Problem formulation

Asymptotic formulation

Potential Games

Conclusions

Dynamic Cournot-Nash equilibrium via Causal Optimal Transport

Beatrice Acciaio London School of Economics

joint work with Julio Backhoff-Veraguas

Innovative Research in Mathematical Finance CIRM, 3-7 September, 2018

Potential Games

Problem formulation

Given:

- $\rightarrow\,$ a population of agents whose type evolves in time
- \rightarrow agents select their own actions/strategies in time
- $\rightarrow\,$ agents face a cost that depends on their own type, action, and on the mean-field interaction with the rest of the population

Potential Games

Problem formulation

Given:

- $\rightarrow\,$ a population of agents whose type evolves in time
- $\rightarrow\,$ agents select their own <code>actions/strategies</code> in time
- $\rightarrow\,$ agents face a cost that depends on their own type, action, and on the mean-field interaction with the rest of the population

<u>Aim</u>:

- $\rightarrow\,$ characterize equilibria for games in this setting
- $\rightarrow\,$ develop & exploit connection with causal optimal transport

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Setting			

- Discrete time t = 1, ..., T; game played at time t = 1.
- $\mathbb{X}^{\mathcal{T}}$ = path-space of types, and $\mathbb{Y}^{\mathcal{T}}$ = path-space of actions
- $\eta^i \in \mathcal{P}(\mathbb{X}^T)$: type distribution for player i = 1, ..., N (known)

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Setting			

- Discrete time t = 1, ..., T; game played at time t = 1.
- $\mathbb{X}^{\mathcal{T}}$ = path-space of types, and $\mathbb{Y}^{\mathcal{T}}$ = path-space of actions
- $\eta^i \in \mathcal{P}(\mathbb{X}^T)$: type distribution for player i = 1, ..., N (known)

Cost function:
$$F(x, y, \nu)$$

 $\nearrow \uparrow \nwarrow$
type action actions
 $x \in \mathbb{X}^T \ y \in \mathbb{Y}^T$ distribution
 $\nu \in \mathcal{P}(\mathbb{Y}^T)$

Problem formulation ○●○○○○	Asymptotic formulation	Potential Games	Conclusions
Setting			

- Discrete time t = 1, ..., T; game played at time t = 1.
- $\mathbb{X}^{\mathcal{T}}$ = path-space of types, and $\mathbb{Y}^{\mathcal{T}}$ = path-space of actions
- $\eta^i \in \mathcal{P}(\mathbb{X}^T)$: type distribution for player i = 1, ..., N (known)

Cost function:
$$F(x, y, \nu)$$

 $\nearrow \uparrow \checkmark$
type action actions
 $x \in \mathbb{X}^T \ y \in \mathbb{Y}^T$ distribution
 $\nu \in \mathcal{P}(\mathbb{Y}^T)$

Usually:
$$F(x, y, \nu) = \sum_{t=1}^{T} F_t(x_{1:t}, y_{1:t}, \nu_{1:t})$$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Example 1			

Route planning

 $\mathbb{X} = \{ \text{possible destinations} \}, \quad \mathbb{Y} = \{ \text{possible routes} \}$

- Population: holiday makers in the same region.
- Type: next destination.
- Action: which route to take to reach the next destination.
- Mean-field interaction: traffic.
- Cost: takes into account distance/tolls relative to the chosen destination, and the congestion effect.

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Example 2			

Consumption/investment planning

$$\mathbb{X} = \mathbb{R}_+, \quad \mathbb{Y} = \mathbb{R}^n \times \mathbb{R}_+$$

- Population: investors in a given market with *n* risky assets and 1 riskless asset.
- Type: *x* = consumption appetite/need.
- Action: consumptions c, # shares in each risky asset.
- Mean-field interaction: via price impact.
- Cost: takes into account the relation x/c, and the expected terminal wealth (price impact effect).

