A bijection of plane increasing trees with bounded relaxed binary trees

 ALEA Days 03/2018

 ALEA Days 03/2018}

Michael Wallner

Erwin Schrödinger-Fellow (Austrian Science Fund (FWF): J4162)
Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, France
March $12^{\text {th }}, 2018$
Based on the paper:
A bijection of plane increasing trees with relaxed binary trees of right height at most one.

ArXiv:1706.07163

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$

Size: n (nodes minus one)
Rooted: Unique distinguished node with label 0 Plane: Children are equipped with a left-to-right order Increasine: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Rooted plane increasing trees

- Labeled: Nodes get labels $0, \ldots, n$
- Size: n (nodes minus one)
- Rooted: Unique distinguished node with label 0
- Plane: Children are equipped with a left-to-right order
- Increasing: Labels along any path from the root are increasing

Figure: All rooted plane increasing trees of size 0,1 , and 2 .

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
rooted plane increasing trees
Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation
(0)

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

A growth process

- Start with a root and label 0
- After $i-1$ steps there are $2 i-1$ possible steps to insert node i
\Rightarrow There are

$$
(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1
$$

rooted plane increasing trees

- Gives a linear time algorithm for uniform random generation

Relaxed binary trees

■ Directed acyclic graph (DAG)
Nodes: n (internal) nodes and 1 leaf
Edges: n internal edges and n pointers
Size: n (nodes minus ane)
Rooted: Unique distinguished node
Plane: Children are equipped with a left-to-right order

Structure: Deleting the pointers gives a plane (binary) tree

Dointars: Doint to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf

Edges: n internal edges and n pointers
Size: n (nodes minus one)
Rooted: Uniaue distinguished node Plane: Children are equipped with a left-to-right order Structure: Deleting the pointers gives a plane (binary) tree Pointers: Point to a node previously visited
 in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers

Size: n (nodes minus one)
Rooted: Unique distinguished node Plane. Children are eallinned with a left-to-right order Structure: Deleting the pointers gives a plane (binary) tree Pointers: Point to a node previously visited

in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)

Rooted: Unique distinguished node Plane: Children are equipped with a left-to-right order Structure: Deleting the pointers gives a plane (binary) tree

in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node

plane (binary) tree
Poiniers. Poini io a node previously visited

in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order

Structure: Deleting the pointers gives a plane (binary) tree Daintare: Daint to a hode previously visited

in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited

Leaf in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Relaxed binary trees

■ Directed acyclic graph (DAG)

- Nodes: n (internal) nodes and 1 leaf
- Edges: n internal edges and n pointers
- Size: n (nodes minus one)
- Rooted: Unique distinguished node
- Plane: Children are equipped with a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Pointers: Point to a node previously visited in postorder

Figure: All relaxed binary trees of size 0,1 , and 2.

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
\Rightarrow Save every distinct subtree only once and mark repeated occurrences
- Applications: XML, compilers, computer algebra

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
\Rightarrow Save every distinct subtree only once and mark repeated occurrences

Important

- Subtrees are unique
■ Bijection!
- Applications: XML, compilers, computer algebra

Why "relaxed"?

Compacted trees

- Trees are widely used data structures
- Contain often a lot of redundant information
\Rightarrow Save every distinct subtree only once and mark repeated occurrences

Important

- Subtrees are unique
- Bijection!
- Applications: XML, compilers, computer algebra

Relaxed (compacted) trees

- Drop uniqueness
- No bijection anymore

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

A binary tree with right height 2 . Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 2 in green.

Bounded right height

Right height

The maximal number of right children on any path from the root to a leaf.

A binary tree with right height 2 . Nodes of level 0 are colored in red, nodes of level 1 in blue, and the node of level 2 in green.

Relaxed trees of right height $\leq k$

Figure: Right height ≤ 0.

Relaxed trees of right height $\leq k$

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Relaxed trees of right height $\leq k$

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Relaxed trees of right height $\leq k$

Figure: Right height ≤ 0.

Figure: Right height ≤ 1.

Figure: Right height ≤ 2.

Figure: Right height ≤ 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height $\leq \mathrm{k}$ of size $n \rightarrow \infty$

Figure: Right height ≤ 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height $\leq \mathrm{k}$ of size $n \rightarrow \infty$

$$
\#\{\text { Relaxed }\} \sim \gamma_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)^{2}\right)^{n} n^{-k / 2}
$$

Figure: Right height ≤ 3.

Relaxed trees of right height $\leq k$

Asymptotic number of relaxed and compacted binary trees with right height $\leq \mathrm{k}$ of size $n \rightarrow \infty$

$$
\begin{aligned}
\#\{\text { Relaxed }\} & \sim \gamma_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)^{2}\right)^{n} n^{-k / 2} \\
\#\{\text { Compacted }\} & \sim \kappa_{k} n!\left(4 \cos \left(\frac{\pi}{k+3}\right)^{2}\right)^{n} n^{-\frac{k}{2}-\frac{1}{k+3}-\left(\frac{1}{4}-\frac{1}{k+3}\right) \cos \left(\frac{\pi}{k+3}\right)^{-2}}
\end{aligned}
$$

Companion paper together with A. Genitrini, B. Gittenberger, and M. Kauers: Asymptotic Enumeration of Compacted Binary Trees, ArXiv:1703.10031.

