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Problem formulation

Given:

→ a population of agents whose type evolves in time

→ agents select their own actions/strategies in time

→ agents face a cost that depends on their own type, action, and
on the mean-field interaction with the rest of the population

Aim:

→ characterize equilibria for games in this setting

→ develop & exploit connection with causal optimal transport
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Setting

Discrete time t = 1, ...,T ; game played at time t = 1.

XT = path-space of types, and YT = path-space of actions

ηi ∈ P(XT ): type distribution for player i = 1, ...,N (known)

Cost function: F (x , y , ν)
↗ ↑ ↖

type action actions
x∈XT y∈YT distribution

ν∈P(YT )

Usually: F (x , y , ν) =
T∑
t=1

Ft(x1:t , y1:t , ν1:t)
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Example 1

Route planning

X = {possible destinations}, Y = {possible routes}

Population: holiday makers in the same region.

Type: next destination.

Action: which route to take to reach the next destination.

Mean-field interaction: traffic.

Cost: takes into account distance/tolls relative to the chosen
destination, and the congestion effect.
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Example 2

Consumption/investment planning

X = R+, Y = Rn × R+

Population: investors in a given market with n risky assets
and 1 riskless asset.

Type: x = consumption appetite/need.

Action: consumptions c , # shares in each risky asset.

Mean-field interaction: via price impact.

Cost: takes into account the relation x/c , and the expected
terminal wealth (price impact effect).
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Pure Nash equilibrium

Ft : all agents’ type up to time t (common knowledge)

Pure strategy: F-adapted YN -valued process (Y 1, ...,Y N)

Cost faced by player i for every pure strategy (Y 1, ...,Y N):

J i (Y 1, ...,Y N) :=

∫
XN×T

F
Ä
X i ,Y i , 1

N

∑N
k=1 δY k

ä
η̄(dX ),

where η̄ := ⊗i≤N ηi (average over all possible type evolutions)

Definition (Pure Nash equilibrium)

(Y 1, ...,Y N) is a Pure Nash equilibrium if, for all i and all
F-adapted Y-valued processes ‹Y i :

J i (Y 1, ...,Y N) ≤ J i (Y 1, ..,Y i−1, ‹Y i ,Y i+1, ..,Y N).

→ Pure equilibria rarely exists ⇒ consider randomized strategies
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Mixed Nash equilibrium

Idea: actions no more adapted to types, simply non-anticipative

Mixed-strategy: measurable Z : XN×T → P(YN×T ) s.t. ∀t:∫
YN×T

f
Ä¶

Y k
s : s ≤ t, k ≤ N

©ä
Z (dY )

is Ft-measurable, for all bounded Borel functions f : YN×t → R.

Cost: Li (Z ) :=
∫ ∫

F
Ä
X i ,Y i , 1

N

∑N
k=1 δY k

ä
Z (X )(dY ) η̄(dX )

Definition (Mixed Nash equilibrium)

A mixed strategy Z is called a Mixed Nash equilibrium if, for all i ,

Li (Z ) ≤ Li (‹Z ) for all mixed strategies ‹Z s.t.∫
YN×T

f ({Y k : k 6= i})Z (dY ) =

∫
YN×T

f ({Y k : k 6= i})‹Z (dY ) η̄-a.s.

for every bounded Borel f : Y(N−1)×T → R.
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From N-player game to asymptotic approximation

Problems:

search for equilibria: very difficult

even when they exist, difficult to characterize

Approach:

For large systems of players, approximate this problem with a
simpler one (asymptotic problem, for a continuum of players)

⇐\ Under appropriate conditions, equilibria for asymptotic
problem provides ε-Nash equilibria for N-player game

Z⇒ Vice versa, when Nash equilibria converge in the right sense,
the limits are equilibria for asymptotic problem

in particular ηi “converge” to some η ∈ P(XT )

→ We study asymptotic problem for a type-distribution η
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Our toolkit: Optimal Transport

Optimal Transport: given two Polish spaces (X , µ), (Y, ν),
and a cost function c : X × Y → R, minimize cost of
transportation of µ into ν:

inf {Eπ[c(x , y)] : π ∈ Π(µ, ν)}

Π(µ, ν) := {π ∈ P(X × Y) : X -marginal µ, Y-marginal ν}

Our setting: X = XT ,Y = YT , and we transport type
distribution η (known) into optimal action distribution
(unknown), in a non-anticipative way (causal transports):

π(dyt |dx1, · · · , dxT ) = π(dyt |dx1, · · · , dxt) ∀t

We denote Πc(η, ν) := {π ∈ Π(η, ν) : π causal}
Πc(η, .) := ∪ξ∈P(YT )Πc(η, ξ)
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Pure equilibrium / Monge transport

x A(x)

A

type action

adapted pure strategy = adapted Monge transport 

η ?
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Mixed-strategy equilibrium / Kantorovich transport

x

type actions

non-anticipative mixed strategy = causal Kantorovich transport 

η ?
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Cournot-Nash equilibrium

N −→ ∞

(ε-)Nash equilibria Cournot-Nash equilibria

Definition (Cournot-Nash)

π∗ ∈ Πc(η, .) is called Cournot-Nash equilibrium if:

1. π∗ attains inf
π∈Πc (η,.)

