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Points in the unit disc

I Choose n points within the unit disc. How many pairs are at
distance at most

√
2?
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Points in the unit disc

π/18 = π/(2(n-3))
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Points in the unit disc

π/18 = π/(2(n-3))

π/2

π/2

π/2

⇒ n2

6 −
n
2 pairs at distance at most

√
2.

Is it a good bound?



Parallel Processing

I How many processors are needed to find the maximum of n
numbers in k rounds?



Parallel Processing

I 1 round allowed ⇒ O
(
n2) processors are sufficient.

I 2 rounds allowed ⇒ O
(
n4/3) processors are sufficient.

I Exercise! k rounds allowed ⇒ O
(
n

1+ 1
2k−1

)
processors are

sufficient.

Question
Are these bounds good?
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Turán’s theorem – Independent sets

Theorem (Turán, 1941)
G graph with n vertices and m edges. Then

α(G ) ≥ n2

2m + n
.

I Randomly order the vertices → (v1, . . . , vn).
I vi is free if vi ∼ vj ⇒ j < i .
I Free vertices form an independent set If .
I P(v ∈ If) = deg(v)!

(deg(v)+1)! = 1
deg(v)+1 .

I E|If | =
∑

v∈V (G)
1

deg(v)+1 .
I Thus G has an independent set I of order at least this sum.
I The sum is minimised when G is 2m/n-regular.
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Pointset in the unit disc

I We found a constrution with n2

6 −
n
2 pairs at distance at

most
√
2.

I Consider any set S of n points within the unit disc.
I Build a graph GS on the pointset S : edge {u, v} iff

d(u, v) ≤
√
2.

I α(GS) ≤ 3.
I So

3 ≥ n2

2m + n
,

i.e.

m ≥ n2

6
− n

2
.
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Parallel Processing

Order is tight: induction on k . Wlog p ≥ n.
I Statement true if k = 1. Suppose that finding the max. of n

numbers in k rounds requires Ω
(
n

1+ 1
2k−1

)
processors.

I Suppose p processors are enough if k + 1 rounds are allowed.
I G1: comparison graph obtained after the first round.
I G1 has n vertices and at most p edges.
I So G1 contains an independent set I with at least n2

2p+n
vertices.

I Fix the comparisons so that all vertices in I are still candidates
for being maximum.

I The remaining k rounds thus determine max|I | with p
processors.

I By induction, p = Ω
(
|I |1+

1
2k−1

)
.
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Parallel Processing

As p ≥ n, it implies that

p = Ω

((
n2

p

)1+ 1
2k−1

)

that is

p
2k+1−1
2k−1 = Ω

(
n

2k+1
2k−1

)
⇒ p = Ω

(
n

2k

2k+1−1

)
= Ω

(
n

1+ 1
2k+1−1

)
.



The general Turán problem

I Fix an r -graph F .

I If H is an r -graph with n vertices that does not contain F ,
then how large can m be?

I Let ex(n,F ) be this maximum value.

I Set π(F ) := limn→∞
(n
r

)−1 · ex(n,F ).

Is this a good definition?
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Why π(F ) always exists
I H r -graph. Write m = θ

(n
r

)
.

I If n′ ∈ {r , . . . , n}, then H has a sub-hypergraph H ′ on n′

vertices with density at least θ.
I Take H to be F -free with m = θ

(n
r

)
= ex(n,F ) hyperedges.

I For n′ = n − 1, we deduce that H contains a
sub-hypergraph H ′ on n − 1 vertices with density at least θ.

I As H ′ itself is F -free, this yields that(
n − 1
r

)−1

ex(n − 1,F ) ≤ θ =

(
n

r

)−1

ex(n,F ).

I Consequently,
((n

r

)−1
ex(n,F )

)
n
is a decreasing sequence

in [0, 1].
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When are we good at finding π(F )?