Figure: Right height ≤ 3.

The goal of this talk

Main result

There exists a bijection between relaxed binary trees of right height at most one and rooted plane increasing trees constructable as a linear time algorithm.

The goal of this talk

Main result

There exists a bijection between relaxed binary trees of right height at most one and rooted plane increasing trees constructable as a linear time algorithm.

Corollary

Relaxed binary trees of right height at most one can be sampled uniformly at random in linear time.

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node
3: For each node set $p_{i}:=$ target of pointer of v_{i}

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node
3: For each node set $p_{i}:=$ target of pointer of v_{i}
4: if $\operatorname{level}\left(v_{i}\right)=1$ and $p_{i}=v_{0}$ then
5: $\quad p\left(v_{i}\right):=$ Branch node of branch of v_{i}
6: end if

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node
3: For each node set $p_{i}:=$ target of pointer of v_{i}
4: if $\operatorname{level}\left(v_{i}\right)=1$ and $p_{i}=v_{0}$ then
5: $\quad p\left(v_{i}\right):=$ Branch node of branch of v_{i}
6: end if

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

A branch node is a node on level 0 without pointers to which a branch of nodes on level 1 is attached.

Setup

1: Label nodes of \mathcal{R} in-order $v_{0}, v_{1}, \ldots, v_{n}$
2: For each cherry v_{i} move left pointer to v_{i-1}
$\triangleright v_{i-1}$ is a branch node
3: For each node set $p_{i}:=$ target of pointer of v_{i}
4: if $\operatorname{level}\left(v_{i}\right)=1$ and $p_{i}=v_{0}$ then
5: $\quad p\left(v_{i}\right):=$ Branch node of branch of v_{i}
6: end if

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

1: Leaf $v_{0} \rightarrow$ Root of \mathcal{T}

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

Transformation

1: Leaf $v_{0} \rightarrow$ Root of \mathcal{T}
2: for i from 1 to n do

8: end for

Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach vi as sibling right of pi
7: end if
8: end for
\ Sibling-pointer
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level ( }\mp@subsup{v}{i}{})=0\mathrm{ then D Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vo }->\mathrm{ Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level(}\mp@subsup{v}{i}{})=0\mathrm{ then
4: Attach vi as first child to pi
5: else
Attach vi as sibling right of pi
    end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level ( }\mp@subsup{v}{i}{})=0\mathrm{ then D Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for i from 1 to n do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for i from 1 to n do
3: if level ( }\mp@subsup{v}{i}{})=0\mathrm{ then D Parent-pointer
4: Attach vi as first child to pi
5: else
Attach vi as sibling right of pi
    end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for i from 1 to n do
3: if level ( }\mp@subsup{v}{i}{})=0\mathrm{ then D Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vo }->\mathrm{ Root of }\mathcal{T
2: for i from 1 to n do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vol Root of }\mathcal{T
2: for }i\mathrm{ from }1\mathrm{ to }n\mathrm{ do
3: if level ( }\mp@subsup{v}{i}{})=0\mathrm{ then D Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Relaxed binary tree $\mathcal{R} \rightarrow$ Plane increasing tree \mathcal{T}

```
Transformation
1: Leaf vo }->\mathrm{ Root of }\mathcal{T
2: for i from 1 to n do
3: if level (vi)=0 then \triangleright Parent-pointer
4: Attach vi as first child to pi
5: else
6: Attach }\mp@subsup{v}{i}{}\mathrm{ as sibling right of }\mp@subsup{p}{i}{
7: end if
8: end for
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

- A young leaf is a leaf without left sibling.
- A maximal young leaf is a young leaf with maximal label.
$■ \mathcal{T}_{k}$ is the tree restricted to the labels $0, \ldots, k$.

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

- A young leaf is a leaf without left sibling.
- A maximal young leaf is a young leaf with maximal label.
$■ \mathcal{T}_{k}$ is the tree restricted to the labels $0, \ldots, k$.

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

$$
\begin{aligned}
& \text { 1: } \mathcal{B}:=\emptyset \\
& \text { 2: for } k \text { from } 0 \text { to } n \text { do }
\end{aligned}
$$

10: end for

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

1: $\mathcal{B}:=\emptyset$
2: for k from 0 to n do
3: \quad if v_{k} is a maximal young leaf in \mathcal{T}_{k} then
4: \quad Attach v_{k} as new root with a pointer to the parent of v_{k} in \mathcal{T}_{k}
5: \quad Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
6: $\quad \mathcal{B}:=\emptyset$

10: end for

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

1: $\mathcal{B}:=\emptyset$
2: for k from 0 to n do
3: \quad if v_{k} is a maximal young leaf in \mathcal{T}_{k} then
4: \quad Attach v_{k} as new root with a pointer to the parent of v_{k} in \mathcal{T}_{k}
5: \quad Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
6: $\quad \mathcal{B}:=\emptyset$
7: else
8: \quad Attach v_{k} as root to \mathcal{B} with a pointer to the left sibling of v_{k} in \mathcal{T}_{k}
9: end if
10: end for

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

1: $\mathcal{B}:=\emptyset$
2: for k from 0 to n do
3: \quad if v_{k} is a maximal young leaf in \mathcal{T}_{k} then
4: \quad Attach v_{k} as new root with a pointer to the parent of v_{k} in \mathcal{T}_{k}
5: \quad Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left
6: $\quad \mathcal{B}:=\emptyset$
7: else
8: \quad Attach v_{k} as root to \mathcal{B} with a pointer to the left sibling of v_{k} in \mathcal{T}_{k}
9: end if
10: end for
11: Perform 5

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

5: \quad Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left

Attach v_{k} as root to \mathcal{B} with a pointer to the left sibling of v_{k} in \mathcal{T}_{k}

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

5: \quad Attach \mathcal{B} to previous root and move its pointer to last node of \mathcal{B} on the left

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: 
7: else
8: Attach vk as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: 
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to }n\mathrm{ do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: 
7: else
8: }\quad\mathrm{ Attach }\mp@subsup{v}{k}{}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to }n\mathrm{ do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


\mathcal{B}

Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Reversed: Plane increasing tree $\mathcal{T} \rightarrow$ Relaxed binary tree \mathcal{R}