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Pure Nash equilit	prium		

 \mathcal{F}_t : all agents' type up to time t (common knowledge) Pure strategy: \mathcal{F} -adapted \mathbb{Y}^N -valued process $(Y^1, ..., Y^N)$ Cost faced by player i for every pure strategy $(Y^1, ..., Y^N)$:

$$J^{i}(Y^{1},...,Y^{N}) := \int_{\mathbb{X}^{N\times T}} F\left(X^{i},Y^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{Y^{k}}\right) \,\bar{\eta}(dX),$$

where $\bar{\eta} := \otimes_{i \leq N} \eta^i$ (average over all possible type evolutions)

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Pure Nash equilib	prium		

 \mathcal{F}_t : all agents' type up to time t (common knowledge) Pure strategy: \mathcal{F} -adapted \mathbb{Y}^N -valued process $(Y^1, ..., Y^N)$ Cost faced by player i for every pure strategy $(Y^1, ..., Y^N)$:

$$J^{i}(Y^{1},...,Y^{N}) := \int_{\mathbb{X}^{N\times T}} F\left(X^{i},Y^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{Y^{k}}\right) \,\bar{\eta}(dX),$$

where $\bar{\eta} := \otimes_{i \leq N} \eta^i$ (average over all possible type evolutions)

Definition (Pure Nash equilibrium)

 $(Y^1, ..., Y^N)$ is a Pure Nash equilibrium if, for all *i* and all \mathcal{F} -adapted \mathbb{Y} -valued processes \widetilde{Y}^i :

$$J^{i}(Y^{1},...,Y^{N}) \leq J^{i}(Y^{1},..,Y^{i-1},\widetilde{Y}^{i},Y^{i+1},..,Y^{N})$$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Pure Nash equilib	orium		

 \mathcal{F}_t : all agents' type up to time t (common knowledge) Pure strategy: \mathcal{F} -adapted \mathbb{Y}^N -valued process $(Y^1, ..., Y^N)$ Cost faced by player i for every pure strategy $(Y^1, ..., Y^N)$:

 $J^{i}(Y^{1},...,Y^{N}) := \int_{\mathbb{X}^{N\times T}} F\left(X^{i},Y^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{Y^{k}}\right) \,\bar{\eta}(dX),$

where $\bar{\eta}:=\otimes_{i\leq N}~\eta^i~$ (average over all possible type evolutions)

Definition (Pure Nash equilibrium)

 $(Y^1, ..., Y^N)$ is a Pure Nash equilibrium if, for all *i* and all \mathcal{F} -adapted \mathbb{Y} -valued processes \widetilde{Y}^i :

$$J^{i}(Y^{1},...,Y^{N}) \leq J^{i}(Y^{1},..,Y^{i-1},\widetilde{Y}^{i},Y^{i+1},..,Y^{N}).$$

 \rightarrow Pure equilibria rarely exists \Rightarrow consider randomized strategies

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Mixed Nash e	quilibrium		

Idea: actions no more adapted to types, simply non-anticipative

Asymptotic formulation

Potential Games

Mixed Nash equilibrium

Idea: actions no more adapted to types, simply non-anticipative

Mixed-strategy: measurable $Z : \mathbb{X}^{N \times T} \to \mathcal{P}(\mathbb{Y}^{N \times T})$ s.t. $\forall t$:

$$\int_{\mathbb{Y}^{N\times T}} f\left(\left\{Y_s^k : s \le t, k \le N\right\}\right) Z(dY)$$

is \mathcal{F}_t -measurable, for all bounded Borel functions $f : \mathbb{Y}^{N \times t} \to \mathbb{R}$. Cost: $L^i(Z) := \int \int F\left(X^i, Y^i, \frac{1}{N} \sum_{k=1}^N \delta_{Y^k}\right) Z(X)(dY) \bar{\eta}(dX)$ Asymptotic formulation

Potential Games

Mixed Nash equilibrium

Idea: actions no more adapted to types, simply non-anticipative

Mixed-strategy: measurable $Z : \mathbb{X}^{N \times T} \to \mathcal{P}(\mathbb{Y}^{N \times T})$ s.t. $\forall t$:

$$\int_{\mathbb{Y}^{N\times T}} f\left(\left\{Y_s^k : s \le t, k \le N\right\}\right) Z(dY)$$

is \mathcal{F}_t -measurable, for all bounded Borel functions $f : \mathbb{Y}^{N \times t} \to \mathbb{R}$. Cost: $L^i(Z) := \int \int F\left(X^i, Y^i, \frac{1}{N} \sum_{k=1}^N \delta_{Y^k}\right) Z(X)(dY) \bar{\eta}(dX)$

Definition (Mixed Nash equilibrium)

A mixed strategy Z is called a Mixed Nash equilibrium if, for all i,

$$L^{i}(Z) \leq L^{i}(\widetilde{Z}) \quad \text{for all mixed strategies } \widetilde{Z} \text{ s.t.}$$
$$\int_{\mathbb{Y}^{N\times T}} f(\{Y^{k} : k \neq i\})Z(dY) = \int_{\mathbb{Y}^{N\times T}} f(\{Y^{k} : k \neq i\})\widetilde{Z}(dY) \ \overline{\eta}\text{-a.s.}$$

for every bounded Borel $f : \mathbb{Y}^{(N-1) \times T} \to \mathbb{R}$.