Theorem (Turán, 1941)
Fix n ≥ t ≥ 2.

ex(n,Kt+1) =
1
2

(1− 1/t) (n2 − k2) +

(
k

2

)
where k = n (mod t). Further, it is attained only by the complete
multipartite graph on n vertices with balanced part sizes.
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When are we good at finding π(F )?

Theorem (Erdős-Stone-Simonovits, 1946)
Let F be a graph with chromatic number ≥ 3. Then

π(F ) = 1− 1
χ(F )− 1

.



When are we bad at finding π(F )?
I Let K 3

4 be the 3-graph on 4 vertices. What is π(K 3
4 )?

Conjecture (Turán, 1940)

π(K 3
4 ) = 5

9 . More specifically,

ex(n,K 3
4 ) =


m2(5m−3)

2 if n = 3m
m(5m2+2m−1)

2 if n = 3m + 1
m(m+1)(5m+2)

2 if n = 3m + 2

I (V0,V1,V2) balanced partition of V . Hyperedges either:
I have two vertices in Vi and one in Vi+1 (indices modulo 3); or
I intersect every part.

I No K 3
4 and 5

9

(n
3

)
edges.

I Kostochka, 1982: exponentially many non-isomorphic extremal
examples for each n.

I known: ex(n,K 3
4 ) ≤ 0.561

(n
3

)
.
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When are we bad at finding π(F )?

I Suppose that F is a bipartite graph. It is proved that
π(F ) = 0, but what is the order of ex(n,F )? Partial answers
only.

I Why?
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Super-saturation

Fix
I an r -graph F ; and
I a real number a > 0.

There exists
I an integer n0; and
I a real number b > 0

such that every r -graph G with nG > n0 vertices and
m > (π(F ) + a)

(n
r

)
contains at least b

( n
nF

)
copies of F .



Proof

Consider an r -graph G with m > (π(F ) + a)
(n
r

)
.

I By the defintion, ∃k such that ex(k,F ) ≤ (π(F ) + a/2)
(k
r

)
=: x .

I Number of k-subsets of V (G ) inducing a hypergraph with at
least x hyperedges: at least a

2

(n
k

)
.

I Each of those sets contains a copy of F , so G contains at least

a

2

(
n

k

)(
n − nF
k − nF

)−1

=

b︷ ︸︸ ︷
a

2
·
(

k

k − nF

)−1( n

nF

)
= b ·

(
n

nF

)
copies of F .
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Blow-up

Definition
The s-blow-up of an r -graph F is the r -graph F (s) obtained
from F by replacing:

I every vertex x by s vertices x1, . . . , x s ; and
I every hyperedge x1 . . . xr by a complete r -partite r -graph on

copies, that is, all edges xa1
1 . . . xarr with 1 ≤ a1, . . . , ar ≤ s.



Turán densities of blow-ups: π(F (s)) = π(F )

Two facts: ex(n,K r
r ) = 0 and π(K r

r (s)) = 0 (Erdős).

Fix s. We show that π(F (s)) = π(F ), that is, ∀ε > 0,∃n0 such
that every r -graph with n > n0 and m > (π(F ) + ε)

(n
r

)
contains F (s).

I We know that G contains b
( n
nF

)
copies of F .

I Consider an nF -graph H built on V (G ) with hyperedges
corresponding to copies of F in G .

I As π(KnF
nF (S)) = 0, we know that H contains a copy K

of KnF
nF (S) for any S (provided n is large enough vs S).

I Color the hyperedges of K with nF ! colours, depending on the
mapping from V (F ) to the parts of K .

I Ramsey tells us that there is a monochromatic copy of KnF
nF (s)

in K (provided S is large enough vs s): this monochromatic
copy yields a copy of F (s) in G .
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Super-saturation+Turán’s theorem⇒Erdős-Stone’s theorem

I Write χ(F ) = t.

I The Turán graph with t − 1 parts has no copy of F ,
so π(F ) ≥ 1− 1

t−1 .
I On the other hand, F is contained in Kt(s) for some large

enough s.
I So π(F ) ≤ π(Kt(s)) = π(Kt) = 1− 1

t−1 .
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