Eπ[F (x , y , ν∗)],

2. π∗ has second marginal ν∗

Called pure if, ∀t, yt = gt(x1:t) π-a.s. for some measurable gt .
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Potential games

We study the asymptotic problem in the following setting:

I separable cost: F (x , y , ν) = f (x , y) + V [ν](y)
↗ ↖

idiosyncratic part mean-field interaction

I potential game: V is the first variation of E : P(YT )→ R:

lim
ε→0+

E(ν + ε(ξ − ν))− E(ν)

ε
=

∫
YT

V [ν]d(ξ−ν), ν, ξ ∈ P(YT )

Congestion effect: V c [ν](y) = h
(
dν
dm (y)

)
, with m ∈ P(YT )

reference measure, wrt which congestion measured, and h↗
Ec(ν) =

∫
YT H

(
dν
dm (y)

)
dm(y), where H(u) =

∫ u

0
h(s)ds

Attractive effect: V a[ν](y) =
∫
Y φ(y , z)dν(z), with φ cont,

symmetric, convex, minimal on the diagonal
Ea(ν) = 1

2

∫
YT

∫
YT φ(y , z)dν(z)dν(y)
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Variational problem

Consider the variational problem

(VP) inf
ν∈P(YT )

{
inf

π∈Πc (η,ν)
Eπ[f (x , y)]︸ ︷︷ ︸

COT(η, ν)

+ E [ν]

}

Theorem (Equivalence CN and VP)

Let E be convex, then the following are equivalent:

(i) π∗ is a Cournot-Nash equilibrium;

(ii) (p2(π∗), π∗) solves (VP).

Note: Convexity of E is only needed for “(i)⇒ (ii)”, and is e.g.
satisfied by Ec .
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Existence and uniqueness

Corollary (Existence)

Let f be l.s.c. and bounded below. Then

V = V c and growth condition on h ⇒ ∃ CN equilibria;

V = V a and growth condition on f ⇒ ∃ CN equilibria.

Growth conditions ensure existence of a solution ν∗ to (VP), and
COT(η, ν∗) admits a solution π∗ easily. Apply previous theorem.

Corollary (Uniqueness)

If E strictly convex ⇒ unique optimal distribution of actions
(all CN equilibria have same second marginal ν∗).

Indeed, ν 7→COT(η, ν) convex, hence E strictly convex implies
unique solution ν∗ for (VP). Then apply previous theorem.
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Structure of equilibria: first thoughts

Let X = Y = RT . Assume

η has independent increments, and

f (x , y) = f1(x1, y1) +
∑T

t=2 ft(∆xt −∆yt), with ft convex.

Then:

CN equilibria are Knothe-Rosenblatt rearrangements
(and uniquely determined by the second marginal).

If moreover η has a density, all CN equilibria are pure.
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The Knothe-Rosenblatt map

X1 T1(x1)
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The Knothe-Rosenblatt map

X1 T1(x1)

x2
T2(x2|x1)
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Competitive vs cooperative equilibria

Cooperative equilibria: minimize average cost in N-player
game. Asymptotically this becomes:

inf
π∈Πc (η,.)

Eπ[F (x , y , p2(π))]

→ for competitive equilibria we had a fixed point problem

In the separable case:

inf
ν∈P(YT )

{COT(η, ν) + Eν [V [ν]] }

→ here equivalence always true with the above variational
problem, while for competitive equilibria we needed potential
games, and E convex
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Conclusions

We have seen:

A characterization of competitive equilibria via causal optimal
transport;

Existence and uniqueness results in the potential case;

First structural results via K-R rearrangements;

Hint to cooperative equilibria.

Work in progress:

Develop numerics for equilibria & price of anarchy.

Which form of transports/equilibria do we expect when the
K-R requirements are not fulfilled?

Exploit transport-typical concepts, such as displacement
convexity, e.g. to obtain uniqueness.
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Thank you for your attention

and Happy Birthday Yuri!
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