## Extremal Graph Theory

March, 13th 2018

## Points in the unit disc

- Choose $n$ points within the unit disc. How many pairs are at distance at most $\sqrt{2}$ ?


## Points in the unit disc

- Choose $n$ points within the unit disc. How many pairs are at distance at most $\sqrt{2}$ ?

63 pairs out of 66
31 pairs out of 66


Points in the unit disc

$$
\pi / 18=\pi /(2(\mathrm{n}-3))
$$



## Points in the unit disc

$$
\pi / 18=\pi /(2(n-3))
$$



## Parallel Processing

- How many processors are needed to find the maximum of $n$ numbers in $k$ rounds?


## Parallel Processing

- 1 round allowed $\Rightarrow O\left(n^{2}\right)$ processors are sufficient.


## Parallel Processing

- 1 round allowed $\Rightarrow O\left(n^{2}\right)$ processors are sufficient.
- 2 rounds allowed $\Rightarrow O\left(n^{4 / 3}\right)$ processors are sufficient.


## Parallel Processing

- 1 round allowed $\Rightarrow O\left(n^{2}\right)$ processors are sufficient.
- 2 rounds allowed $\Rightarrow O\left(n^{4 / 3}\right)$ processors are sufficient.
- Split the numbers into $n^{2 / 3}$ groups of $n^{1 / 3}$ numbers each.


## Parallel Processing

- 1 round allowed $\Rightarrow O\left(n^{2}\right)$ processors are sufficient.
- 2 rounds allowed $\Rightarrow O\left(n^{4 / 3}\right)$ processors are sufficient.
- Exercise! $k$ rounds allowed $\Rightarrow O\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors are sufficient.


## Parallel Processing

- 1 round allowed $\Rightarrow O\left(n^{2}\right)$ processors are sufficient.
- 2 rounds allowed $\Rightarrow O\left(n^{4 / 3}\right)$ processors are sufficient.
- Exercise! $k$ rounds allowed $\Rightarrow O\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors are sufficient.

Question
Are these bounds good?

## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n}
$$

## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n} .
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n}
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n} .
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.
- Free vertices form an independent set $\mathbf{I}_{\mathbf{f}}$.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n} .
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.
- Free vertices form an independent set $\mathbf{I}_{\mathbf{f}}$.
- $\mathbf{P}\left(v \in \mathbf{I}_{\mathbf{f}}\right)=\frac{\operatorname{deg}(v)!}{(\operatorname{deg}(v)+1)!}=\frac{1}{\operatorname{deg}(v)+1}$.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n} .
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.
- Free vertices form an independent set $\mathbf{I}_{\mathbf{f}}$.
- $\mathbf{P}\left(v \in \mathbf{I}_{\mathbf{f}}\right)=\frac{\operatorname{deg}(v)!}{(\operatorname{deg}(v)+1)!}=\frac{1}{\operatorname{deg}(v)+1}$.
- $E\left|\mathbf{I}_{\mathbf{f}}\right|=\sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n}
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.
- Free vertices form an independent set $\mathbf{I}_{\mathbf{f}}$.
- $\mathbf{P}\left(v \in \mathbf{I}_{\mathbf{f}}\right)=\frac{\operatorname{deg}(v)!}{(\operatorname{deg}(v)+1)!}=\frac{1}{\operatorname{deg}(v)+1}$.
- $E\left|\mathbf{I}_{\mathbf{f}}\right|=\sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$.
- Thus $G$ has an independent set $I$ of order at least this sum.


