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and curves on punctured disc
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e Quiver is a directed graph without loops and 2-cycles.
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e Mutation ug of quivers:

- reverse all arrows incident to &;
- for every oriented path through k do

(i,e. p,g>0,7r- any)
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Notation: ) quiver, b;; arrows i — 7 (b;; = —bj;).
n = #( vertices of ()).

Settings: e () is acyclic quiver: no oriented cycles in ()
after reordering of vertices, b;; > 0 for ¢ < j.

e () is 2-complete: b;; > 2.

2 ® 2
/‘/2/ 2\‘\
0%\0



1. Acyclic mutation classes via reflection groups

2 = b4
o Q= (bij) ~ M = ( 2 ) = (i, vj)

—1bij| 2

(v1,. .., U, ) - basis of quadratic space V' of same signature as M.



1. Acyclic mutation classes via reflection groups

2 —[bsj
e () = (bsj) ~ M = 2 = (vi, vj)
—[bsj 2
(v1,. .., U, ) - basis of quadratic space V' of same signature as M.

e Given v € V with (v,v) = 2, consider reflection

ro(u) = u — (u,v)v.



1. Acyclic mutation classes via reflection groups
2 —[bsj
* Q= (bij) v M = 2 = (v;, v;)
—[bsj 2
(v1,. .., U, ) - basis of quadratic space V' of same signature as M.
e Given v € V with (v,v) = 2, consider reflection

ro(u) = u — (u,v)v.

o let G = (s1,...,5,) Where s; =1,_.

(G acts discretely in a cone C' C V' with fundamental domain

F= I, wherell; ={ueV | (u,v;) <O0}.
i=1



1. Acyclic mutation classes via reflection groups

Acyclic quiver () ~» reflection group G = (s1,...,y)
with chosen generating reflections



1. Acyclic mutation classes via reflection groups

Acyclic quiver ) ~-

Mutation sy

reflection group G = (s1,...,Sp)
with chosen generating reflections

Partial reflection

ffvi — (v, vp)vg, Ifk —iin Q
pr(v;) = Q —wg, if 1 = k

Vi, otherwise
\




1. Acyclic mutation classes via reflection groups

Acyclic quiver () ~-

Mutation ~

reflection group G = (s1,...,Sp)
with chosen generating reflections

Partial reflection

)
v, — (v, vp)vg, ifk —iin Q

pr(vi) = < —wvy, ifi =k
| Vis otherwise

new set of generators in G = (s},...,s]):

o {sksisk, ifk —12inQ
=

Si, otherwise



1. Acyclic mutation classes via reflection groups

Acyclic quiver () ~» reflection group G = (s1,...,y)
with chosen generating reflections

Mutation ~>  Partial reflection
ffvi — (v, vp)vg, Ifk —iin Q
pr(v;) = Q —wg, if 1 = k
v;, otherwise

\

Theorem. (Barot, Geiss, Zelevinsky'06; Seven'15)
The values (v;,v;) change under mutations
in the same way as the weights of the arrows in ().



1. Acyclic mutation classes via reflection groups

Remark: c-vectors and Y-seeds

o If (v},...,02) are the initial vectors, then
vectors (v1,...,v,) (written in the basis (v7,...,v2))

are c-vectors.

e The collection (vy,...,v,) is a Y-seed.



1. Acyclic mutation classes via reflection groups

Example: /.\
2 2
[ > [

Then V = (v1, va, v3) = H? . 0)| = {2coshd, if (v, u) > 2,

2cosa, otherwise

v, Vi) =2 = 1I; is parallel to II;.
j j
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vy = pa(vs) = v3 — (U3, V2)V2 = V3 + 207

<U:’37 ’l)1> - <’Uéa ’U1> + 2<U2’ ’U1> = —6
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Corollaries from this picture (examples):

e All quivers in the mutation class of () are 2-complete.

e All acyclic quiver in this mutation class look “similar”
(only differ by permutations and directions of arrows).

e One can move from one acyclic representative to any other
via sink/source mutations only.

e Exchange graph for this mutation class is a tree.

| ess known:

e How to describe seeds (= sets of walls in one domain)?



e How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of () from source to sink
(so that b;; > 0).
Let s; be generator of G corresponding to 1.



e How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of () from source to sink
(so that b;; > 0).
Let s; be generator of G corresponding to 1.

Then:

If reflections r1,...,7,, € G form a seed then
one can reorder them so that r17o...7, = S$1S9...S,.



e How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of () from source to sink
(so that b;; > 0).
Let s; be generator of G corresponding to 1.

Theorem (Speyer, Thomas' 10)
A collection of roots uq, ..., u, forms a seed iff
1) If u; and u; are both positive roots (or both negative)
then (u;, u;) <0;
2) Up to renumbering of uq, ..., un,,
the positive roots precede the negative roots and

mTro.. . I'm—-1Tnp — S1S2...Sn.



