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Points in the unit disc

7/18 = 1/(2(n-3))
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= ‘& — 5 pairs at distance at most V2.
Is it a good bound?



Parallel Processing

» How many processors are needed to find the maximum of n
numbers in k rounds?
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» Split the numbers into n*/> groups of numbers each.
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Parallel Processing

» 1 round allowed = O(nz) processors are sufficient.
> 2 rounds allowed = O(n*/3) processors are sufficient.
. 1+ 22—
» Exercise! k rounds allowed = O(n 2k—1) processors are

sufficient.

Question
Are these bounds good?
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Theorem (Turan, 1941)
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Turan's theorem — Independent sets

Theorem (Turan, 1941)
G graph with n vertices and m edges. Then

2

n
> .
a(G) ~—2m-+n

» Randomly order the vertices — (vi,...,Vn).
> vjis free if vi ~ vj = j <.
» Free vertices form an independent set Is.

deg(v)!
> P(velf) = (deg(gv()J)rl)! = deg(lv)ﬂ-

_ 1
> E|If| - EVEV(G) deg(v)+1-
» Thus G has an independent set / of order at least this sum.

» The sum is minimised when G is 2m/n-regular.
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Pointset in the unit disc

: L2 : .

» We found a constrution with % — 7 pairs at distance at
most \ﬁ

» Consider any set S of n points within the unit disc.

» Build a graph Gs on the pointset S: edge {u, v} iff

d(u,v) < V2.
» a(Gs) <3.
» So )
n
32 2m+n’
ie. )
m > n——ﬁ.
-6 2
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Parallel Processing

Order is tight: induction on k. Wlog p > n.
» Statement true if k = 1. Suppose that finding the max. of n
1
k_1

. . 1+
numbers in k rounds requires Q(n 2 ) processors.

» Suppose p processors are enough if k + 1 rounds are allowed.
» Gy: comparison graph obtained after the first round.
» G; has n vertices and at most p edges.

» So Gj contains an independent set / with at least
vertices.

2p+n

» Fix the comparisons so that all vertices in / are still candidates
for being maximum.

» The remaining k rounds thus determine max;| with p
processors.

» By induction, p = Q<|l| 2k~ 1)



Parallel Processing

As p > n, it implies that

that is

2k+1_4 2k41
p2k71 = Q[ n2k—1

_ 2k 1+—+
=p=Q <n2k+11> = Q(n 2“1*1) .



The general Turan problem

» Fix an r-graph F.



The general Turan problem

» Fix an r-graph F.

» If H is an r-graph with n vertices that does not contain F,
then how large can m be?



The general Turan problem

» Fix an r-graph F.

» If H is an r-graph with n vertices that does not contain F,
then how large can m be?

> Let ex(n, F) be this maximum value.



The general Turan problem

» Fix an r-graph F.

v

If His an r-graph with n vertices that does not contain F,
then how large can m be?

v

Let ex(n, F) be this maximum value.

Set m(F) == lim,_ 00 ('r’)_l -ex(n, F).

v



The general Turan problem

» Fix an r-graph F.
» If H is an r-graph with n vertices that does not contain F,
then how large can m be?

> Let ex(n, F) be this maximum value.
» Set m(F) = lim,_00 ('r’)_l -ex(n, F).

Is this a good definition?
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Why 7(F) always exists

» H r-graph. Write m = 6(").
» If " €{r,...,n}, then H has a sub-hypergraph H" on n’
vertices with density at least 6.

» Take H to be F-free with m = 9(’;) = ex(n, F) hyperedges.

» For " = n— 1, we deduce that H contains a
sub-hypergraph H' on n — 1 vertices with density at least 6.

» As H' itself is F-free, this yields that

() aormro- (7) s

r

» Consequently, (('r')*l ex(n, F)) is a decreasing sequence
n
in [0, 1].



When are we good at finding w(F)?