## Turán's theorem - Independent sets

Theorem (Turán, 1941)
$G$ graph with $n$ vertices and $m$ edges. Then

$$
\alpha(G) \geq \frac{n^{2}}{2 m+n}
$$

- Randomly order the vertices $\rightarrow\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right)$.
- $v_{i}$ is free if $v_{i} \sim v_{j} \Rightarrow j<i$.
- Free vertices form an independent set $\mathbf{I}_{\mathbf{f}}$.
- $\mathbf{P}\left(v \in \mathbf{I}_{\mathbf{f}}\right)=\frac{\operatorname{deg}(v)!}{(\operatorname{deg}(v)+1)!}=\frac{1}{\operatorname{deg}(v)+1}$.
- $E\left|\mathbf{I}_{\mathbf{f}}\right|=\sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$.
- Thus $G$ has an independent set $I$ of order at least this sum.
- The sum is minimised when $G$ is $2 m / n$-regular.


## Pointset in the unit disc

- We found a constrution with $\frac{n^{2}}{6}-\frac{n}{2}$ pairs at distance at most $\sqrt{2}$.


## Pointset in the unit disc

- We found a constrution with $\frac{n^{2}}{6}-\frac{n}{2}$ pairs at distance at most $\sqrt{2}$.
- Consider any set $S$ of $n$ points within the unit disc.


## Pointset in the unit disc

- We found a constrution with $\frac{n^{2}}{6}-\frac{n}{2}$ pairs at distance at most $\sqrt{2}$.
- Consider any set $S$ of $n$ points within the unit disc.
- Build a graph $G_{S}$ on the pointset $S$ : edge $\{u, v\}$ iff $d(u, v) \leq \sqrt{2}$.


## Pointset in the unit disc

- We found a constrution with $\frac{n^{2}}{6}-\frac{n}{2}$ pairs at distance at most $\sqrt{2}$.
- Consider any set $S$ of $n$ points within the unit disc.
- Build a graph $G_{S}$ on the pointset $S$ : edge $\{u, v\}$ iff $d(u, v) \leq \sqrt{2}$.
- $\alpha\left(G_{S}\right) \leq 3$.


## Pointset in the unit disc

- We found a constrution with $\frac{n^{2}}{6}-\frac{n}{2}$ pairs at distance at most $\sqrt{2}$.
- Consider any set $S$ of $n$ points within the unit disc.
- Build a graph $G_{S}$ on the pointset $S$ : edge $\{u, v\}$ iff $d(u, v) \leq \sqrt{2}$.
- $\alpha\left(G_{S}\right) \leq 3$.
- So

$$
3 \geq \frac{n^{2}}{2 m+n}
$$

i.e.

$$
m \geq \frac{n^{2}}{6}-\frac{n}{2}
$$

## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.
- $G_{1}$ has $n$ vertices and at most $p$ edges.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.
- $G_{1}$ has $n$ vertices and at most $p$ edges.
- So $G_{1}$ contains an independent set $I$ with at least $\frac{n^{2}}{2 p+n}$ vertices.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.
- $G_{1}$ has $n$ vertices and at most $p$ edges.
- So $G_{1}$ contains an independent set $I$ with at least $\frac{n^{2}}{2 p+n}$ vertices.
- Fix the comparisons so that all vertices in I are still candidates for being maximum.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.
- $G_{1}$ has $n$ vertices and at most $p$ edges.
- So $G_{1}$ contains an independent set $I$ with at least $\frac{n^{2}}{2 p+n}$ vertices.
- Fix the comparisons so that all vertices in I are still candidates for being maximum.
- The remaining $k$ rounds thus determine $\max _{|| |}$with $p$ processors.


## Parallel Processing

Order is tight: induction on $k$. Wlog $p \geq n$.

- Statement true if $k=1$. Suppose that finding the max. of $n$ numbers in $k$ rounds requires $\Omega\left(n^{1+\frac{1}{2^{k}-1}}\right)$ processors.
- Suppose $p$ processors are enough if $k+1$ rounds are allowed.
- $G_{1}$ : comparison graph obtained after the first round.
- $G_{1}$ has $n$ vertices and at most $p$ edges.
- So $G_{1}$ contains an independent set $I$ with at least $\frac{n^{2}}{2 p+n}$ vertices.
- Fix the comparisons so that all vertices in I are still candidates for being maximum.
- The remaining $k$ rounds thus determine $\max _{|I|}$ with $p$ processors.
- By induction, $p=\Omega\left(|I|^{1+\frac{1}{2^{k}-1}}\right)$.


