Non-redundant sampling and estimating properties of RNA secondary structures ALEA 2018

Juraj Michálik ${ }^{1} \quad$ Yann Ponty ${ }^{1} \quad$ Christelle Rovetta ${ }^{1,2}$
${ }^{1}$ Equipe AMIB, Laboratoire LIX - ${ }^{2}$ Biolnfo Group LRI - RNALands

12th March 2018

Chromosome DNA Gene

Central Dogma

- Francis Crick in 1958

Central Dogma

- Francis Crick in 1958
- He got this one somewhat wrong...
- The RNA World?

DNA and RNA

- DNA is made up of Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)
- Base pairs (Watson-Crick) : A-T, G-C

DNA and RNA

- DNA is made up of Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)
- Base pairs (Watson-Crick) : A-T, G-C

- RNA is made up of A, G, C, and Uracil (U)
- Base pairs : A-U, G-C, G-U (Wobble)

RNA representation

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC
CGUACCCAUCCCGAA
CACGGAAGAUAAGCC
CACCAGCGUUCCGGG
GAGUACUGGAGUGCG
CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary structure

Secondary structure

Tertiary structure
Source: 5 s rRNA (PDB 1K73:B)

Secondary structure

- $B P=\{A-U, G-C, G-U\}$
- Valid base pairs for a sequence seq :

$$
\mathcal{P}(\operatorname{seq}):=\{(i, j) \mid j-i>3 \text { and }(\text { seq }[i], \text { seq }[j]) \in B P\}
$$

- Example:

$$
{\underset{1}{1}}_{U_{2} C_{4}} A_{5} A_{7} A_{8} A_{8}
$$

Secondary structure

Secondary structure

- $B P=\{A-U, G-C, G-U\}$
- Valid base pairs for a sequence seq :

$$
\mathcal{P}(\operatorname{seq}):=\{(i, j) \mid j-i>3 \text { and }(\text { seq }[i], \text { seq }[j]) \in B P\}
$$

- Example:

$$
{\underset{1}{1}}_{U_{2}}^{C A} A A_{5} A G_{7} A A_{9}
$$

Secondary structure

1. $s \subseteq \mathcal{P}(\mathrm{seq})$

Secondary structure

- $B P=\{A-U, G-C, G-U\}$
- Valid base pairs for a sequence seq :

$$
\mathcal{P}(\text { seq }):=\{(i, j) \mid j-i>3 \text { and }(\operatorname{seq}[i], \text { seq }[j]) \in B P\}
$$

- Example:

$$
{\underset{1}{1}}^{U_{2}} A_{3} A_{5}^{*} G_{5} A_{7} G_{9}
$$

Secondary structure

1. $s \subseteq \mathcal{P}(\mathrm{seq})$

Secondary structure

- $B P=\{A-U, G-C, G-U\}$
- Valid base pairs for a sequence seq :

$$
\mathcal{P}(\mathrm{seq}):=\{(i, j) \mid j-i>3 \text { and }(\operatorname{seq}[i], \text { seq }[j]) \in B P\}
$$

- Example:

$$
{\underset{1}{1}}_{\mathrm{C}_{2} \mathrm{CAAG}_{5}}{ }^{*} \mathrm{~A}_{7} \mathrm{~A}_{8}
$$

Secondary structure

1. $s \subseteq \mathcal{P}(\mathrm{seq})$
2. No crossing between bases pairs

Secondary structure

- $B P=\{A-U, G-C, G-U\}$
- Valid base pairs for a sequence seq :

$$
\mathcal{P}(\text { seq }):=\{(i, j) \mid j-i>3 \text { and }(\operatorname{seq}[i], \text { seq }[j]) \in B P\}
$$

- Example:

$$
\begin{aligned}
& \text { UČAAGAGAA } \\
& \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\end{aligned}
$$

Secondary structure

1. $s \subseteq \mathcal{P}(\mathrm{seq})$
2. No crossing between bases pairs
3. Each base is at most involved in one base pair

Boltzmann Model

- $\Omega(\mathrm{seq})$ set of all secondary structures

$$
\mathbb{P}(s):=\frac{e^{-\beta E(s)}}{Q} \quad \text { where } \quad Q=\sum_{v \in \Omega(\mathrm{seq})} e^{-\beta E(v)}
$$

- $E(s)$ free energy of the structure s
- $\beta=-\frac{1}{R T}$
- R Boltzmann constant, T absolute temperature
- Q the partition function
- Dynamic programming (DP) to compute Q in $\Theta\left(n^{3}\right)$

Motivations

- Sampling not a big deal using DP, but ...

