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The ADE enigma

A D E

The ADE nomenclature, in its version involving quivers, arises in two
seemingly unrelated contexts:

• classification of simple plane curve singularities
[V. Arnold, 1972];

• classification of cluster algebras of finite type
[SF–A. Zelevinsky, 2003].

Is there a connection?
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Overview

complex plane curve singularity

real forms

morsifications

AΓ-diagrams

quivers

Main conjecture (proved modulo technical conditions):

topological type of
the complex singularity

←→ mutation equivalence
class of quivers
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Singularities of plane curves

In this talk,

singularity = isolated singularity of a plane complex analytic curve

i.e., a germ (C , z) of a reduced analytic curve C ⊂ C2 at a singular point z ∈ C2

such that z is the only singular point of C inside some ball B ⊂ C2 centered at z ;
without loss of generality, we assume z = (0, 0).

We study singularities up to topological equivalence, i.e., up to
homeomorphisms of a neighborhood of the singular point.
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Example: Quasihomogeneous singularities

A singularity is called quasihomogeneous of type (a, b) (here a ≥ b ≥ 2) if it can
be given by an equation of the form f (x , y) =

∑
bi+aj=ab

i,j≥0
cijx

iy j = 0.

A quasihomogeneous singularity of type (a, b) (here a ≥ b ≥ 2) is
topologically equivalent to the singularity

xa ± yb = 0.

a = 2, b = 2: a node: two locally smooth transverse branches
a = 3, b = 2: a cusp
a = 4, b = 2: a tacnode: two smooth branches with simple tangency
a = 3, b = 3: three smooth transverse branches
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Real singularities

A real singularity (C , z) is an analytic curve C ⊂ C2 invariant under complex
conjugation, with z∈C its real singular point. Equivalently, C can be given by
f (x , y) = 0 where all coefficients in the power series expansion of f at z are real.
A singularity is called totally real if all its local branches are real.

A real singularity topologically equivalent to a complex one is called its real form.

Any complex plane curve singularity has at least one real form,
including a totally real form (with all local branches real).

There may be many distinct real forms, up to conjugation-equivariant
topological equivalence.

Example
A complex node has two distinct real forms:

• a hyperbolic node (equivalent over R to x2 − y 2 = 0);

• an elliptic node (equivalent over R to x2 + y 2 = 0).
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Nodal deformations

A nodal deformation of a singularity (C , z) inside the Milnor ball B is an analytic
family of curves Ct ∩ B such that

• t varies in a small disk centered at 0 ∈ C;

• for t = 0, we recover the original curve: C0 = C ;

• each Ct is smooth along ∂B, and intersects ∂B trasversally;

• for any t 6= 0, the curve Ct has only ordinary nodes inside B;

• the number of these nodes does not depend on t.

A real nodal deformation of a real singularity (C , z) is obtained by taking a nodal
deformation (Ct ∩ B) equivariant with respect to complex conjugation, and
restricting t to a small interval [0, τ) ⊂ R.
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Morsifications

A real morsification of a real singularity (C , z) is a real nodal
deformation Ct = {ft(x , y) = 0} such that

• all critical points of ft are real, with nondegenerate Hessian;

• all saddle points of ft are at the zero level (i.e., lie on Ct).

A real morsification attains the natural upper bound on the number
of real hyperbolic nodes in a real nodal deformation of a given real
singularity. See [P. Leviant–E. Shustin, arXiv:1703.05510].

singularity not a morsification morsification
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Existence of morsifications

Theorem (N. A’Campo–S. Gusĕın-Zade, 1974)

Any totally real plane curve singularity possesses a real morsification.

These morsifications have been successfully used to compute the
monodromies and the intersection forms of plane curves singularities.

Extending this theorem, P. Leviant–E. Shustin [2017] established the
existence of morsifications for a wide class of real singularities.

Conjecture
Any real plane curve singularity possesses a real morsification.
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Example: Morsifying different real forms

x3y−xy3=0 xy(x−y+t)(x+y−2t)=0

x4−y4=0

(x2−y2)(x2+y2−t2)=0

(x2−(y−1.2t)2)(x2+y2−t2)=0

(x2+4y2)(4x2+y2)=0 (x2+4y2−t2)(4x2+y2−t2)=0
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Divides (after N. A’Campo)