## Parallel Processing

As $p \geq n$, it implies that

$$
p=\Omega\left(\left(\frac{n^{2}}{p}\right)^{1+\frac{1}{2^{k}-1}}\right)
$$

that is

$$
\begin{aligned}
p^{\frac{2^{k+1}-1}{2^{k}-1}} & =\Omega\left(n^{2^{2^{k}-1}}\right) \\
\Rightarrow p & =\Omega\left(n^{\frac{2^{k}}{2^{k+1}-1}}\right)=\Omega\left(n^{1+\frac{1}{2^{k+1}-1}}\right) .
\end{aligned}
$$

## The general Turán problem

- Fix an $r$-graph $F$.


## The general Turán problem

- Fix an $r$-graph $F$.
- If $H$ is an $r$-graph with $n$ vertices that does not contain $F$, then how large can $m$ be?


## The general Turán problem

- Fix an $r$-graph $F$.
- If $H$ is an $r$-graph with $n$ vertices that does not contain $F$, then how large can $m$ be?
- Let ex $(n, F)$ be this maximum value.


## The general Turán problem

- Fix an $r$-graph $F$.
- If $H$ is an $r$-graph with $n$ vertices that does not contain $F$, then how large can $m$ be?
- Let ex $(n, F)$ be this maximum value.
- Set $\pi(F):=\lim _{n \rightarrow \infty}\binom{n}{r}^{-1} \cdot \operatorname{ex}(n, F)$.


## The general Turán problem

- Fix an $r$-graph $F$.
- If $H$ is an $r$-graph with $n$ vertices that does not contain $F$, then how large can $m$ be?
- Let ex $(n, F)$ be this maximum value.
- Set $\pi(F):=\lim _{n \rightarrow \infty}\binom{n}{r}^{-1} \cdot \operatorname{ex}(n, F)$.

Is this a good definition?

Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.

Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.


## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Indeed, choose $\mathbf{H}^{\prime}$ uniformly at random among all induced sub-hypergraphs on $n^{\prime}$ vertices. Then

$$
\forall e, \quad \mathbf{P}\left(e \in \mathbf{H}^{\prime}\right)=\binom{n-r}{n^{\prime}-r}\binom{n}{n^{\prime}}^{-1} .
$$

## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Indeed, choose $\mathbf{H}^{\prime}$ uniformly at random among all induced sub-hypergraphs on $n^{\prime}$ vertices. Then

$$
\forall e, \quad \mathbf{P}\left(e \in \mathbf{H}^{\prime}\right)=\binom{n-r}{n^{\prime}-r}\binom{n}{n^{\prime}}^{-1} .
$$

- Thus

$$
\begin{aligned}
\mathbf{E}\left(\boldsymbol{m}^{\prime}\right) & =\theta\binom{n}{r}\binom{n-r}{n^{\prime}-r}\binom{n}{n^{\prime}}^{-1} \\
& =\theta\binom{n^{\prime}}{r} .
\end{aligned}
$$

## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Take $H$ to be $F$-free with $m=\theta\binom{n}{r}=\operatorname{ex}(n, F)$ hyperedges.


## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Take $H$ to be $F$-free with $m=\theta\binom{n}{r}=\operatorname{ex}(n, F)$ hyperedges.
- For $n^{\prime}=n-1$, we deduce that $H$ contains a sub-hypergraph $H^{\prime}$ on $n-1$ vertices with density at least $\theta$.


## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Take $H$ to be $F$-free with $m=\theta\binom{n}{r}=\operatorname{ex}(n, F)$ hyperedges.
- For $n^{\prime}=n-1$, we deduce that $H$ contains a sub-hypergraph $H^{\prime}$ on $n-1$ vertices with density at least $\theta$.
- As $H^{\prime}$ itself is $F$-free, this yields that

$$
\binom{n-1}{r}^{-1} \operatorname{ex}(n-1, F) \leq \theta=\binom{n}{r}^{-1} \operatorname{ex}(n, F)
$$

## Why $\pi(F)$ always exists

- H r-graph. Write $m=\theta\binom{n}{r}$.
- If $n^{\prime} \in\{r, \ldots, n\}$, then $H$ has a sub-hypergraph $H^{\prime}$ on $n^{\prime}$ vertices with density at least $\theta$.
- Take $H$ to be $F$-free with $m=\theta\binom{n}{r}=\operatorname{ex}(n, F)$ hyperedges.
- For $n^{\prime}=n-1$, we deduce that $H$ contains a sub-hypergraph $H^{\prime}$ on $n-1$ vertices with density at least $\theta$.
- As $H^{\prime}$ itself is $F$-free, this yields that

$$
\binom{n-1}{r}^{-1} \operatorname{ex}(n-1, F) \leq \theta=\binom{n}{r}^{-1} \operatorname{ex}(n, F)
$$

- Consequently, $\left(\binom{n}{r}^{-1} \operatorname{ex}(n, F)\right)_{n}$ is a decreasing sequence in $[0,1]$.

When are we good at finding $\pi(F)$ ?

Theorem (Turán, 1941)
Fix $n \geq t \geq 2$.

$$
\operatorname{ex}\left(n, K_{t+1}\right)=\frac{1}{2}(1-1 / t)\left(n^{2}-k^{2}\right)+\binom{k}{2}
$$

where $k=n(\bmod t)$. Further, it is attained only by the complete multipartite graph on $n$ vertices with balanced part sizes.

## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.


$$
K_{3}
$$

## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.

$K_{3}(4)$

## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.

$K_{4}$

## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.


## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.

$K_{5}$

## Turán Graphs and Blow-ups

The Turán graph (complete balanced multi-partite graph) is the balanced blow-up of the complete graph (part sizes are $\lfloor n / t\rfloor$ or $\lceil n / t\rceil)$.


When are we good at finding $\pi(F)$ ?

Theorem (Erdős-Stone-Simonovits, 1946)
Let $F$ be a graph with chromatic number $\geq 3$. Then

$$
\pi(F)=1-\frac{1}{\chi(F)-1} .
$$

When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

Conjecture (Turán, 1940)

$$
\begin{gathered}
\pi\left(K_{4}^{3}\right)=\frac{5}{9} \text {. More specifically, } \\
\operatorname{ex}\left(n, K_{4}^{3}\right)= \begin{cases}\frac{m^{2}(5 m-3)}{2} & \text { if } n=3 m \\
\frac{m\left(5 m^{2}+2 m-1\right)}{2} & \text { if } n=3 m+1 \\
\frac{m(m+1)(5 m+2)}{2} & \text { if } n=3 m+2\end{cases}
\end{gathered}
$$

When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

Conjecture (Turán, 1940)

$$
\begin{gathered}
\pi\left(K_{4}^{3}\right)=\frac{5}{9} \text {. More specifically, } \\
\operatorname{ex}\left(n, K_{4}^{3}\right)= \begin{cases}\frac{m^{2}(5 m-3)}{2 m\left(5 m^{2}+2 m-1\right)} & \text { if } n=3 m \\
\frac{\text { if } n=3 m+1}{2}\left(\frac{m(m+1)(5 m+2)}{2}\right. & \text { if } n=3 m+2\end{cases}
\end{gathered}
$$

- $\left(V_{0}, V_{1}, V_{2}\right)$ balanced partition of $V$. Hyperedges either:
- have two vertices in $V_{i}$ and one in $V_{i+1}$ (indices modulo 3); or
- intersect every part.