Problems:

- search for equilibria: very difficult
- even when they exist, difficult to characterize

Problems:

- search for equilibria: very difficult
- even when they exist, difficult to characterize

Approach:

• For large systems of players, approximate this problem with a simpler one (asymptotic problem, for a continuum of players)

Problems:

- search for equilibria: very difficult
- even when they exist, difficult to characterize

Approach:

- For large systems of players, approximate this problem with a simpler one (asymptotic problem, for a continuum of players)
- $\, \mapsto \,$ Vice versa, when Nash equilibria converge in the right sense, the limits are equilibria for asymptotic problem

Problems:

- search for equilibria: very difficult
- even when they exist, difficult to characterize

Approach:

- For large systems of players, approximate this problem with a simpler one (asymptotic problem, for a continuum of players)
- $\, \mapsto \,$ Vice versa, when Nash equilibria converge in the right sense, the limits are equilibria for asymptotic problem
 - in particular η^i "converge" to some $\eta \in \mathcal{P}(\mathbb{X}^T)$
- ightarrow We study asymptotic problem for a type-distribution η

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Our toolkit: Op	timal Transport		

• Optimal Transport: given two Polish spaces $(\mathcal{X}, \mu), (\mathcal{Y}, \nu)$, and a cost function $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, minimize cost of transportation of μ into ν :

 $\inf \left\{ \mathbb{E}^{\pi}[c(x,y)] : \pi \in \Pi(\mu,\nu) \right\}$

 $\Pi(\mu,\nu) := \{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \mathcal{X}\text{-marginal } \mu, \mathcal{Y}\text{-marginal } \nu\}$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Our toolkit:	Optimal Transport		

Optimal Transport: given two Polish spaces (X, μ), (Y, ν), and a cost function c : X × Y → ℝ, minimize cost of transportation of μ into ν:

 $\inf \left\{ \mathbb{E}^{\pi}[c(x,y)] : \pi \in \Pi(\mu,\nu) \right\}$

 $\mathsf{\Pi}(\mu,\nu) := \{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \mathcal{X}\text{-marginal } \mu, \ \mathcal{Y}\text{-marginal } \nu\}$

Our setting: X = X^T, Y = Y^T, and we transport type distribution η (known) into optimal action distribution (unknown), in a non-anticipative way (causal transports):

$$\pi(dy_t|dx_1,\cdots,dx_T)=\pi(dy_t|dx_1,\cdots,dx_t)\quad\forall t$$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Our toolkit:	Optimal Transport		

Optimal Transport: given two Polish spaces (X, μ), (Y, ν), and a cost function c : X × Y → ℝ, minimize cost of transportation of μ into ν:

 $\inf \left\{ \mathbb{E}^{\pi}[c(x,y)] : \pi \in \Pi(\mu,\nu) \right\}$

 $\mathsf{\Pi}(\mu,\nu) := \{\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \mathcal{X}\text{-marginal } \mu, \ \mathcal{Y}\text{-marginal } \nu\}$

Our setting: X = X^T, Y = Y^T, and we transport type distribution η (known) into optimal action distribution (unknown), in a non-anticipative way (causal transports):

$$\pi(dy_t|dx_1,\cdots,dx_T)=\pi(dy_t|dx_1,\cdots,dx_t)\quad\forall t$$

We denote $\begin{aligned} &\Pi_c(\eta,\nu) := \{\pi \in \Pi(\eta,\nu) : \pi \text{ causal} \} \\ &\Pi_c(\eta,.) := \cup_{\xi \in \mathcal{P}(\mathbb{Y}^T)} \Pi_c(\eta,\xi) \end{aligned}$

A(x) action

adapted pure strategy = adapted Monge transport

non-anticipative **mixed** strategy = causal **Kantorovich** transport

Called pure if, $\forall t$, $y_t = g_t(x_{1:t}) \pi$ -a.s. for some measurable g_t .