A divide D is the image of a generic relative immersion of a collection of intervals
and circles into a disk D ⊂ R2. Their images (the branches of D) must satisfy:
• the immersed circles do not intersect the boundary ∂D;
• the immersed intervals have pairwise distinct endpoints which lie on ∂D;
• the immersed intervals intersect ∂D transversally;
• all intersections and self-intersections of the branches are transversal;
• no three branches intersect at a point;

plus a couple of additional technical requirements. We do not distinguish between
divides related by a homeomorphism between their respective ambient disks.
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Regions and nodes of a divide

The connected components of the complement D \ D which are disjont from the
boundary ∂D are the regions of D. The singular points of D are its nodes.

region

node
branch
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Divides of morsifications

Any real morsification defines a divide.
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Divides for quasihomogeneous singularities (b = 2)

a=2 a=3 a=4 a=5 a=6

A1 A2 A3 A4 A5

node cusp tacnode
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Divides for quasihomogeneous singularities (b = 3)

a=3 a=4 a=5 a=6

D4 E6 E8 E
(1,1)
8

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 16 / 54



Divides for singularities of types D5, D6, E7

D5 D6 E7

cusp tacnode cusp
+ + +

transversal line transversal line cuspidal tangent
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Divides for non-quasihomogeneous singularities

y = x3/2 + x7/4

two transversal cusps (either real or complex conjugate)
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Algebraic divides

Divides arising from morsifications are called algebraic.

It is difficult to detect whether a given divide is algebraic or not.

Divides coming from different morsifications of the same real
singularity share some basic features.

The branches of a divide are obtained by deforming the local branches of the
original real singularity. Each real local branch deforms into an immersed interval
with endpoints on ∂D. Each pair of distinct complex conjugate local branches
deforms into an immersed circle inside D. The numbers of intersections (resp.,
self-intersections) of the individual branches of the divide do not depend on the
choice of morsification/divide, nor does the total number of regions in a divide.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 19 / 54



Algebraic divides

Divides arising from morsifications are called algebraic.

It is difficult to detect whether a given divide is algebraic or not.

Divides coming from different morsifications of the same real
singularity share some basic features.

The branches of a divide are obtained by deforming the local branches of the
original real singularity. Each real local branch deforms into an immersed interval
with endpoints on ∂D. Each pair of distinct complex conjugate local branches
deforms into an immersed circle inside D. The numbers of intersections (resp.,
self-intersections) of the individual branches of the divide do not depend on the
choice of morsification/divide, nor does the total number of regions in a divide.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 19 / 54



The Milnor number

The combined number of nodes and regions of an algebraic divide is
equal to the Milnor number of the associated singularity.

6 + 3 = 9 5 + 4 = 9 5 + 4 = 9 4 + 5 = 9

Thus this number does not depend on the choice of the real form of
a complex singularity, nor on the choice of its morsification.
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A’Campo-Gusĕın-Zade diagrams

The AΓ-diagram of a divide D is a vertex-colored graph constructed as follows:
• place a vertex at each node of D, and color it black;
• place one vertex into each region of D;
• color these vertices ⊕ or � so that adjacent regions receive different colors;
• draw an edge across each segment separating two adjacent regions;
• connect the nodes on the boundary of each region to the vertex inside it.

⊕

� �
�

� �

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 21 / 54



The AΓ-diagram of a morsification

For a divide coming from a real morsification, the vertices of the
AΓ-diagram correspond to the critical points of the morsified curve:

⊕ ←→ local maxima
� ←→ local minima
• ←→ saddle points

The number of vertices in the AΓ-diagram is equal to the Milnor
number of the singularity.

⊕

� �
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Recovering a singularity from a AΓ-diagram

Theorem (P. Leviant–E. Shustin, 2017)

The AΓ-diagram of a real morsification of a real isolated plane curve
singularity determines the complex topological type of the singularity.

For totally real singularities, a version of this result was obtained by
L. Balke–R. Kaenders [1996].

Problem
Given AΓ-diagrams of two morsifications of real singularities,
determine whether these two singularities have the same complex
topological type.
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Quivers

A quiver is a finite directed graph.

No oriented cycles of length 1 or 2.

We do not distinguish between quivers (on the same vertex set)
which differ by simultaneous reversal of all the arrows.
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Quiver of a divide

Any divide D gives rise to a quiver Q(D), constructed by orienting
the edges of the AΓ-diagram using the rule

•→⊕→�→•

⊕

� �
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What do these quivers have in common?
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Quiver mutations

Given a vertex z in a quiver Q, the quiver mutation at z transforms Q
into a new quiver Q ′ = µz(Q) constructed in three steps:

1. For each 2-edge path x→z→y , introduce a new edge x→y .

2. Reverse the direction of all edges incident to z .

3. Remove oriented 2-cycles.

z

Q
µz←→

z

Q ′

Quiver mutation is involutive: µz(Q ′) = Q.
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Mutation equivalence

Quivers related via iterated mutations are called mutation equivalent.