Motivations

- Sampling not a big deal using DP, but ...

Motivations

- Sampling not a big deal using DP, but ...

Motivations

- Sampling not a big deal using DP, but ...

- Non-redundant sampling [Lorenz, Ponty, '13]
- \mathcal{H} the set of samples already generated

$$
\mathbb{P}_{\mathscr{H}}(s)= \begin{cases}\frac{e^{-\beta E(s)}}{Q-\sum_{s^{\prime} \in \mathscr{H}} e^{-\beta E(s)}} & s \notin \mathcal{H} \\ 0 & \text { if otherwise. }\end{cases}
$$

Introduction

Non-redundant sampling of secondary structures

Estimator

Experiments

Recursive equation

- Construction of Ω using $\Omega[i: j]:=\Omega($ seq $[i: j])$

\ldots..UCGGAACUCAGAAGUAAACG...

...UCCCGAACUCAGAAGUAACG...

$$
\Omega[i: j]= \begin{cases}\emptyset & \text { if } j-i<3 \\ \Omega[i+1: j] \\ \bigcup_{(i, k) \in \mathcal{P}}\{(i, k)\} \times \Omega[i+1: k-1] \times \Omega[k+1: j] & \text { otherwise } .\end{cases}
$$

Recursive equation

- Construction of Ω using $\Omega[i: j]:=\Omega($ seq $[i: j])$

...UCCCGAACUCAGAAGUAACG...

\ldots.. UCCCGAACUCAGAAGUAACG \ldots. UCCCAACUCAGAAGUAACG...

$$
\Omega[i: j]= \begin{cases}\emptyset & \text { if } j-i<3 \\ \Omega[i+1: j] \bigcup_{k(i, k) \in \mathcal{P}}\{(i, k)\} \times \Omega[i+1: k-1] \times \Omega[k+1: j] & \text { otherwise } .\end{cases}
$$

Tree of secondary structures

- Recursive method, random walk in a tree

Tree of secondary structures

- Recursive method, random walk in a tree
- Tree construction

Tree of secondary structures

- Recursive method, random walk in a tree
- Tree construction

UCAAGAGAA

 $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Tree of secondary structures

- Probability of $s \in \Omega$:

$$
\mathbb{P}(s):=\frac{e^{-\beta E(s)}}{Q} \quad \text { where } \quad Q=\sum_{v \in \Omega} e^{-\beta E(v)}
$$

(Redundant) Sampling

- Probability of $s=\{(1,9)\}$:

$$
p_{s}=\frac{h+i}{a+\ldots+i} \times \frac{h}{h+i}=\frac{h}{a+\ldots+i}=\frac{e^{-\beta E(s)}}{Q}:=\mathbb{P}(s)
$$

Non-redundant sampling

- RNA Non-redundant sampling [Michálik et al., 17]
- $\mathcal{H}=\left\{v_{1}\right\}, v_{1}=\{(1,9)\}$

Non-redundant sampling

- RNA Non-redundant sampling [Michálik et al., 17]
- $\mathcal{H}=\left\{v_{1}\right\}, v_{1}=\{(1,9)\}$
- Probability of $v_{2}=\{(1,8),(2,7)\}$:

$$
p_{v 2}=\frac{f+g}{a+\ldots+f+g+i} \times \frac{g}{f+g}=\frac{e^{-\beta E\left(v_{2}\right)}}{Q-e^{-\beta E\left(v_{1}\right)}}:=\mathbb{P}_{\mathcal{H}}\left(v_{2}\right)
$$

Non-redundant sampling

- RNA Non-redundant sampling [Michálik et al., 17]
- $\mathcal{H}=\left\{v_{1}\right\}, v_{1}=\{(1,9)\}$
- Probability of $v_{2}=\{(1,8),(2,7)\}$:

$$
p_{v 2}=\frac{f+g}{a+\ldots+f+g+i} \times \frac{g}{f+g}=\frac{e^{-\beta E\left(v_{2}\right)}}{Q-e^{-\beta E\left(v_{1}\right)}}:=\mathbb{P}_{\mathcal{H}}\left(v_{2}\right)
$$

Non-redundant (and redundant) Sampling

- $|\Omega|$ huge
- Tree construction as the random generation proceeds:

Non-redundant (and redundant) Sampling

- $|\Omega|$ huge
- Tree construction as the random generation proceeds:

