# Quiver mutations, reflection groups and curves on punctured disc 



Anna Felikson
(joint with Pavel Tumarkin)

Cluster Algebras: Twenty Years On
CIRM, 19-23 March, 2018

- Quiver is a directed graph without loops and 2-cycles.


## Agreement:

- $\stackrel{p}{>}$ -
- Mutation $\mu_{k}$ of quivers:
- reverse all arrows incident to $k$;
- for every oriented path through $k$ do (i.e. $p, q>0, r$ - any)


Notation: $Q$ quiver, $\quad b_{i j}$ arrows $i \rightarrow j \quad\left(b_{i j}=-b_{j i}\right)$. $n=\#($ vertices of $Q)$.

Settings: - $Q$ is acyclic quiver: no oriented cycles in $Q$ after reordering of vertices, $b_{i j} \geq 0$ for $i<j$.

- $Q$ is 2-complete: $b_{i j} \geq 2$.


1. Acyclic mutation classes via reflection groups

- $Q=\left(b_{i j}\right)$

$$
M=\left(\begin{array}{ccc}
2 & -\left|b_{i j}\right| \\
-\left|b_{i j}\right| & 2
\end{array}\right)=\left\langle v_{i}, v_{j}\right\rangle
$$

$\left(v_{1}, \ldots, v_{n}\right)$ - basis of quadratic space $V$ of same signature as $M$.

1. Acyclic mutation classes via reflection groups

- $Q=\left(b_{i j}\right)$

$$
\rightsquigarrow \quad M=\left(\begin{array}{ccc}
2 & -\left|b_{i j}\right| \\
-\left|b_{i j}\right| & 2
\end{array}\right)=\left\langle v_{i}, v_{j}\right\rangle
$$

$\left(v_{1}, \ldots, v_{n}\right)$ - basis of quadratic space $V$ of same signature as $M$.

- Given $v \in V$ with $\langle v, v\rangle=2$, consider reflection

$$
r_{v}(u)=u-\langle u, v\rangle v
$$

1. Acyclic mutation classes via reflection groups

- $Q=\left(b_{i j}\right)$

$$
\rightsquigarrow \quad M=\left(\begin{array}{ccc}
2 & & -\left|b_{i j}\right| \\
-\left|b_{i j}\right| & 2
\end{array}\right)=\left\langle v_{i}, v_{j}\right\rangle
$$

$\left(v_{1}, \ldots, v_{n}\right)$ - basis of quadratic space $V$ of same signature as $M$.

- Given $v \in V$ with $\langle v, v\rangle=2$, consider reflection

$$
r_{v}(u)=u-\langle u, v\rangle v
$$

- Let $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ where $s_{i}=r_{v_{i}}$.
$G$ acts discretely in a cone $C \subset V$ with fundamental domain

$$
F=\bigcap_{i=1}^{n} \Pi_{i}^{-}, \quad \text { where } \Pi_{i}^{-}=\left\{u \in V \mid\left\langle u, v_{i}\right\rangle<0\right\} .
$$

1. Acyclic mutation classes via reflection groups

Acyclic quiver $Q \leadsto$ reflection group $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ with chosen generating reflections

1. Acyclic mutation classes via reflection groups

Acyclic quiver $Q \leadsto$ reflection group $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ with chosen generating reflections

Mutation $\rightsquigarrow$ Partial reflection

$$
\mu_{k}\left(v_{i}\right)= \begin{cases}v_{i}-\left\langle v_{i}, v_{k}\right\rangle v_{k}, & \text { if } k \rightarrow i \text { in } Q \\ -v_{k}, & \text { if } i=k \\ v_{i}, & \text { otherwise }\end{cases}
$$

## 1. Acyclic mutation classes via reflection groups

Acyclic quiver $Q \leadsto$ reflection group $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ with chosen generating reflections

Mutation $\quad \rightsquigarrow$ Partial reflection

$$
\mu_{k}\left(v_{i}\right)= \begin{cases}v_{i}-\left\langle v_{i}, v_{k}\right\rangle v_{k}, & \text { if } k \rightarrow i \text { in } Q \\ -v_{k}, & \text { if } i=k \\ v_{i}, & \text { otherwise }\end{cases}
$$

new set of generators in $G=\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle$ :

$$
s_{i}^{\prime}= \begin{cases}s_{k} s_{i} s_{k}, & \text { if } k \rightarrow i \text { in } Q \\ s_{i}, & \text { otherwise }\end{cases}
$$

1. Acyclic mutation classes via reflection groups

Acyclic quiver $Q \leadsto$ reflection group $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ with chosen generating reflections

Mutation $\quad \rightsquigarrow$ Partial reflection

$$
\mu_{k}\left(v_{i}\right)= \begin{cases}v_{i}-\left\langle v_{i}, v_{k}\right\rangle v_{k}, & \text { if } k \rightarrow i \text { in } Q \\ -v_{k}, & \text { if } i=k \\ v_{i}, & \text { otherwise }\end{cases}
$$

Theorem. (Barot, Geiss, Zelevinsky'06; Seven'15)
The values $\left\langle v_{i}, v_{j}\right\rangle$ change under mutations in the same way as the weights of the arrows in $Q$.