Another question:

e Which reflections appear in the picture?

Or, in other words: How to characterise c-vectors?



Another question:

e Which reflections appear in the picture?

Answer: (“=" Nagao'l3, "<=" Najera Chavez'14)
r € (G appears in the picture iff
the corresponding root w is a real Schur root (or its opposite).

(real Schur roots are
dimension vectors of indecomposable rigid modules
over the path algebra of Q).



Another question:

e Which reflections appear in the picture?

Answer: (“=" Nagao'l3, "<=" Najera Chavez'14)
r € (G appears in the picture iff
the corresponding root w is a real Schur root (or its opposite).

Conjecture: (Kyungyong Lee — Kyu-Hwan Lee'17 )
Schur roots are in bijection with
simple curves in some surfaces.



Another question:

e Which reflections appear in the picture?

Answer: (“=" Nagao'l3, "<=" Najera Chavez'14)
r € (G appears in the picture iff
the corresponding root w is a real Schur root (or its opposite).

Our answer:

Real Schur roots =

arcs in a disc O)\

535152535453525153




Two arcs form a bad pair if one is a prefix for another:

1 2 3 4 1 2 3 4
X X < X X
545354 5459535925152535254

5453525354 S459254



Theorem. (F., Tumarkin'l7)

Real Schur roots =
arcs i1n a disc

Seeds =

collections of
non-intersecting arcs
with at most one
consecutive bad pair




2. Seeds on the Cayley graph

Reflection group G constructed above is a presentation of the
universal Coxeter group
(81,...,5, | 82 =e).

(This does not depend on @, if Q) is acyclic and 2-complete).



2. Seeds on the Cayley graph

Reflection group G constructed above is a presentation of the
universal Coxeter group

(81,...,5n | 82 = e).

(This does not depend on @, if Q) is acyclic and 2-complete).

Y4

n-regular tree:




2. Seeds on the Cayley graph

242 252

232 212

31313

31413




2. Seeds on the Cayley graph

Initial seed After mutation s



2. Seeds on the Cayley graph

N /’
A 7’
N 7’

N ’

™"Tro.. . T'm—1Tp — S1...5n

Proof: induction on the number of mutations.



3. Cayley graph in the hyperbolic plane

e (& is isomorphic to a group
generated by m-rotations.
Denote it by G, ..




3. Cayley graph in the hyperbolic plane

e (& is isomorphic to a group
generated by m-rotations.
Denote it by G, ..

e Cayley graph is dual
to the tessellation.




3. Cayley graph in the hyperbolic plane

e (& is isomorphic to a group
generated by m-rotations.
Denote it by G, ..

e Cayley graph is dual
to the tessellation.

e reflection » € G may be
represented by a path.




3. Orbifold: from H? to an orbifold

Consider H? /G, .o




3. Orbifold: seeds on the orbifold

Initial seed:




3. Orbifold: seeds on the orbifold

After mutation pus:




3. Orbifold: seeds on the orbifold

Let s € G be a reflection, let us be the corresponding root w.
Let 4, be the arc in H?,

let v, be its projection to the orbifold O = H?/G ;.



3. Orbifold: seeds on the orbifold

Let s € G be a reflection, let us be the corresponding root w.
Let 4, be the arc in H?,
let v, be its projection to the orbifold O = H?/G ;.

Claim.
e If us is a Schur root then ~, is simple.
o If uy,...,u, is a seed then v,,,...,7,, are non-intersecting.

o If uy,...,u, is a seed then there exists a geodesic ray [ € O
such that no of ~,, intersects [.

Proof: induction by the number of mutations.



3. Orbifold: seeds on the orbifold

After mutation pus:




4. From orbifold to disc

Cut along I:




Remarks

e This explains how to map Schur roots to arcs in the disc.
Why do we get all arcs?

(a) every (good) set of arcs corresponds to a seed;
(use the braid grup B,, = Aut(D)

to verify conditions given by Speyer and Thomas)

(b) every arc can be included into a (good) set of arcs.

(induction on n)

e The " Schur roots” part of our theorem
implies Lee — Lee conjecture.
(after taking a double cover of the orbifold O)



Lee-Lee conjecture:
Schur roots are in bijection with arcs on the following surface S:

e Conjectured for all acyclic quivers (not necessarily 2-complete).
e Proved for 2-complete quivers of rank 3.



Lee-Lee conjecture & our theorem:
for 2-complete ()

Surface S is a double cover of the orbifold O.

Curves on S — arcs on the disc.



Open questions:
e General (not necessirily 2-complete) acyclic quivers?

e When are two roots compatible?
(i.e. when there exists a seed containing them both?).

e Is a collection of mutually compatible roots compatible itself?