Introduction

Non-redundant sampling of secondary structures

Estimator

Experiments

Classical approach

- Feature function $F: \Omega \rightarrow \mathbb{Y}$
- Example: probability of the base pair (i, j) ?

$$
\begin{gathered}
F_{i, j}(s)= \begin{cases}1 & \text { if }(i, j) \in s \\
0 & \text { otherwise. }\end{cases} \\
\mathbb{E}\left(F_{i, j}\right)=\mathbb{P}((i, j))
\end{gathered}
$$

- GOAL: estimate $\mathbb{E}(F(X)):=\sum_{s \in \Omega} \mathbb{P}(s) F(s)(|\Omega|$ huge $)$

Classical approach

- Feature function $F: \Omega \rightarrow \mathbb{Y}$
- Example: probability of the base pair (i, j) ?

$$
\begin{gathered}
F_{i, j}(s)= \begin{cases}1 & \text { if }(i, j) \in s \\
0 & \text { otherwise } .\end{cases} \\
\mathbb{E}\left(F_{i, j}\right)=\mathbb{P}((i, j))
\end{gathered}
$$

- GOAL: estimate $\mathbb{E}(F(X)):=\sum_{s \in \Omega} \mathbb{P}(s) F(s)(|\Omega|$ huge $)$
- Empirical mean : $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in \Omega^{m}$

$$
\widehat{F}(\mathrm{~s})=\frac{1}{m} \sum_{k=1}^{m} F\left(s_{k}\right)
$$

Classical approach

- Feature function $F: \Omega \rightarrow \mathbb{Y}$
- Example: probability of the base pair (i, j) ?

$$
\begin{gathered}
F_{i, j}(s)= \begin{cases}1 & \text { if }(i, j) \in s \\
0 & \text { otherwise. }\end{cases} \\
\mathbb{E}\left(F_{i, j}\right)=\mathbb{P}((i, j))
\end{gathered}
$$

- GOAL: estimate $\mathbb{E}(F(X)):=\sum_{s \in \Omega} \mathbb{P}(s) F(s)(|\Omega|$ huge $)$
- Empirical mean : $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in \Omega^{m}$

$$
\widehat{F}(\mathbf{s})=\frac{1}{m} \sum_{k=1}^{m} F\left(s_{k}\right)
$$

- m^{\prime} distinct structures:

$$
\widehat{F}(\mathbf{s})=\frac{1}{m} \sum_{k=1}^{m} F\left(s_{k}\right)=\sum_{n=1}^{m^{\prime}} \frac{a_{n}}{m} F\left(s_{n}\right) .
$$

Non-redundant estimator

- Estimate: $\mathbb{E}(F(X)):=\sum_{s \in \Omega} \mathbb{P}(s) F(s)$
- Non-redundant samples: $\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \Omega^{m}$
- Exploit knowledge of $\mathbb{P}\left(v_{k}\right)\left(\mathbb{P}(s)=\frac{e^{-\beta E(s)}}{Q}\right)$

Non-redundant estimator

- Estimate: $\mathbb{E}(F(X)):=\sum_{s \in \Omega} \mathbb{P}(s) F(s)$
- Non-redundant samples: $\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \Omega^{m}$
- Exploit knowledge of $\mathbb{P}\left(v_{k}\right)\left(\mathbb{P}(s)=\frac{e^{-\beta E(s)}}{Q}\right)$
- Estimator:

$$
\widetilde{F}(\mathbf{v})=\frac{1}{m}\left(\sum_{i=1}^{m} F\left(v_{i}\right)\left(1-\sum_{v \in \mathcal{H}_{i-1}} \mathbb{P}(v)+(m-i) \mathbb{P}\left(v_{i}\right)\right)\right)
$$

- $\mathcal{H}_{0}=\emptyset$
- $\forall 1 \leq i \leq m, \mathcal{H}_{i}:=\left\{v_{1}, \ldots, v_{i}\right\}$

Estimators

- Empirical mean: $\widehat{F}(\mathbf{s})=\frac{1}{m} \sum_{k=1}^{m} F\left(s_{k}\right)$
- Non-redundant:

$$
\widetilde{F}(\mathbf{v})=\frac{1}{m}\left(\sum_{i=1}^{m} F\left(v_{i}\right)\left(1-\sum_{v \in \mathcal{H}_{i-1}} \mathbb{P}(v)+(m-i) \mathbb{P}\left(v_{i}\right)\right)\right)
$$

Properties

The non-redundant estimator \widetilde{F} has the following properties

1. It is unbiased, ie $\mathbb{E}(\widetilde{F}(\tilde{X}))=\mathbb{E}(F(X))$.
2. It is more efficient than \widehat{F} for the same number of samples, ie $\mathbb{V}(\widetilde{F}(\tilde{\mathbf{X}})) \leq \mathbb{V}(\widehat{F}(\mathbf{X}))$.

