Exact Computation and Bounds for the Coupling Time

Sebastian Samain and Ana Bušić INRIA

DI ENS, École Normale Supérieure, CNRS, PSL Research University, Paris sebastien.samain@inria.fr

March, 12th 2017

Coupling Time

 $\mbox{\bf Objective}: \mbox{\bf Compute the coupling time for an homogenous Markov chain with representation}$

$$X_{n+1} = X_n \triangleright \xi_{n+1}$$

where ξ is i.i.d over a finite state space A.

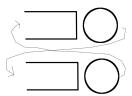
Definition

The coupling time T for a Markov Chain X with state space \mathcal{X} and representation $X_{n+1} = X_n \triangleright \xi_{n+1}$ is the first (random) instant T such that

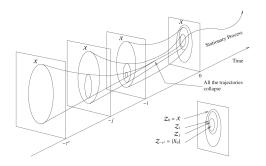
$$\forall (x,y) \in \mathcal{X} \times \mathcal{X}, x \triangleright^* \xi_1 ... \xi_T = y \triangleright^* \xi_1 ... \xi_T$$

Applications

- Mixing time for Markov chains (bounds for the Monte-Carlo algorithm)
- Expected complexity of the Propp and Wilson algorithm (based on the CFTP coupling scheme)
- Queueing networks



Coupling from the past



ullet Language of coupling words : the prefix-free language of words $w \in \mathcal{A}^*$ such that :

$$\forall (x,y) \in \mathcal{X} \times \mathcal{X}, x \triangleright^* w = y \triangleright^* w$$

- Language of coupling words = hitting language in some automaton
- Unambiguous decomposition
- Generating series $G(p_1, ..., p_n)$
- $\mathbb{E}[T] = D(G)(\mathbb{P}(p_1),...,\mathbb{P}(p_n))$ with $D = \sum_{i=1}^n p_i \frac{\partial}{\partial p_i}$ and $(\{p_1,...,p_n\},\mathbb{P})$ a probability space

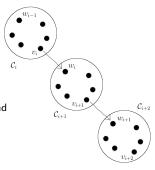
We define the enveloppe automaton $\mathcal{A}_{\textit{env}} = (\mathcal{A}, \mathcal{E}, \triangleright_{\mathcal{E}})$, with

- ullet ${\cal A}$ the (finite) state space of the process ξ
- $\mathcal{E} = \mathcal{P}(\mathcal{X})$
- $\forall (a, P) \in \mathcal{A} \times \mathcal{E}, P \triangleright_{\mathcal{E}} a = \{p \triangleright a | p \in P\}$

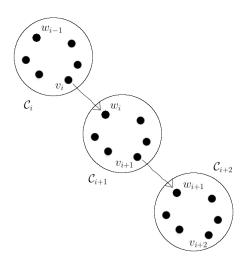
The set of coupling words corresponds then to the hitting language of $\mathcal{S}(\mathcal{X})$ the set of singletons of elements of \mathcal{X} starting from \mathcal{X} in \mathcal{A}_{env} .

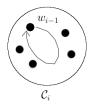
Second step

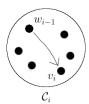
- Longest path into the maximal stronlgy connected components (MSCC) for ▷_E.
- Queueing systems: linked to distance between top and bottom element.



Third step







Theorem

Let X a Markov Chain with representation

$$X_{n+1} = X_n \triangleright \xi_{n+1}$$

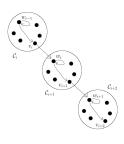
Then:

$$A_{\mathcal{X},\mathcal{S}(\mathcal{X})}(p) = \sum_{y \in \mathcal{S}(\mathcal{X})} \sum_{\mathcal{C} \in \mathcal{C} \, h\mathcal{C} \, on(\mathcal{C}_X,\mathcal{C}_{V,\mathcal{A}})} L_{\mathcal{C}}(p)$$

$$L_{\mathcal{C}}(p) = \sum_{(v,w) \in \mathfrak{P} \text{ ass}(\mathcal{C})} \frac{1}{1 - R_{C_{v,v}}(p)} A_{C_{x},x,\{v_{0}\}}(p)$$

$$\gamma \Bigg(\sum_{a \in (v_0 \triangleright.) - 1_{(w_0)}} a \Bigg) S_{\mathcal{C}, v, w}(p) \frac{1}{1 - R_{C_{y, A}, w_{|\mathcal{C}| - 1}}(p)} A_{C_{y, A}, w_{|\mathcal{C}| - 1}, \{y\}}(p)$$

$$S_{\mathcal{C},v,w}(\mathbf{p}) = \left(\prod_{i=2}^{|\mathcal{C}|-2} \frac{1}{1-R_{\mathcal{C}_i,w_{i-1}}(\mathbf{p})} A_{\mathcal{C}_i,w_{i-1},\{v_i\}}(\mathbf{p}) \gamma \left(\sum_{\mathbf{a} \in (v_i \triangleright.) - 1(w_i)} \mathbf{a} \right) \right)$$



• Generating series of events A for the representation $X_{n+1} = X_n \triangleright \xi_{n+1}$ define conditional expectations for the coupling time T:

$$\frac{D(G)(\mathbb{P}(p_1),...,\mathbb{P}(p_n))}{G(\mathbb{P}(p_1),...,\mathbb{P}(p_n))} = \mathbb{E}_{\mathbb{P}}[T|A]$$

with
$$D = \sum_{i=1}^{n} p_i \frac{\partial}{\partial p_i}$$

• This leads to the following criterion of comparison \leq_{ratio} .