Problem formulation	Asymptotic formulation	Potential Games •000000	Conclusions
Potential games			

We study the asymptotic problem in the following setting:

► separable cost: $F(x, y, \nu) = f(x, y) + V[\nu](y)$ idiosyncratic part mean-field interaction

▶ potential game: V is the first variation of $\mathcal{E} : \mathcal{P}(\mathbb{Y}^T) \to \mathbb{R}$:

$$\lim_{\epsilon \to 0^+} \frac{\mathcal{E}(\nu + \epsilon(\xi - \nu)) - \mathcal{E}(\nu)}{\epsilon} = \int_{\mathbb{Y}^T} V[\nu] d(\xi - \nu), \ \nu, \xi \in \mathcal{P}(\mathbb{Y}^T)$$

Problem formulation	Asymptotic formulation	Potential Games •000000	Conclusions
Potential games			

We study the asymptotic problem in the following setting:

► separable cost: $F(x, y, \nu) = f(x, y) + V[\nu](y)$

idiosyncratic part mean-field interaction

▶ potential game: V is the first variation of $\mathcal{E} : \mathcal{P}(\mathbb{Y}^T) \to \mathbb{R}$:

$$\lim_{\epsilon \to 0^+} \frac{\mathcal{E}(\nu + \epsilon(\xi - \nu)) - \mathcal{E}(\nu)}{\epsilon} = \int_{\mathbb{Y}^T} V[\nu] d(\xi - \nu), \ \nu, \xi \in \mathcal{P}(\mathbb{Y}^T)$$

- Congestion effect: $V^{c}[\nu](y) = h\left(\frac{d\nu}{dm}(y)\right)$, with $m \in \mathcal{P}(\mathbb{Y}^{T})$ reference measure, wrt which congestion measured, and $h \nearrow \mathcal{E}^{c}(\nu) = \int_{\mathbb{Y}^{T}} H\left(\frac{d\nu}{dm}(y)\right) dm(y)$, where $H(u) = \int_{0}^{u} h(s) ds$
- Attractive effect: $V^a[\nu](y) = \int_{\mathcal{Y}} \phi(y, z) d\nu(z)$, with ϕ cont, symmetric, convex, minimal on the diagonal $\mathcal{E}^a(\nu) = \frac{1}{2} \int_{\mathbb{Y}^T} \int_{\mathbb{Y}^T} \phi(y, z) d\nu(z) d\nu(y)$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions		
Variational problem					

Consider the variational problem

(VP)
$$\inf_{\nu \in \mathcal{P}(\mathbb{Y}^{T})} \left\{ \underbrace{\inf_{\pi \in \Pi_{c}(\eta, \nu)} \mathbb{E}^{\pi}[f(x, y)]}_{\text{COT}(\eta, \nu)} + \mathcal{E}[\nu] \right\}$$

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Variational proble	em		

Consider the variational problem

(VP)
$$\inf_{\nu \in \mathcal{P}(\mathbb{Y}^T)} \left\{ \inf_{\substack{\pi \in \Pi_c(\eta,\nu) \\ \text{COT}(\eta,\nu)}} \mathbb{E}^{\pi}[f(x,y)] + \mathcal{E}[\nu] \right\}$$

Theorem (Equivalence CN and VP)

Let \mathcal{E} be convex, then the following are equivalent:

(i) π^* is a Cournot-Nash equilibrium;

(ii) $(p_2(\pi^*), \pi^*)$ solves (VP).

Note: Convexity of \mathcal{E} is only needed for "(*i*) \Rightarrow (*ii*)", and is e.g. satisfied by \mathcal{E}^{c} .

Potential Games

Existence and uniqueness

Corollary (Existence)

Let f be l.s.c. and bounded below. Then

- $V = V^c$ and growth condition on $h \Rightarrow \exists CN$ equilibria;
- $V = V^a$ and growth condition on $f \Rightarrow \exists CN$ equilibria.

Growth conditions ensure existence of a solution ν^* to (VP), and COT(η, ν^*) admits a solution π^* easily. Apply previous theorem.