Introduction

Non-redundant sampling of secondary structures

Estimator

Experiments

Base pairs

- $(i, j) \in \mathcal{P}, F_{i, j}: \Omega \rightarrow \mathbb{N}$

$$
F_{i, j}(s)= \begin{cases}1 & \text { if }(i, j) \in s \\ 0 & \text { otherwise }\end{cases}
$$

- For all $(i, j) \in \mathcal{P}, \mathbb{E}\left(F_{i, j}(X)\right)$ computed using DP
- Error of estimators:
- $e_{1}=\frac{1}{|\mathcal{P}|} \sum_{(i, j) \in \mathcal{P}} \frac{\widehat{F_{i, j}}(\mathbf{s})-\mathbb{E}\left(F_{i, j}(X)\right)}{\mathbb{E}\left(F_{i, j}(X)\right)}$
- $e_{2}=\frac{1}{|\mathcal{P}|} \sum_{(i, j) \in \mathcal{P}} \frac{\widetilde{F_{i, j}(v)-\mathbb{E}\left(F_{i, j}(X)\right)}}{\mathbb{E}\left(F_{i, j}(X)\right)}$

Results

- Dataset: RF00001, RF00005, R00061, RF00174, RF01071 and RF01731 (RFAM families)
- Total 365 sequences
- Number of samples: $10000(|\mathbf{s}|=|\mathbf{v}|=10000)$

Results

- Dataset: RF00001, RF00005, R00061, RF00174, RF01071 and RF01731 (RFAM families)
- Total 365 sequences
- Number of samples: $10000(|\mathbf{s}|=|\mathbf{v}|=10000)$
- $\widehat{F_{i, j}}(\mathrm{~s})$ better than $\widetilde{F_{i, j}}(\mathrm{v})$ in 83% of cases !

Results

- Dataset: RF00001, RF00005, R00061, RF00174, RF01071 and RF01731 (RFAM families)
- Total 365 sequences
- Number of samples: $10000(|\mathbf{s}|=|\mathbf{v}|=10000)$
- $\widehat{F_{i, j}}(\mathrm{~s})$ better than $\widetilde{F_{i, j}}(\mathrm{v})$ in 83% of cases !

Results

- Dataset: RF00001, RF00005, R00061, RF00174, RF01071 and RF01731 (RFAM families)
- Total 365 sequences
- Number of samples: $10000(|\mathbf{s}|=|\mathbf{v}|=10000)$
- $\widehat{F_{i, j}}(\mathbf{s})$ better than $\widetilde{F_{i, j}}(\mathrm{v})$ in 83% of cases !
- Coverage: $\operatorname{Cov}(\mathcal{H})=\frac{\sum_{v \in \mathcal{H}} e^{-\beta E(v)}}{Q}(0 \leq \operatorname{Cov}(\mathcal{H}) \leq 1)$

Results

- Dataset: RF00001, RF00005, R00061, RF00174, RF01071 and RF01731 (RFAM families)
- Total 365 sequences
- Number of samples: $10000(|\mathbf{s}|=|\mathbf{v}|=10000)$
- $\widehat{F_{i, j}}(\mathbf{s})$ better than $\widetilde{F_{i, j}}(\mathrm{v})$ in 83% of cases !
- Coverage: $\operatorname{Cov}(\mathcal{H})=\frac{\sum_{v \in \mathcal{H}} e^{-\beta E(v)}}{Q}(0 \leq \operatorname{Cov}(\mathcal{H}) \leq 1)$

Conclusion

- Estimator for non redundant samples
- Quality of the estimator depends on coverage
- Implementation NR sampling Juraj Michálik (ViennaRNA)
- NR sampling a little bit slower than "classical" one for the same number of samples (25\%)
- Most of cases, best coverage for the same execution time
- Applications in collaboration with our Austrian partners in the RNALands project

Conclusion

- Estimator for non redundant samples
- Quality of the estimator depends on coverage
- Implementation NR sampling Juraj Michálik (ViennaRNA)
- NR sampling a little bit slower than "classical" one for the same number of samples (25%)
- Most of cases, best coverage for the same execution time
- Applications in collaboration with our Austrian partners in the RNALands project
- Merci !

