Logic and random graphs

Marc Noy
Universitat Politècnica de Catalunya
Barcelona

Outline of the lectures

1. First order logic and Ehrenfeucht-Fraïssé games
2. Logical limit laws: planar graphs an related classes

Partly based on joint work with

- Peter Heinig, Anusch Taraz (Munich/Hamburg), Tobias Müller (Utrecht) J. Combin. Theory Ser. B
- Albert Atserias (Barcelona), Stephan Kreutzer (Berlin) in preparation

First order logic (FO)

Quantifiers: \forall, \exists
Variables: x, y, z, \ldots
Boolean connectives and syntax: $\vee, \wedge, \neg, \rightarrow,(),=$
For a given class of structures we add relations of any given arity Graphs: $E(x, y)$ adjacency relation, written $x \sim y$

Some examples in graphs

- Existence of an isolated vertex: $\exists x, \forall y \neg(x \sim y)$
- Existence of a triangle: $\exists x, \exists y, \exists z(x \sim y) \wedge(y \sim z) \wedge(z \sim x)$
- Existence of vertices with given degrees. Existence of fixed H as a subgraph (or induced subgraph)
- Existence of a connected component is isomorphic to H
- Connectivity?

A preview of things to come

- Inexpressability in FO

Graph connectivity cannot be expressed in FO logic

- The classical Zero-One Law R_{n} random labelled graph on n vertices: $\mathbf{P}\left(R_{n}=G\right)=\frac{1}{2^{\binom{n}{2}}}$ For every graph property \mathcal{P} expressible in FO logic

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(R_{n} \text { satisfies } \mathcal{P}\right) \in\{0,1\}
$$

Almost every graphs satisfies \mathcal{P} or almost no graph satisfies \mathcal{P}

Graph connectivity

A graph (V, E) is connected if

$$
\begin{aligned}
& \forall x \forall y \neg(x=y) \rightarrow \exists x_{1}, \ldots, x_{k} \text { distinct from } x \text { and } y \\
& x \sim x_{1}, x_{1} \sim x_{2}, \ldots, x_{k} \sim y
\end{aligned}
$$

Graph connectivity

A graph (V, E) is connected if

$$
\begin{aligned}
& \forall x \forall y \neg(x=y) \rightarrow \exists x_{1}, \ldots, x_{k} \text { distinct from } x \text { and } y \\
& x \sim x_{1}, x_{1} \sim x_{2}, \ldots, x_{k} \sim y
\end{aligned}
$$

Not in FO
But diameter $\leq k$ (for fixed k) is in FO
Another attempt at expressing connectivity

$$
\forall A \subset V, A \neq \emptyset, A \neq V \quad \exists x \in A, \exists y \notin A(x \sim y)
$$

This is a second order formula: quantification over sets

Theorem Graph connectivity is not expressible in FO
First proof idea: analyze each FO formula and show it cannot express connectivity

$$
\forall x \exists y \forall z((x \sim z) \wedge \neg(y \sim z)) \vee \exists w((z \sim w) \vee \neg(x \sim w))
$$

Theorem Graph connectivity is not expressible in FO
First proof idea: analyze each FO formula and show it cannot express connectivity

$$
\forall x \exists y \forall z((x \sim z) \wedge \neg(y \sim z)) \vee \exists w((z \sim w) \vee \neg(x \sim w))
$$

Theorem (Trakhtenbrot)
Given a FO formula ϕ it is undecidable whether there exists some finite graph satisfying ϕ

Winning idea: analyze simultaneously all formulas of given depth
Depth of formula $\phi=$ maximum number of nested quantifiers in ϕ

- depth $(\phi)=0$ if ϕ is quantifier free
- depth $(\psi)+1 \quad$ if $\phi=\forall x \psi(x)$
- depth $(\psi)+1 \quad$ if $\phi=\exists x \psi(x)$

Logical equivalence of graphs
$G \equiv{ }_{k} H$ if G and H satisfy exactly the same formulas of depth $\leq k$
Suppose for each $k \geq 1$ we find graphs G_{k}, H_{k} such that

- G_{k} is connected and H_{k} is not
- $G_{k} \equiv{ }_{k} H_{k}$

Winning idea: analyze simultaneously all formulas of given depth
Depth of formula $\phi=$ maximum number of nested quantifiers in ϕ

- depth $(\phi)=0$ if ϕ is quantifier free
- depth $(\psi)+1 \quad$ if $\phi=\forall x \psi(x)$
- depth $(\psi)+1 \quad$ if $\phi=\exists x \psi(x)$

Logical equivalence of graphs
$G \equiv{ }_{k} H$ if G and H satisfy exactly the same formulas of depth $\leq k$
Suppose for each $k \geq 1$ we find graphs G_{k}, H_{k} such that

- G_{k} is connected and H_{k} is not
- $G_{k} \equiv{ }_{k} H_{k}$

Suppose ϕ expresses connectivity and let $k=\operatorname{depth}(\phi)$ Contradiction!