## 1. Acyclic mutation classes via reflection groups

Remark: c-vectors and Y-seeds

- If $\left(v_{1}^{0}, \ldots, v_{n}^{0}\right)$ are the initial vectors, then vectors $\left(v_{1}, \ldots, v_{n}\right)$ (written in the basis $\left(v_{1}^{0}, \ldots, v_{n}^{0}\right)$ ) are c-vectors.
- The collection $\left(v_{1}, \ldots, v_{n}\right)$ is a Y -seed.

1. Acyclic mutation classes via reflection groups

Example:


Then $V=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\mathbb{H}^{2} \quad|\langle u, v\rangle|= \begin{cases}2 \cosh d, & \text { if }\langle v, u\rangle>2, \\ 2 \cos \alpha, & \text { otherwise }\end{cases}$ $\left\langle v_{i}, v_{j}\right\rangle=2 \quad \Rightarrow \quad \Pi_{i}$ is parallel to $\Pi_{j}$.




$$
0
$$

Corollaries from this picture (examples):

- All quivers in the mutation class of $Q$ are 2-complete.
- All acyclic quiver in this mutation class look "similar" (only differ by permutations and directions of arrows).
- One can move from one acyclic representative to any other via sink/source mutations only.
- Exchange graph for this mutation class is a tree.

Less known:

- How to describe seeds ( $=$ sets of walls in one domain)?
- How to describe seeds ( $=$ sets of walls in one domain)?

Consider the ordering of the vertices of $Q$ from source to sink (so that $b_{i j}>0$ ).
Let $s_{i}$ be generator of $G$ corresponding to $i$.

- How to describe seeds ( $=$ sets of walls in one domain)?

Consider the ordering of the vertices of $Q$ from source to sink (so that $b_{i j}>0$ ).
Let $s_{i}$ be generator of $G$ corresponding to $i$.
Then:
If reflections $r_{1}, \ldots, r_{n} \in G$ form a seed then one can reorder them so that $r_{1} r_{2} \ldots r_{n}=s_{1} s_{2} \ldots s_{n}$.

- How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of $Q$ from source to sink (so that $b_{i j}>0$ ).
Let $s_{i}$ be generator of $G$ corresponding to $i$.
Theorem (Speyer, Thomas' 10)
A collection of roots $u_{1}, \ldots, u_{n}$ forms a seed iff

1) If $u_{i}$ and $u_{j}$ are both positive roots (or both negative) then $\left\langle u_{i}, u_{j}\right\rangle \leq 0$;
2) Up to renumbering of $u_{1}, \ldots, u_{n}$, the positive roots precede the negative roots and $r_{1} r_{2} \ldots r_{n-1} r_{n}=s_{1} s_{2} \ldots s_{n}$.

Another question:

- Which reflections appear in the picture?


Or, in other words: How to characterise c-vectors?

Another question:

- Which reflections appear in the picture?

Answer: (" $\Rightarrow$ " Nagao'13, " $\Leftarrow$ " Nájera Chávez'14)
$r \in G$ appears in the picture iff
the corresponding root $u$ is a real Schur root (or its opposite).
(real Schur roots are
dimension vectors of indecomposable rigid modules over the path algebra of $Q$ ).

Another question:

- Which reflections appear in the picture?

Answer: (" $\Rightarrow$ " Nagao'13, " $\Leftarrow "$ Nájera Chávez'14)
$r \in G$ appears in the picture iff the corresponding root $u$ is a real Schur root (or its opposite).

Conjecture: (Kyungyong Lee - Kyu-Hwan Lee'17 )
Schur roots are in bijection with
simple curves in some surfaces.

Another question:

- Which reflections appear in the picture?

Answer: (" $\Rightarrow$ " Nagao'13, " $\Leftarrow$ " Nájera Chávez'14)
$r \in G$ appears in the picture iff the corresponding root $u$ is a real Schur root (or its opposite).