When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

Conjecture (Turán, 1940)

$$
\begin{gathered}
\pi\left(K_{4}^{3}\right)=\frac{5}{9} \text {. More specifically, } \\
\operatorname{ex}\left(n, K_{4}^{3}\right)= \begin{cases}\frac{m^{2}(5 m-3)}{2 m\left(5 m^{2}+2 m-1\right)} & \text { if } n=3 m \\
\frac{\text { if } n=3 m+1}{2}\left(\frac{m(m+1)(5 m+2)}{2}\right. & \text { if } n=3 m+2\end{cases}
\end{gathered}
$$

- $\left(V_{0}, V_{1}, V_{2}\right)$ balanced partition of $V$. Hyperedges either:
- have two vertices in $V_{i}$ and one in $V_{i+1}$ (indices modulo 3); or
- intersect every part.
- No $K_{4}^{3}$ and $\frac{5}{9}\binom{n}{3}$ edges.


## When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

Conjecture (Turán, 1940)

$$
\begin{gathered}
\pi\left(K_{4}^{3}\right)=\frac{5}{9} \text {. More specifically, } \\
\operatorname{ex}\left(n, K_{4}^{3}\right)= \begin{cases}\frac{m^{2}(5 m-3)}{2} & \text { if } n=3 m \\
\frac{m\left(5 m^{2}+2 m-1\right)}{2}\left(\begin{array}{l}
\end{array}\right. \\
\frac{m(m+1)(5 m+2)}{2} & \text { if } n=3 m+1\end{cases}
\end{gathered}
$$

- $\left(V_{0}, V_{1}, V_{2}\right)$ balanced partition of $V$. Hyperedges either:
- have two vertices in $V_{i}$ and one in $V_{i+1}$ (indices modulo 3); or
- intersect every part.
- No $K_{4}^{3}$ and $\frac{5}{9}\binom{n}{3}$ edges.
- Kostochka, 1982: exponentially many non-isomorphic extremal examples for each $n$.


## When are we bad at finding $\pi(F)$ ?

- Let $K_{4}^{3}$ be the 3 -graph on 4 vertices. What is $\pi\left(K_{4}^{3}\right)$ ?

Conjecture (Turán, 1940)

$$
\begin{gathered}
\pi\left(K_{4}^{3}\right)=\frac{5}{9} \text {. More specifically, } \\
\operatorname{ex}\left(n, K_{4}^{3}\right)= \begin{cases}\frac{m^{2}(5 m-3)}{2} & \text { if } n=3 m \\
\frac{m\left(m^{2}+2 m-1\right)}{2} & \text { if } n=3 m+1 \\
\frac{m(m+1)(5 m+2)}{2} & \text { if } n=3 m+2\end{cases}
\end{gathered}
$$

- $\left(V_{0}, V_{1}, V_{2}\right)$ balanced partition of $V$. Hyperedges either:
- have two vertices in $V_{i}$ and one in $V_{i+1}$ (indices modulo 3); or
- intersect every part.
- No $K_{4}^{3}$ and $\frac{5}{9}\binom{n}{3}$ edges.
- Kostochka, 1982: exponentially many non-isomorphic extremal examples for each $n$.
- known: ex $\left(n, K_{4}^{3}\right) \leq 0.561\binom{n}{3}$.

When are we bad at finding $\pi(F)$ ?

- Suppose that $F$ is a bipartite graph. It is proved that $\pi(F)=0$, but what is the order of ex $(n, F)$ ? Partial answers only.

When are we bad at finding $\pi(F)$ ?

- Suppose that $F$ is a bipartite graph. It is proved that $\pi(F)=0$, but what is the order of ex $(n, F)$ ? Partial answers only.
- Why?


## Super-saturation

Fix

- an r-graph $F$; and
- a real number $a>0$.

There exists

- an integer $n_{0}$; and
- a real number $b>0$
such that every $r$-graph $G$ with $n_{G}>n_{0}$ vertices and $m>(\pi(F)+a)\binom{n}{r}$ contains at least $b\binom{n}{n_{F}}$ copies of $F$.


## Proof

Consider an $r$-graph $G$ with $m>(\pi(F)+a)\binom{n}{r}$.