Potential Games

Existence and uniqueness

Corollary (Existence)

Let f be l.s.c. and bounded below. Then

- $V = V^c$ and growth condition on $h \Rightarrow \exists CN$ equilibria;
- $V = V^a$ and growth condition on $f \Rightarrow \exists CN$ equilibria.

Growth conditions ensure existence of a solution ν^* to (VP), and COT(η, ν^*) admits a solution π^* easily. Apply previous theorem.

Corollary (Uniqueness)

If \mathcal{E} strictly convex \Rightarrow unique optimal distribution of actions (all CN equilibria have same second marginal ν^*).

Indeed, $\nu \mapsto \text{COT}(\eta, \nu)$ convex, hence \mathcal{E} strictly convex implies unique solution ν^* for (VP). Then apply previous theorem.

Problem formulation

Asymptotic formulation

Potential Games

Structure of equilibria: first thoughts

Let $\mathcal{X} = \mathcal{Y} = \mathbb{R}^{T}$. Assume

 $\bullet~\eta$ has independent increments, and

•
$$f(x, y) = f_1(x_1, y_1) + \sum_{t=2}^{T} f_t(\Delta x_t - \Delta y_t)$$
, with f_t convex.

Potential Games

Structure of equilibria: first thoughts

Let $\mathcal{X} = \mathcal{Y} = \mathbb{R}^{\mathcal{T}}.$ Assume

• η has independent increments, and

•
$$f(x,y) = f_1(x_1,y_1) + \sum_{t=2}^T f_t(\Delta x_t - \Delta y_t)$$
, with f_t convex.

Then:

- CN equilibria are **Knothe-Rosenblatt rearrangements** (and uniquely determined by the second marginal).
- If moreover η has a density, all CN equilibria are pure.

Problem formulation

Asymptotic formulation

Potential Games

Conclusions

The Knothe-Rosenblatt map

Problem formulation

Asymptotic formulation

Potential Games

Conclusions

The Knothe-Rosenblatt map

• Cooperative equilibria: minimize average cost in *N*-player game. Asymptotically this becomes:

 $\inf_{\pi\in\Pi_c(\eta,.)}\mathbb{E}^{\pi}[F(x,y,p_2(\pi))]$

 \rightarrow for competitive equilibria we had a fixed point problem

• Cooperative equilibria: minimize average cost in *N*-player game. Asymptotically this becomes:

 $\inf_{\pi\in\Pi_c(\eta,.)}\mathbb{E}^{\pi}[F(x,y,p_2(\pi))]$

 \rightarrow for competitive equilibria we had a fixed point problem

• In the separable case:

$$\inf_{\nu\in\mathcal{P}(\mathbb{Y}^{\tau})} \{ \operatorname{COT}(\eta,\nu) + \mathbb{E}^{\nu}[V[\nu]] \}$$

 \rightarrow here equivalence always true with the above variational problem, while for competitive equilibria we needed potential games, and ${\cal E}$ convex

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Conclusions			

We have seen:

- A characterization of competitive equilibria via causal optimal transport;
- Existence and uniqueness results in the potential case;
- First structural results via K-R rearrangements;
- Hint to cooperative equilibria.

Problem formulation	Asymptotic formulation	Potential Games	Conclusions
Conclusions			

We have seen:

- A characterization of competitive equilibria via causal optimal transport;
- Existence and uniqueness results in the potential case;
- First structural results via K-R rearrangements;
- Hint to cooperative equilibria.

Work in progress:

- Develop numerics for equilibria & price of anarchy.
- Which form of transports/equilibria do we expect when the K-R requirements are not fulfilled?
- Exploit transport-typical concepts, such as displacement convexity, e.g. to obtain uniqueness.

Problem formulation	Asymptotic formulation 00000	Potential Games	Conclusions
Some literature			

Competitive equilibrium with a continuum of agents, static case:

- Schmeidler (1973)
- Mas-Colell (1984)
- . . .
- Blanchet and Carlier (2015), Lacker and Ramanan (2017)

Optimal Transport, and Causal OT:

- Monge (1781)
- Kantorovich (1942)
- . . .
- Lassalle (2013), Backhoff, Beiglböck, Lin, Zalashko (2016), A., Backhoff, Zalashko (2016), A., Backhoff, Carmona (2018)

Problem formulation

Asymptotic formulation

Potential Games

Conclusions

Thank you for your attention and Happy Birthday Yuri!

