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A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Rooted plane increasing trees
Labeled: Nodes get labels 0, . . . , n

Size: n (nodes minus one)

Rooted: Unique distinguished node
with label 0

Plane: Children are equipped with a
left-to-right order

Increasing: Labels along any path
from the root are increasing
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Figure: All rooted plane increasing trees of size 0, 1, and 2.
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A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

A growth process

Start with a root and label 0
After i − 1 steps there are 2i − 1 possible steps to insert node i

⇒ There are
(2n − 1)!! = (2n − 1) · (2n − 3) · · · 3 · 1

rooted plane increasing trees
Gives a linear time algorithm for uniform random generation
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A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Relaxed binary trees
Directed acyclic graph (DAG)

Nodes: n (internal) nodes and 1 leaf

Edges: n internal edges and n pointers

Size: n (nodes minus one)

Rooted: Unique distinguished node

Plane: Children are equipped with a
left-to-right order

Structure: Deleting the pointers gives a
plane (binary) tree

Pointers: Point to a node previously visited
in postorder

Figure: All relaxed binary trees of size 0, 1, and 2.
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A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Why “relaxed”?

Compacted trees

Trees are widely used data structures

Contain often a lot of redundant information

⇒ Save every distinct subtree only once and mark
repeated occurrences

Applications: XML, compilers, computer algebra

Important

Subtrees are
unique

Bijection!
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No bijection anymore
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A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

←→

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of
level 1 in blue, and the node of level 2 in green.
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Relaxed trees of right height ≤ k

n

Figure: Right height ≤ 0.
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Figure: Right height ≤ 2.

Figure: Right height ≤ 3.
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Asymptotic number of relaxed and compacted binary trees with
right height ≤ k of size n→∞

#{Relaxed} ∼ γkn!
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Companion paper together with A. Genitrini, B. Gittenberger, and M. Kauers:
Asymptotic Enumeration of Compacted Binary Trees, ArXiv:1703.10031.
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

The goal of this talk

Main result

There exists a bijection between relaxed binary trees of right height at most one
and rooted plane increasing trees constructable as a linear time algorithm.
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Corollary

Relaxed binary trees of right height at most one can be sampled uniformly at
random in linear time.
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T
A branch node is a node on level 0 without pointers to which a branch of nodes
on level 1 is attached.

Setup

1: Label nodes of R in-order v0, v1, . . . , vn
2: For each cherry vi move left pointer to vi−1 . vi−1 is a branch node
3: For each node set pi := target of pointer of vi
4: if level(vi ) = 1 and pi = v0 then
5: p(vi ) := Branch node of branch of vi
6: end if
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T
A branch node is a node on level 0 without pointers to which a branch of nodes
on level 1 is attached.

Setup

1: Label nodes of R in-order v0, v1, . . . , vn
2: For each cherry vi move left pointer to vi−1 . vi−1 is a branch node
3: For each node set pi := target of pointer of vi
4: if level(vi ) = 1 and pi = v0 then
5: p(vi ) := Branch node of branch of vi
6: end if
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A branch node is a node on level 0 without pointers to which a branch of nodes
on level 1 is attached.

Setup

1: Label nodes of R in-order v0, v1, . . . , vn
2: For each cherry vi move left pointer to vi−1 . vi−1 is a branch node
3: For each node set pi := target of pointer of vi
4: if level(vi ) = 1 and pi = v0 then
5: p(vi ) := Branch node of branch of vi
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T
A branch node is a node on level 0 without pointers to which a branch of nodes
on level 1 is attached.

Setup

1: Label nodes of R in-order v0, v1, . . . , vn
2: For each cherry vi move left pointer to vi−1 . vi−1 is a branch node
3: For each node set pi := target of pointer of vi
4: if level(vi ) = 1 and pi = v0 then
5: p(vi ) := Branch node of branch of vi
6: end if
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T

2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do

3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if

8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for

0 1 2 3

4

5 6

8

7

9

10

11

0

1

2

Michael Wallner | LaBRI | 12.03.2018 10 / 15



A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for

0 1 2 3

4

5 6

8

7

9

10

11

0

1

23

45

6

Michael Wallner | LaBRI | 12.03.2018 10 / 15



A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree R → Plane increasing tree T

Transformation

1: Leaf v0 → Root of T
2: for i from 1 to n do
3: if level(vi ) = 0 then . Parent-pointer
4: Attach vi as first child to pi
5: else . Sibling-pointer
6: Attach vi as sibling right of pi
7: end if
8: end for
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

A young leaf is a leaf without left sibling.

A maximal young leaf is a young leaf with maximal label.

Tk is the tree restricted to the labels 0, . . . , k .
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

A young leaf is a leaf without left sibling.

A maximal young leaf is a young leaf with maximal label.

Tk is the tree restricted to the labels 0, . . . , k .
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do

3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for

11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅

7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for

11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for

11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5

0

1

3

45

6

87

9

10

11 2

0 1 2

B

Michael Wallner | LaBRI | 12.03.2018 12 / 15



A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5

0

1 45

6

87

9

10

11 23

0 1 2 3

B

Michael Wallner | LaBRI | 12.03.2018 12 / 15



A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Reversed: Plane increasing tree T →Relaxed binary tree R

1: B := ∅
2: for k from 0 to n do
3: if vk is a maximal young leaf in Tk then
4: Attach vk as new root with a pointer to the parent of vk in Tk
5: Attach B to previous root and move its pointer to last node of B on the left
6: B := ∅
7: else
8: Attach vk as root to B with a pointer to the left sibling of vk in Tk
9: end if

10: end for
11: Perform 5
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A bijection of plane increasing trees with bounded relaxed binary trees | Parameters

Number of maximal young leaves

Correspondence

Maximal young leaves in the growth process in rooted plane increasing trees

Nodes in level 0 in relaxed binary trees of right height ≤ 1

Let Xn be its random variable when drawn uniformly at random among all such
trees of size n.

Theorem

The standardized random variable

Xn − µ1n

σ1
√
n

,

with

µ1 =
1

2
+

log(n)

4n
+O

(
1

n

)
and σ2

1 =
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4
− π2

32n
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n2

)
,

converges in law to a standard normal distribution N (0, 1).
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A bijection of plane increasing trees with bounded relaxed binary trees | Parameters

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in Tk+1, i.e.,
not immediately replaced by a new one.

Correspondence
Dominating young leaves in rooted plane increasing trees

Branches in relaxed binary trees of right height ≤ 1
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Un bon croquis vaut mieux qu’un long discours
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