A bijection of plane increasing trees with bounded relaxed binary trees ALEA Days 03/2018

Michael Wallner

Erwin Schrödinger-Fellow (Austrian Science Fund (FWF): J4162)

Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France

March 12th, 2018

Based on the paper: A bijection of plane increasing trees with relaxed binary trees of right height at most one. ArXiv:1706.07163

Rooted plane increasing trees

■ Labeled: Nodes get labels 0,..., n

- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels 0,..., n
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Figure: All rooted plane increasing trees of size 0, 1, and 2.

Start with a root and label 0

■ After *i* − 1 steps there are 2*i* − 1 possible steps to insert node *i* ⇒ There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i

 \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

- Start with a root and label 0
- After i 1 steps there are 2i 1 possible steps to insert node i
- \Rightarrow There are

$$(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 3 \cdot 1$$

rooted plane increasing trees

Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- *Pointers*: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

		Root
Internal e	dges.	Z
	$\overset{\circ}{\sim}$	\sim
		\sim
) (2
d	\mathcal{D}	Σ
	\bigcirc	\bigcirc
Leaf		

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in **postorder**

- Directed acyclic graph (DAG)
- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- *Structure*: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

Figure: All relaxed binary trees of size 0, 1, and 2.

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
- ⇒ Save every distinct subtree only once and mark repeated occurrences
 - Applications: XML, compilers, computer algebra

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
- ⇒ Save every distinct subtree only once and mark repeated occurrences
 - Applications: XML, compilers, computer algebra

- Subtrees are unique
- Bijection!

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
- ⇒ Save every distinct subtree only once and mark repeated occurrences
 - Applications: XML, compilers, computer algebra

Important

- Subtrees are unique
- Bijection!

Relaxed (compacted) trees

- Drop uniqueness
- No bijection anymore

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 2 in green.

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

A binary tree with right height 2. Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 2 in green.

A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Relaxed trees of right height $\leq k$

-9-9-...-9-9-

Figure: Right height ≤ 0 .

A bijection of plane increasing trees with bounded relaxed binary trees | Combinatorial structures

Relaxed trees of right height $\leq k$

ݤ**−**ݤ- ... **-**ݤ−Ç

Figure: Right height ≤ 0 .

Figure: Right height ≤ 1 .

A bijection of plane increasing trees with bounded relaxed binary trees Combinatorial structures

Relaxed trees of right height $\leq k$

-**∽**-...-∽

Figure: Right height ≤ 0 .

Figure: Right height ≤ 1 .

Figure: Right height ≤ 2 .

A bijection of plane increasing trees with bounded relaxed binary trees Combinatorial structures

Relaxed trees of right height $\leq k$

Figure: Right height ≤ 0 .

Figure: Right height ≤ 1 .

Figure: Right height ≤ 2 .

Figure: Right height \leq 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height \leq k of size $n \rightarrow \infty$

Figure: Right height \leq 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height \leq k of size $n \rightarrow \infty$

$$\#\{\operatorname{Relaxed}\} \sim \gamma_k n! \left(4\cos\left(\frac{\pi}{k+3}\right)^2\right)^n n^{-k/2}$$

Figure: Right height \leq 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height \leq k of size $n \rightarrow \infty$

$$\#\{\operatorname{Relaxed}\} \sim \gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2\right)^n n^{-k/2}$$
$$\#\{\operatorname{Compacted}\} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2\right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2}}$$

Companion paper together with A. Genitrini, B. Gittenberger, and M. Kauers: *Asymptotic Enumeration of Compacted Binary Trees*, ArXiv:1703.10031.

The goal of this talk

Main result

There exists a bijection between relaxed binary trees of right height at most one and rooted plane increasing trees constructable as a linear time algorithm.

The goal of this talk

Main result

There exists a bijection between relaxed binary trees of right height at most one and rooted plane increasing trees constructable as a linear time algorithm.

Corollary

Relaxed binary trees of right height at most one can be sampled uniformly at random in linear time.