Theorem (Turan, 1941)
Fixn>t>2.

ex(n, K1) = %(1 —1/)(n* — k?) + (g)

where k = n (mod t). Further, it is attained only by the complete
multipartite graph on n vertices with balanced part sizes.
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Turan Graphs and Blow-ups

The Turan graph (complete balanced multi-partite graph) is the
balanced blow-up of the complete graph (part sizes are |n/t|

or [n/t]).
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When are we good at finding w(F)?

Theorem (Erdés-Stone-Simonovits, 1946)
Let F be a graph with chromatic number > 3. Then

1

W(F)zl—m.
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When are we bad at finding 7(F)?
» Let K be the 3-graph on 4 vertices. What is 7(K3)?

Conjecture (Turan, 1940)

m(K3) = 3. More specifically,

7'"2(557_3) ifn=3m
ex(n, K3) = w ifn=3m+1
m(m+l%(5m+2) iFn=3m+2

v

(Vo, Vi, V) balanced partition of V. Hyperedges either:
» have two vertices in V; and one in V;;; (indices modulo 3); or
> intersect every part.

No K7 and 3(5) edges.

Kostochka, 1982: exponentially many non-isomorphic extremal
examples for each n.

known: ex(n, K7) < 0.561(5).

v

v

v
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m(F) =0, but what is the order of ex(n, F)? Partial answers
only.



When are we bad at finding 7(F)?

» Suppose that F is a bipartite graph. It is proved that
m(F) =0, but what is the order of ex(n, F)? Partial answers
only.

» Why?



Super-saturation

Fix

» an r-graph F; and

» a real number a2 > 0.
There exists

> an integer ng; and

» a real number b > 0

such that every r-graph G with ng > ng vertices and
m > (m(F) + a)(7) contains at least b(n"F) copies of F.
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Proof
Consider an r-graph G with m > (7(F) + a) (7).

» By the defintion, 3k such that ex(k, F) < (w(F)+ a/2)(/;)::
» Number of k-subsets of V(G) inducing a hypergraph with at
least x hyperedges: at least 3 (7).

» If not, then the sum X of the number of edges of the induced
subhypergraphs of order k would be at most
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» On the other hand,

x= (i 20)me> (1) e -a(7),

which contradicts the previous.



Proof
Consider an r-graph G with m > (7(F) + a) (7).

» By the defintion, 3k such that ex(k, F) < (w(F)+ a/2)(/;):: X.
» Number of k-subsets of V(G) inducing a hypergraph with at
least x hyperedges: at least g(g)

» Each of those sets contains a copy of F, so G contains at least

copies of F.



Blow-up

Definition
The s-blow-up of an r-graph F is the r-graph F(s) obtained
from F by replacing:

> every vertex x by s vertices x!,...,x%; and

» every hyperedge xi ...x, by a complete r-partite r-graph on
copies, that is, all edges xlal co.oxfrwith 1 <ag,...,a <s.
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Turan densities of blow-ups: w(F(s)) = 7(F)

Two facts: ex(n, K[) = 0 and 7(K/(s)) = 0 (Erdés).

Fix s. We show that 7(F(s)) = n(F), that is, Ve > 0,3ng such
that every r-graph with n > ng and m > (7 (F) +¢)(7)
contains F(s).

» We know that G contains b(n”F) copies of F.

» Consider an ng-graph H built on V(G) with hyperedges
corresponding to copies of F in G.

» As m(Kpf (S)) =0, we know that H contains a copy K
of Knf (S) for any S (provided n is large enough vs S).

» Color the hyperedges of K with ng! colours, depending on the
mapping from V/(F) to the parts of K.

» Ramsey tells us that there is a monochromatic copy of Ky (s)

in K (provided S is large enough vs s): this monochromatic
copy vyields a copy of F(s) in G.
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Super-saturation+Turan’s theorem=-Erd6s-Stone’s theorem

» Write x(F) = t.
» The Turan graph with t — 1 parts has no copy of F,

som(F)>1— 1.

» On the other hand, F is contained in K¢(s) for some large
enough s.

> So w(F) < m(Ke(s)) = n(Ke) = 1— L.