Definition

We define the binary relation \leq_{ratio} over the generating series in $p_1,...,p_n$ by $G \leq_{ratio} H$ iff :

$$\forall \lambda \in \mathcal{FM}(\{p_i | i \in [1, n]\}), \frac{D(G)(\lambda)}{G(\lambda)} \leq \frac{D(H)(\lambda)}{H(\lambda)}$$

where $\mathcal{FM}(\{p_i|i\in[1,n]\})$ is the set of finite measures over the formal variables $p_1,...,p_n$ and $\forall I$ formal series in $p_1,...,p_n$, $I(\lambda)=I(\lambda(p_1),...,\lambda(p_n))$

Definition

We define the binary relation \leq over the generating series in $p_1,...,p_n$ by: $G \leq H$ iff $\exists M$ a set of monomials in the variables $p_1,...,p_n$ such that

- $H = \sum_{m \in M} mH_{[m]}$
- $\forall m \in M, \forall (j, k)$ monomials in $p_1, ..., p_n$ such that

$$deg_{tot}(j) > deg_{tot}(k) \implies ([j]H_{[m]})([k]G) \geq ([k]H_{[m]})([j]G)$$

Theorem

$$G \preceq H \implies G \preceq_{ratio} H$$

Proof.

Study D(G)H and GD(H) monomial by monomial.

Theorem

If I is a formal series over the set of monomials M,

$$G = \sum_{m \in \mathcal{M}} \frac{[m]^I}{I} m G_{[m]}, H = \sum_{m \in \mathcal{M}} \frac{[m]^I}{I} m G_{[m]}$$
 and $\forall m \in \mathcal{M}, G_{[m]} \preceq_{ratio} H_{[m]}$, then $G \preceq_{ratio} H$.

Proof.

If M_I is the set of monomials of I, we use the fact that :

$$\frac{D(G)(\lambda)}{G(\lambda)} = \sum_{m \in M_I} \frac{[m]I}{I(\lambda)} m(\lambda) \left(|m| + \frac{D(G_{[m]})(\lambda)}{G_{[m]}(\lambda)} \right)$$

$$\leq \sum_{m \in M_I} \frac{[m]I}{I(\lambda)} m(\lambda) \left(|m| + \frac{D(H_{[m]})(\lambda)}{H_{[m]}(\lambda)} \right) = \frac{D(H)(\lambda)}{H(\lambda)}$$

Theorem

$$G \leq_{ratio} H \implies GI \leq_{ratio} HI$$

Definition

Let G and H two formal series with monomial sets M_G and M_H respectively. We define $G \coprod H$ the mixing series of G and H as :

$$G \coprod H = \sum_{m_G \in M_G} \sum_{m_H \in M_H} \left(\begin{array}{c} |m_A| + |m_B| \\ |m_A| \end{array} \right) [m_G] G[m_H] H m_G m_H$$

and $G \coprod_{last} H$ the mixing series except the last letter of G and H as :

$$G \coprod_{last} H = \sum_{m_G \in M_G} \sum_{m_H \in M_H} \left(egin{array}{c} |m_G| + |m_H| - 1 \ |m_G| \end{array}
ight) [m_G] G[m_H] H m_G m_H$$

Preliminaries

Theorem

Let G and H two formal series over disjoint sets of respective variables. Then:

$$GH \leq G \coprod H$$

and

$$GH \leq G \coprod_{last} H$$

Proof.

$$\forall n \in \mathbb{N}$$
, the function $f_n: \left(egin{array}{c} \mathbb{N} \longrightarrow \mathbb{N} \\ m \mapsto \left(egin{array}{c} n+m \\ m \end{array}
ight)
ight)$ is increasing.

Theorem

The coupling time for the "classical" representation of the embedded Markov chain of a queueing network of k independent queues is lower bounded by :

$$\min_{j \in [1,k]} \sum_{i=1}^k \frac{D(G_i)(\mathbb{P})}{G_i(\mathbb{P})} + \sum_{\substack{i=1 \ i \neq j}}^k \frac{D(L_i)(\mathbb{P})}{L_i(\mathbb{P})} \le E_{\mathbb{P}}[T]$$

with $G_i = G(p_{2i}, p_{2i-1}), L_i = \sum_{n=0}^{+\infty} (p_{2i-1} + p_{2i})^n = \frac{1}{1 - (p_{2i-1} + p_{2i})}, G$ the generating series of one queue and $\mathbb P$ a probability distribution on $p_1, ..., p_{2k}$.

If A_i is the event that the last queue to couple is the i th queue, then :

•
$$[T < +\infty] = \bigoplus_{i \in [1,k]} A_i$$

•
$$\mathbb{E}_{\mathbb{P}}[T|A_i] = \frac{D(K_i)(\mathbb{P})}{K_i(\mathbb{P})}$$
 where $K_i = \left(\sqcup \bigcup_{j \neq i} H_j \right) \sqcup_{last} G_i$ and $H_j = G_j L_j$

•
$$\left(\prod_{j\neq i} H_j\right) G_i \preceq_{ratio} K_i$$

Further research

- Upper bound
- General open queueing networks of finite capacity