei ’17): solves P1(w) and
P2(v) like the convex one but replaces supporting halfspaces with supporting
(shifted) cones.
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Rogers-Veraart ’13 model

Same setup as in Eisenberg-Noe ’01 model

d banks

Wealth vector: x ∈ Rd+ (classical case)

Total liabilities vector: p̄ ∈ Rd+
Relative liabilities matrix: A ∈ Rd×d+ (zero diagonal elements)

New feature: A defaulting bank can use only a fraction of its liquid assets, say
θ ∈ (0, 1] of its wealth and β ∈ (0, 1] of what it receives from other banks.

Clearing payment vector p ∈ Rd+ solves the fixed point problem

pi = Φi(p) :=

{
p̄i if p̄i ≤ xi +

∑d
j=1 Ajipj ,

θxi + β
∑d
j=1 Ajipj if p̄i > xi +

∑d
j=1 Ajipj ,

i ∈ {1, . . . , d} .

Φi has a discontinuity whenever p̄i = xi +
∑d
j=1 Ajipj .

Existence of solution is still guaranteed by Knaster-Tarski theorem.

Greatest clearing vector algorithm / Gaussian elimination (El Bitar, Kabanov, Mokbel ’18)
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Rogers-Veraart ’13 model

Unlike in Eisenberg, Noe ’01 model, an LP characterization of a clearing vector is
not possible due to the jumps in Φ.

Instead: We introduce binary variables for the jumps and find a clearing vector by
solving the following MILP:

maximize
d∑
i=1

pi

s.t. pi ≤ θxi + β

d∑
j=1

Ajipj + p̄isi, i ∈ {1, . . . , d}

pisi ≤ xi +

d∑
j=1

Ajipj , i ∈ {1, . . . , d}

0 ≤ pi ≤ p̄i, i ∈ {1, . . . , d}
si ∈ {0, 1} , i ∈ {1, . . . , d} .

As before the optimal value gives the total debt paid in the system. Let us call it
Λ(x), the value of the aggregation function.
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Rogers-Veraart ’13 model

Λ is increasing but fails to be quasiconcave in general.

X 7→ Rsen(X) =
{
z ∈ Rg+ | ρ(Λ ◦ (X +Bz)) ≤ 0

}
fails to be quasiconvex in

general.

Consequently, Rsen(X) may be a nonconvex set.

Nevertheless, we can calculate Rsen(X) at least when

Rsen(X) =
{
z ∈ Rg | E [Λ ◦ (X +Bz)] ≥ γ1Tp̄

}
,

where γ ∈ [0, 1] is the average fraction of total debt that should be paid at clearing.

Nonconvex Benson’s algorithm (Nobakhtian, Shafiei ’17).
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Computational study

Two groups: big banks (“core”) and small banks (“periphery”)

Random shock: Gaussian copula with gamma marginals (positive case), Gaussian
random vector (signed case)

Network structure generated as an instance of a random network with independent
coin flips for connections and gamma distributed nominal liabilities

Probabilities: core-core: high, core-periphery: medium, periphery-core: low,
periphery-periphery: low

Risk measure: Negative expectation, AVaR at 95%, entropic risk measure
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Decomposition performance

Eisenberg-Noe model with X ≥ 0

Negative expectation with 15 big banks, 50 small banks

#scenarios time (s) #opt. time/opt. #bundle #bunde/opt.

50 325 33 9.6 411 12.45
100 653 33 19.7 497 15.01
200 1376 33 41.5 545 16.52
400 2462 33 73.7 480 14.55
800 4836 33 142.2 446 13.52

1600 10339 35 277.4 458 13.01
3200 out of mem.

Other risk measures: some numerical issues with the bundle algorithm to be fixed
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Eisenberg-Noe with positive random shock

Two groups: 15 big banks (“core”) and 50 small banks (“periphery”)

50 scenarios, risk-neutral
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Eisenberg-Noe with signed random shock

Two groups: 7 big banks (“core”) and 8 small banks (“periphery”)

10 scenarios
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Eisenberg-Noe with signed random shock

Three groups: 3 big banks, 5 medium banks, 10 small banks

20 scenarios, γ = 0.82

Inner approximation with 1289 vertices
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Eisenberg-Noe with signed random shock

Three groups: 3 big banks, 5 medium banks, 10 small banks

20 scenarios, γ = 0.82

Complement of outer approximation with 2685 vertices
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Happy birthday Yuri Kabanov!
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