```
1: \mathcal{B :=\emptyset}
2: for }k\mathrm{ from 0 to n do
3: if }\mp@subsup{v}{k}{}\mathrm{ is a maximal young leaf in }\mp@subsup{\mathcal{T}}{k}{}\mathrm{ then
4: Attach }\mp@subsup{v}{k}{}\mathrm{ as new root with a pointer to the parent of }\mp@subsup{v}{k}{}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
5: }\quad\mathrm{ Attach }\mathcal{B}\mathrm{ to previous root and move its pointer to last node of }\mathcal{B}\mathrm{ on the left
6: }\quad\mathcal{B}:=
7: else
8: Attach vk}\mathrm{ as root to }\mathcal{B}\mathrm{ with a pointer to the left sibling of vk}\mathrm{ in }\mp@subsup{\mathcal{T}}{k}{
9: end if
10: end for
11: Perform 5
```


Number of maximal young leaves

Correspondence
■ Maximal young leaves in the growth process in rooted plane increasing trees

- Nodes in level 0 in relaxed binary trees of right height ≤ 1

Number of maximal young leaves

Correspondence

■ Maximal young leaves in the growth process in rooted plane increasing trees

- Nodes in level 0 in relaxed binary trees of right height ≤ 1

Let X_{n} be its random variable when drawn uniformly at random among all such trees of size n.

Number of maximal young leaves

Correspondence

■ Maximal young leaves in the growth process in rooted plane increasing trees

- Nodes in level 0 in relaxed binary trees of right height ≤ 1

Let X_{n} be its random variable when drawn uniformly at random among all such trees of size n.

Theorem

The standardized random variable

$$
\frac{X_{n}-\mu_{1} n}{\sigma_{1} \sqrt{n}}
$$

with

$$
\mu_{1}=\frac{1}{2}+\frac{\log (n)}{4 n}+\mathcal{O}\left(\frac{1}{n}\right) \quad \text { and } \quad \sigma_{1}^{2}=\frac{1}{4}-\frac{\pi^{2}}{32 n}+\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

converges in law to a standard normal distribution $\mathcal{N}(0,1)$.

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1}, i.e., not immediately replaced by a new one.

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1}, i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- Branches in relaxed binary trees of right height ≤ 1

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1}, i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- Branches in relaxed binary trees of right height ≤ 1

Let Y_{n} be its random variable when drawn uniformly at random among all such trees of size n.

Number of dominating young leaves

We call a young leaf with label k dominating if it is still a young leaf in \mathcal{T}_{k+1}, i.e., not immediately replaced by a new one.

Correspondence

- Dominating young leaves in rooted plane increasing trees
- Branches in relaxed binary trees of right height ≤ 1

Let Y_{n} be its random variable when drawn uniformly at random among all such trees of size n.

Theorem

The standardized random variable

$$
\frac{Y_{n}-\mu_{2} n}{\sigma_{2} \sqrt{n}}
$$

with

$$
\mu_{2}=\frac{1}{4}-\frac{1}{8 n}+\mathcal{O}\left(\frac{1}{n^{2}}\right) \quad \text { and } \quad \sigma_{2}^{2}=\frac{1}{16}+\frac{1}{32 n}+\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

converges in law to a standard normal distribution $\mathcal{N}(0,1)$.

Un bon croquis vaut mieux qu'un long discours

$\begin{array}{ll}0 & 0 \\ & 0 \\ & 1\end{array}$

Un bon croquis vaut mieux qu'un long discours

M
E
0

R