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}
- 3: For each node set $p_i :=$ target of pointer of v_i

```
\triangleright v_{i-1} is a branch node
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}
- 3: For each node set $p_i :=$ target of pointer of v_i
- 4: if $level(v_i) = 1$ and $p_i = v_0$ then
- 5: $p(v_i) :=$ Branch node of branch of v_i
- 6: end if

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}
- 3: For each node set $p_i :=$ target of pointer of v_i
- 4: if $level(v_i) = 1$ and $p_i = v_0$ then
- 5: $p(v_i) :=$ Branch node of branch of v_i
- 6: **end if**

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A *branch node* is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

- 1: Label nodes of \mathcal{R} in-order v_0, v_1, \ldots, v_n
- 2: For each cherry v_i move left pointer to v_{i-1}
- 3: For each node set $p_i :=$ target of pointer of v_i
- 4: if $level(v_i) = 1$ and $p_i = v_0$ then
- 5: $p(v_i) :=$ Branch node of branch of v_i
- 6: **end if**

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

1: Leaf $v_0
ightarrow \mathsf{Root}$ of $\mathcal T$

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0 \rightarrow \text{Root of } \mathcal{T}$
- 2: **for** *i* from 1 to *n* **do**

8: end for

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of \mathcal{T}
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Sibling-pointer

A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

Relaxed binary tree $\mathcal{R} \rightarrow \mathsf{Plane}$ increasing tree \mathcal{T}

Transformation

- 1: Leaf $v_0
 ightarrow \mathsf{Root}$ of $\mathcal T$
- 2: for *i* from 1 to *n* do
- 3: **if** $level(v_i) = 0$ **then**
- 4: Attach v_i as first child to p_i

5: **else**

- 6: Attach v_i as sibling right of p_i
- 7: end if
- 8: end for

▷ Parent-pointer

Sibling-pointer

- A young leaf is a leaf without left sibling.
- A maximal young leaf is a young leaf with maximal label.
- \mathcal{T}_k is the tree restricted to the labels $0, \ldots, k$.

- A young leaf is a leaf without left sibling.
- A maximal young leaf is a young leaf with maximal label.
- \mathcal{T}_k is the tree restricted to the labels $0, \ldots, k$.

A bijection of plane increasing trees with bounded relaxed binary trees | The Bijection

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**

10: end for

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$

10: end for

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

- 1: $\mathcal{B} := \emptyset$
- 2: **for** *k* from 0 to *n* **do**
- 3: **if** v_k is a maximal young leaf in \mathcal{T}_k **then**
- 4: Attach v_k as new root with a pointer to the parent of v_k in \mathcal{T}_k
- 5: Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
- 6: $\mathcal{B} := \emptyset$
- 7: else
- 8: Attach v_k as root to \mathcal{B} with a pointer to the left sibling of v_k in \mathcal{T}_k
- 9: end if
- 10: end for
- 11: Perform 5

Number of maximal young leaves

Correspondence

- Maximal young leaves in the growth process in rooted plane increasing trees
- \blacksquare Nodes in level 0 in relaxed binary trees of right height ≤ 1

Number of maximal young leaves

Correspondence

- Maximal young leaves in the growth process in rooted plane increasing trees
- \blacksquare Nodes in level 0 in relaxed binary trees of right height ≤ 1

Let X_n be its random variable when drawn uniformly at random among all such trees of size n.

Number of maximal young leaves

Correspondence

- Maximal young leaves in the growth process in rooted plane increasing trees
- \blacksquare Nodes in level 0 in relaxed binary trees of right height ≤ 1

Let X_n be its random variable when drawn uniformly at random among all such trees of size n.

Theorem

The standardized random variable

$$\frac{X_n-\mu_1 n}{\sigma_1 \sqrt{n}},$$

with

$$\mu_1 = \frac{1}{2} + \frac{\log(n)}{4n} + \mathcal{O}\left(\frac{1}{n}\right) \qquad \text{and} \qquad \sigma_1^2 = \frac{1}{4} - \frac{\pi^2}{32n} + \mathcal{O}\left(\frac{1}{n^2}\right),$$

converges in law to a standard normal distribution $\mathcal{N}(0,1)$.

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1} , i.e., not immediately replaced by a new one.

A bijection of plane increasing trees with bounded relaxed binary trees | Parameters

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1} , i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- \blacksquare Branches in relaxed binary trees of right height ≤ 1

A bijection of plane increasing trees with bounded relaxed binary trees | Parameters

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1} , i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- \blacksquare Branches in relaxed binary trees of right height ≤ 1

Let Y_n be its random variable when drawn uniformly at random among all such trees of size n.

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1} , i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- \blacksquare Branches in relaxed binary trees of right height ≤ 1

Let Y_n be its random variable when drawn uniformly at random among all such trees of size n.

Theorem

The standardized random variable

$$\frac{Y_n - \mu_2 n}{\sigma_2 \sqrt{n}}$$

with

$$\mu_2 = \frac{1}{4} - \frac{1}{8n} + \mathcal{O}\left(\frac{1}{n^2}\right) \quad \text{and} \quad \sigma_2^2 = \frac{1}{16} + \frac{1}{32n} + \mathcal{O}\left(\frac{1}{n^2}\right),$$

converges in law to a standard normal distribution $\mathcal{N}(0,1)$.

Un bon croquis vaut mieux qu'un long discours

Un bon croquis vaut mieux qu'un long discours

9

4

3 6

R

C

Β Ε Α IJ С U Ρ