A mutation equivalence class defines a cluster algebra.

Many important rings arise in this way.
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Main conjecture

Conjecture
Given two real morsifications of real isolated plane curve singularities,
the following are equivalent:

• the two singularities have the same complex topological type;

• the quivers associated with the two morsifications are mutation
equivalent to each other.

To rephrase, isolated plane curve singularities are topologically
classified by the mutation classes of quivers coming from their
morsifications (equivalently, by the corresponding cluster algebras).
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Unpacking the main conjecture

general concept illustration

complex singularity 4 transversal smooth branches

real singularity x4 − y 4 = 0

morsification (x2 − y 2)(x2 + y 2 − t2) = 0

divide

quiver

mutation class E
(1,1)
7
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Main results (preview)

We prove our main conjecture modulo some technical assumptions,
each of which we optimistically expect to be redundant.

These assumptions are satisfied for all morsifications constructed
using known general methods.

Example: transversal overlays of Lissajous divides.
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Singularities and cluster algebras

The link between morsifications and quiver mutations is suggestive of
a deep intrinsic relationship between singularities and cluster algebras.

Example

A quasihomogeneous singularity xa + yb = 0 is described by the same
quivers as the standard cluster structure on the homogeneous
coordinate ring of the Grassmannian Gra,a+b(C).

An algebraic connection between quasihomogeneous singularities and
Grassmannians (using additive categorification) was proposed in
[B. T. Jensen, A. King, and X. Su, 2016].
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Link of an isolated singularity (after J. Milnor)

The link L(C , z) of an isolated complex plane curve singularity (C , z)
is defined by intersecting C with a small sphere centered at z .

The links arising in this way are called algebraic links.

The link L(C , z) completely determines—and is determined by—the
local topology of a singular complex plane curve (C , z).
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A’Campo links of divides

Let D be a divide in the unit disk D = {(x , y) | x2 + y 2 ≤ 1} ⊂ R2.

The A’Campo link L(D) is defined by

L(D) =

(x , y , u, v)
(x , y) ∈ D

(u, v) ∈ T(x ,y)D
x2 + y 2 + u2 + v 2 = 1

 ⊂ S3 ⊂ R4 ∼= C2

(Special cases: (x , y) is a node; or (x , y) ∈ ∂D.)

Theorem (N. A’Campo)

For an algebraic divide D arising from a morsification of a singular
curve (C , z), the links L(D) and L(C , z) are isotopic to each other.
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Link equivalence of divides

Two divides are link-equivalent if their A’Campo links are isotopic.

Corollary
In the case of algebraic divides, link equivalence coincides with the
topological equivalence of the corresponding singularities.

We can now restate our main conjecture as follows:

Conjecture

Algebraic divides are link-equivalent if and only if the corresponding
quivers are mutation equivalent.

Problem

Identify a class of divides—as broad as possible—within which our
main conjecture holds. In particular, does it hold for all divides?
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Plabic graphs

Plabic (planar bicolored) graphs were introduced by A. Postnikov to
study parametrizations of cells in totally nonnegative Grassmannians.

We view plabic graphs up to isotopy, and up to simultaneously
changing the colors of all vertices.

We use a slightly modified version of the definition: our plabic graphs are
trivalent-univalent, and we color both the interior and the boundary vertices.
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Local moves on plabic graphs

Two plabic graphs are called move equivalent if they can be obtained
from each other via repeated application of local moves shown below.

flip moves ←→ ←→

square move ←→

tail
attachment
or removal

←→ ←→
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Plabic graphs and quivers

Any plabic graph defines a quiver:

Local moves on plabic graphs translate into quiver mutations:
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Plabic graphs attached to divides

From a divide, one constructs a plabic graph:

−→

−→
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Divide → plabic graph → quiver

The quiver obtained from the AΓ-diagram of a divide D coincides
with the quiver associated with a plabic graph attached to D:

⊕

⊕

� �

�
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M. Shapiro’s conjecture

Conjecture (M. Shapiro)

Two plabic graphs are move equivalent (up to changing the colors of
boundary vertices) if and only if their quivers are mutation equivalent.

Modulo Shapiro’s conjecture, our main conjecture is equivalent to:

Conjecture
Algebraic divides are link-equivalent if and only if the plabic graphs
attached to them are move equivalent.
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Move equivalence implies link equivalence

Conjecture
Algebraic divides are link-equivalent if and only if the plabic graphs
attached to them are move equivalent.