- By the defintion, $\exists k$ such that $\operatorname{ex}(k, F) \leq(\pi(F)+a / 2)\binom{k}{r}=: x$.


## Proof

Consider an $r$-graph $G$ with $m>(\pi(F)+a)\binom{n}{r}$.

- By the defintion, $\exists k$ such that $\operatorname{ex}(k, F) \leq(\pi(F)+a / 2)\binom{k}{r}=: x$.
- Number of $k$-subsets of $V(G)$ inducing a hypergraph with at least $x$ hyperedges: at least $\frac{a}{2}\binom{n}{k}$.


## Proof

Consider an $r$-graph $G$ with $m>(\pi(F)+a)\binom{n}{r}$.

- By the defintion, $\exists k$ such that $\operatorname{ex}(k, F) \leq(\pi(F)+a / 2)\binom{k}{r}=: x$.
- Number of $k$-subsets of $V(G)$ inducing a hypergraph with at least $x$ hyperedges: at least $\frac{a}{2}\binom{n}{k}$.
- If not, then the sum $X$ of the number of edges of the induced subhypergraphs of order $k$ would be at most

$$
\frac{a}{2}\binom{n}{k}\binom{k}{r}+\binom{n}{k}\left(\pi(F)+\frac{a}{2}\right)\binom{k}{r}=(\pi(F)+a)\binom{n}{k}\binom{k}{r} .
$$

## Proof

Consider an $r$-graph $G$ with $m>(\pi(F)+a)\binom{n}{r}$.

- By the defintion, $\exists k$ such that $\operatorname{ex}(k, F) \leq(\pi(F)+a / 2)\binom{k}{r}=: x$.
- Number of $k$-subsets of $V(G)$ inducing a hypergraph with at least $x$ hyperedges: at least $\frac{a}{2}\binom{n}{k}$.
- If not, then the sum $X$ of the number of edges of the induced subhypergraphs of order $k$ would be at most

$$
\frac{a}{2}\binom{n}{k}\binom{k}{r}+\binom{n}{k}\left(\pi(F)+\frac{a}{2}\right)\binom{k}{r}=(\pi(F)+a)\binom{n}{k}\binom{k}{r} .
$$

- On the other hand,

$$
X=\binom{n-r}{k-r} m_{G}>\binom{n-r}{k-r}(\pi(F)+a)\binom{n}{r},
$$

which contradicts the previous.

## Proof

Consider an $r$-graph $G$ with $m>(\pi(F)+a)\binom{n}{r}$.

- By the defintion, $\exists k$ such that $\operatorname{ex}(k, F) \leq(\pi(F)+a / 2)\binom{k}{r}=: x$.
- Number of $k$-subsets of $V(G)$ inducing a hypergraph with at least $x$ hyperedges: at least $\frac{a}{2}\binom{n}{k}$.
- Each of those sets contains a copy of $F$, so $G$ contains at least

$$
\begin{aligned}
\frac{a}{2}\binom{n}{k}\binom{n-n_{F}}{k-n_{F}}^{-1} & =\overbrace{\frac{a}{2} \cdot\binom{k}{k-n_{F}}^{-1}}^{b}\binom{n}{n_{F}} \\
& =b \cdot\binom{n}{n_{F}}
\end{aligned}
$$

copies of $F$.

## Blow-up

## Definition

The $s$-blow-up of an $r$-graph $F$ is the $r$-graph $F(s)$ obtained from $F$ by replacing:

- every vertex $x$ by $s$ vertices $x^{1}, \ldots, x^{s}$; and
- every hyperedge $x_{1} \ldots x_{r}$ by a complete $r$-partite $r$-graph on copies, that is, all edges $x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}$ with $1 \leq a_{1}, \ldots, a_{r} \leq s$.

Turán densities of blow-ups: $\pi(F(s))=\pi(F)$
Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).

## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

- We know that $G$ contains $b\binom{n}{n_{F}}$ copies of $F$.


## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

- We know that $G$ contains $b\binom{n}{n_{F}}$ copies of $F$.
- Consider an $n_{F}$-graph $H$ built on $V(G)$ with hyperedges corresponding to copies of $F$ in $G$.


## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

- We know that $G$ contains $b\binom{n}{n_{F}}$ copies of $F$.
- Consider an $n_{F}$-graph $H$ built on $V(G)$ with hyperedges corresponding to copies of $F$ in $G$.
- As $\pi\left(K_{n_{F}}^{n_{F}}(S)\right)=0$, we know that $H$ contains a copy $K$ of $K_{n_{F}}^{n_{F}}(S)$ for any $S$ (provided $n$ is large enough vs $S$ ).


## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

- We know that $G$ contains $b\binom{n}{n_{F}}$ copies of $F$.
- Consider an $n_{F}$-graph $H$ built on $V(G)$ with hyperedges corresponding to copies of $F$ in $G$.
- As $\pi\left(K_{n_{F}}^{n_{F}}(S)\right)=0$, we know that $H$ contains a copy $K$ of $K_{n_{F}}^{n_{F}}(S)$ for any $S$ (provided $n$ is large enough vs $S$ ).
- Color the hyperedges of $K$ with $n_{F}$ ! colours, depending on the mapping from $V(F)$ to the parts of $K$.


## Turán densities of blow-ups: $\pi(F(s))=\pi(F)$

Two facts: $\operatorname{ex}\left(n, K_{r}^{r}\right)=0$ and $\pi\left(K_{r}^{r}(s)\right)=0$ (Erdős).
Fix $s$. We show that $\pi(F(s))=\pi(F)$, that is, $\forall \varepsilon>0, \exists n_{0}$ such that every $r$-graph with $n>n_{0}$ and $m>(\pi(F)+\varepsilon)\binom{n}{r}$ contains $F(s)$.

- We know that $G$ contains $b\binom{n}{n_{F}}$ copies of $F$.
- Consider an $n_{F}$-graph $H$ built on $V(G)$ with hyperedges corresponding to copies of $F$ in $G$.
- As $\pi\left(K_{n_{F}}^{n_{F}}(S)\right)=0$, we know that $H$ contains a copy $K$ of $K_{n_{F}}^{n_{F}}(S)$ for any $S$ (provided $n$ is large enough vs $S$ ).
- Color the hyperedges of $K$ with $n_{F}$ ! colours, depending on the mapping from $V(F)$ to the parts of $K$.
- Ramsey tells us that there is a monochromatic copy of $K_{n_{F}}^{n_{F}}(s)$ in $K$ (provided $S$ is large enough vs $s$ ): this monochromatic copy yields a copy of $F(s)$ in $G$.


## Super-saturation+Turán's theorem $\Rightarrow$ Erdős-Stone's theorem

- Write $\chi(F)=t$.


## Super-saturation+Turán's theorem $\Rightarrow$ Erdős-Stone's theorem

- Write $\chi(F)=t$.
- The Turán graph with $t-1$ parts has no copy of $F$, so $\pi(F) \geq 1-\frac{1}{t-1}$.


## Super-saturation+Turán's theorem $\Rightarrow$ Erdős-Stone's theorem

- Write $\chi(F)=t$.
- The Turán graph with $t-1$ parts has no copy of $F$, so $\pi(F) \geq 1-\frac{1}{t-1}$.
- On the other hand, $F$ is contained in $K_{t}(s)$ for some large enough s.


## Super-saturation+Turán's theorem $\Rightarrow$ Erdős-Stone's theorem

- Write $\chi(F)=t$.
- The Turán graph with $t-1$ parts has no copy of $F$, so $\pi(F) \geq 1-\frac{1}{t-1}$.
- On the other hand, $F$ is contained in $K_{t}(s)$ for some large enough $s$.
- So $\pi(F) \leq \pi\left(K_{t}(s)\right)=\pi\left(K_{t}\right)=1-\frac{1}{t-1}$.