Our answer:
Real Schur roots $=$ arcs in a disc


Two arcs form a bad pair if one is a prefix for another:

$\underline{s_{4} s_{3}} S_{4}$
$s_{4} s_{3} s_{2} s_{3} s_{4}$

$\underline{s_{4} s_{2}} s_{3} s_{2} s_{1} s_{2} s_{3} s_{2} s_{4}$
$\underline{s_{4} s_{2}} s_{4}$

Theorem. (F., Tumarkin'17)

- Real Schur roots $=$ arcs in a disc

- $\quad$ Seeds $=$ collections of non-intersecting arcs with at most one consecutive bad pair



## 2. Seeds on the Cayley graph

Reflection group $G$ constructed above is a presentation of the universal Coxeter group

$$
\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=e\right\rangle .
$$

(This does not depend on $Q$, if $Q$ is acyclic and 2-complete).

## 2. Seeds on the Cayley graph

Reflection group $G$ constructed above is a presentation of the universal Coxeter group

$$
\left\langle s_{1}, \ldots, s_{n} \mid s_{i}^{2}=e\right\rangle .
$$

(This does not depend on $Q$, if $Q$ is acyclic and 2-complete). $n$-regular tree:

2. Seeds on the Cayley graph


## 2. Seeds on the Cayley graph



Initial seed


After mutation $\mu_{3}$

## 2. Seeds on the Cayley graph




$$
r_{1} r_{2} \ldots r_{n-1} r_{n}=s_{1} \ldots s_{n}
$$

Proof: induction on the number of mutations.
3. Cayley graph in the hyperbolic plane

- $G$ is isomorphic to a group generated by $\pi$-rotations. Denote it by $G_{r o t}$.


3. Cayley graph in the hyperbolic plane

- $G$ is isomorphic to a group generated by $\pi$-rotations. Denote it by $G_{r o t}$.
- Cayley graph is dual to the tessellation.



## 3. Cayley graph in the hyperbolic plane

- $G$ is isomorphic to a group generated by $\pi$-rotations. Denote it by $G_{r o t}$.
- Cayley graph is dual to the tessellation.
- reflection $r \in G$ may be represented by a path.



## 3. Orbifold: from $\mathbb{H}^{2}$ to an orbifold

Consider $\mathbb{H}^{2} / G_{r o t}$ :


## 3. Orbifold: seeds on the orbifold

Initial seed:

3. Orbifold: seeds on the orbifold

After mutation $\mu_{3}$ :


## 3. Orbifold: seeds on the orbifold

Let $s \in G$ be a reflection, let $u_{s}$ be the corresponding root $u$. Let $\hat{\gamma}_{s}$ be the arc in $\mathbb{H}^{2}$,
let $\gamma_{s}$ be its projection to the orbifold $\mathcal{O}=\mathbb{H}^{2} / G_{\text {rot }}$.

## 3. Orbifold: seeds on the orbifold

Let $s \in G$ be a reflection, let $u_{s}$ be the corresponding root $u$. Let $\hat{\gamma}_{s}$ be the arc in $\mathbb{H}^{2}$, let $\gamma_{s}$ be its projection to the orbifold $\mathcal{O}=\mathbb{H}^{2} / G_{\text {rot }}$.

Claim.

- If $u_{s}$ is a Schur root then $\gamma_{s}$ is simple.
- If $u_{1}, \ldots, u_{n}$ is a seed then $\gamma_{u_{1}}, \ldots, \gamma_{u_{n}}$ are non-intersecting.
- If $u_{1}, \ldots, u_{n}$ is a seed then there exists a geodesic ray $l \in \mathcal{O}$ such that no of $\gamma_{u_{i}}$ intersects $l$.

Proof: induction by the number of mutations.
3. Orbifold: seeds on the orbifold

After mutation $\mu_{3}$ :


## 4. From orbifold to disc

Cut along $l$ :


## Remarks

- This explains how to map Schur roots to arcs in the disc. Why do we get all arcs?
(a) every (good) set of arcs corresponds to a seed;
(use the braid grup $\mathbb{B}_{n}=\operatorname{Aut}(D)$
to verify conditions given by Speyer and Thomas)
(b) every arc can be included into a (good) set of arcs. (induction on $n$ )
- The " Schur roots" part of our theorem
implies Lee - Lee conjecture.
(after taking a double cover of the orbifold $\mathcal{O}$ )

Lee-Lee conjecture:
Schur roots are in bijection with arcs on the following surface $S$ :


- Conjectured for all acyclic quivers (not necessarily 2-complete).
- Proved for 2-complete quivers of rank 3.

Lee-Lee conjecture $\quad \Leftrightarrow \quad$ our theorem: for 2-complete $Q$

Surface $S$ is a double cover of the orbifold $\mathcal{O}$.

$\qquad$


Curves on $S \longrightarrow$ arcs on the disc.

## Open questions:

- General (not necessirily 2-complete) acyclic quivers?
- When are two roots compatible?
(i.e. when there exists a seed containing them both?).
- Is a collection of mutually compatible roots compatible itself?