We establish one direction of this conjecture in a stronger version,
without the assumption of algebraicity:

Theorem
If the plabic graphs associated to two divides are move equivalent,
then these divides are link-equivalent.
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Graph divides

Theorem
If the plabic graphs associated to two divides are move equivalent,
then these divides are link-equivalent.

The proof uses T. Kawamura’s construction of links of graph divides.

This construction associates a canonical link to any plabic graph.

These links are invariant under Postnikov’s local moves.

The link associated with the plabic graph of an algebraic divide
coincides with its A’Campo link.
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Divides and braids

Proved: move equivalence implies link equivalence.

Going in the opposite direction: need an analogue of Reidemeister’s
theorem for links of graph divides.

The links of graph divides are quasi-positive [T. Kawamura, 2004].

Our approach relies on Markov’s theorem (link equivalence of braids).
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Scannable divides

A scannable divide is a divide drawn inside a rectangle [a1, a2]× [b1, b2] ⊂ R2 so
that, moving along each branch, the x-coordinate makes all of its U-turns at the
locations x =a1 and x =a2, approaching them from the right, resp. from the left.
Every isolated plane curve singularity has a scannable real morsification.

scannable not scannable

scannable scannable
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Plabic fences

For a scannable divide D, there is a natural choice of a plabic graph
Φ = Φ(D) attached to D which we call a plabic fence.

scannable
divide

plabic fence
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Links of oriented plabic graphs

Plabic fences have orientations with nice properties, which lead to an
alternative construction of the associated links.

Local move:

←→
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The link of a scannable divide

For a scannable divide, this construction recovers the A’Campo link
[O. Couture–B. Perron, 2000].

The link of a scannable divide is the closure of a positive braid.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 48 / 54



The link of a scannable divide

For a scannable divide, this construction recovers the A’Campo link
[O. Couture–B. Perron, 2000].

The link of a scannable divide is the closure of a positive braid.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 48 / 54



Positive braid isotopy

Positive isotopies are isotopies of closed positive braids via

• Artin’s braid relations;

• cyclic shifts;

• positive Markov moves and their inverses.

Conjecture
Positive braids associated with link equivalent scannable algebraic
divides are positive-isotopic.

Theorem
Scannable divides whose braids are positive-isotopic have move
equivalent plabic fences (hence mutation equivalent quivers).
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Example: quasihomogeneous singularity x8+y 4 =0

The braids associated with these divides are both equal to ∆4.

The corresponding quivers are mutation equivalent.
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Triangle moves

Two divides are called 5-equivalent if they can be obtained from
each other via a sequence of triangle moves:

←→
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Malleable divides

A divide is malleable if it is 5-equivalent to a scannable divide.

; ;

∼

Conjecture
Every algebraic divide is malleable.
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Main conjecture for malleable divides

Triangle moves preserve both the isotopy class of the link of a divide
and the mutation class of its quiver.

Consequently the last theorem extends to all malleable divides.

Theorem
Let D and D ′ be malleable divides 5-equivalent to scannable divides
whose respective braids are positive-isotopic to each other. Then the
quivers Q(D) and Q(D ′) are mutation equivalent.
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Simple singularities

Definition
A singularity is simple if any two curves in its topological equivalence
class are locally diffeomorphic.

Simple singularities are classified by ADE Dynkin diagrams
[V. Arnold, 1972].

Theorem
A plane curve singularity is simple if and only if some (equivalently,
any) real morsification thereof defines a quiver of finite type.
The type of a simple singularity matches the type of its quivers.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 54 / 54



Simple singularities

Definition
A singularity is simple if any two curves in its topological equivalence
class are locally diffeomorphic.

Simple singularities are classified by ADE Dynkin diagrams
[V. Arnold, 1972].

Theorem
A plane curve singularity is simple if and only if some (equivalently,
any) real morsification thereof defines a quiver of finite type.
The type of a simple singularity matches the type of its quivers.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 54 / 54



Simple singularities

Definition
A singularity is simple if any two curves in its topological equivalence
class are locally diffeomorphic.

Simple singularities are classified by ADE Dynkin diagrams
[V. Arnold, 1972].

Theorem
A plane curve singularity is simple if and only if some (equivalently,
any) real morsification thereof defines a quiver of finite type.
The type of a simple singularity matches the type of its quivers.

Sergey Fomin (University of Michigan) Morsifications and mutations Luminy, March 2018 54 / 54