Logical types

\equiv_{k} is an equivalence relation in graphs
The equivalence classes are called \equiv_{k} types
Theorem
For each k the number of \equiv_{k} types is finite
But large: $2^{2^{2}}$
2

Logic through combinatorial games

Ehrenfeucht-Fraïssé game $\operatorname{Ehr}_{k}(G, H)$

- Spoiler and Duplicator play k rounds on two graphs G, H
- At each round Spoiler picks a vertex (from any graph) and Duplicator picks a vertex from the other graph
$\left(a_{1}, \ldots, a_{k}\right)$ vertices selected from G
$\left(b_{1}, \ldots, b_{k}\right)$ vertices selected from H
Duplicator wins if $\left(a_{1}, \ldots, a_{k}\right) \leftrightarrow\left(b_{1}, \ldots b_{k}\right)$ partial isomorphism (same adjacencies)

Theorem (Ehrenfeucht-Fraïssé)
Duplicator has a winning strategy for $\operatorname{Ehr}_{k}(G, H) \Longleftrightarrow G \equiv_{k} H$
Provides a purely combinatorial characterization of FO logic

Roland Fraïssé (1920-2008) left (with Abraham Robinson)

Roland Fraïssé [Wikipedia] Professeur à l'université de Provence où il a formé toute une génération de logiciens

An example

Let $\left(L_{n}, \leq\right)$ be a linear order on n elements
Lemma If $n, m \geq 2^{k}$ then $L_{n} \equiv{ }_{k} L_{m}$
$\left(a_{1}, \ldots, a_{i}\right)$ and $\left(b_{1}, \ldots, b_{i}\right)$ selections up to move i
Guarantee that for $j, \ell \leq i$

1. $d\left(a_{j}, a_{\ell}\right)<2^{k-i} \Longrightarrow d\left(b_{j}, b_{\ell}\right)=d\left(a_{j}, a_{\ell}\right)$
2. $d\left(a_{j}, a_{\ell}\right) \geq 2^{k-i} \Longrightarrow d\left(b_{j}, b_{\ell}\right) \geq 2^{k-i}$
3. $a_{j} \leq a_{\ell} \Longleftrightarrow b_{j} \leq b_{\ell}$

Assume spoiler plays a_{i+1} with $a_{j}<a_{i+1}<a_{\ell}$
Choose b_{i+1} depending on whether

- $d\left(a_{j}, a_{\ell}\right)<2^{k-i}$
- $d\left(a_{j}, a_{\ell}\right) \geq 2^{k-i}$

Proofs of non-expressability in FO

Connectivity
$G=C_{3^{k}}, \quad H=C_{3^{k}} \cup C_{3^{k}}$
Claim: $G \equiv{ }_{k} H$
Proof by induction on k as before

- Aciclicity
- 3-colorability
- Hamiltonicity
- Eulerian
- Planarity
- Rigidity (no non-trivial automorphism)

Exercises

Zero-one laws

\mathcal{G} class of (labelled) graphs
\mathcal{G}_{n} graphs in \mathcal{G} with n vertices
Probability distribution on \mathcal{G}_{n} for each n
The zero-one law holds in \mathcal{G} if for every formula ϕ in FO

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(G \mid=\phi: G \in \mathcal{G}_{n}\right) \in\{0,1\}
$$

Whp every object satisfies ϕ or whp no object satisfies ϕ
Property A holds in \mathcal{G} with high probability (whp) if $\lim _{n \rightarrow \infty} \mathbf{P}\left(G\right.$ satisfies $\left.A: G \in \mathcal{G}_{n}\right)=1$

The classical example
\mathcal{G} class of all labelled graphs $\quad\left|\mathcal{G}_{n}\right|=2\binom{n}{2}$
Uniform distribution $\quad \mathbf{P}(G)=\frac{1}{2^{\binom{n}{2}}, \quad G \in \mathcal{G}_{n}, ~}$
Theorem Glebski, Kogan, Liagonkii, Talanov (1969) Fagin (1976) The zero-one law holds for labelled graphs

The $G(n, p)$ model

- Class: Labelled graph with n vertices
- Each possible edge $x y$ independently with probability p

$$
\mathbf{P}(G)=p^{|E|}(1-p)^{\binom{n}{2}-|E|}
$$

$G(n, 1 / 2)$ is the uniform distribution
The extension property E_{r} :
For all disjoint $A, B \subset\{1, \ldots, n\}$ with $|A|=|B|=r$

$$
\exists z \notin A \cup B \quad(\forall x \in A \quad z \sim x) \quad \wedge \quad(\forall y \in B \quad z \nsim y)
$$

Lemma $G(n, p)$ satisfies E_{r} whp for constant p
$\mathbf{P}\left(G_{n} \mid \vDash E_{r}\right) \leq\binom{ n}{r}\binom{n-r}{r}\left(1-p^{r}(1-p)^{r}\right)^{n-2 r} \rightarrow 0, \quad$ as $n \rightarrow \infty$

Theorem The 0-1 law holds in $G(n, p)$ for constant p
Assume $\left(a_{1}, \ldots, a_{i}\right) \leftrightarrow\left(b_{1}, \ldots, b_{i}\right)$ and Spoiler plays a_{i+1}
Let

$$
\begin{aligned}
& A_{1}=\left\{a_{j} \mid a_{i+1} \sim a_{j}, 1 \leq j \leq i\right\} \\
& A_{2}=\left\{a_{j} \mid a_{i+1} \nsim a_{j}, 1 \leq j \leq i\right\}
\end{aligned}
$$

Then Duplicator plays $b_{i+1}=z$ as in E_{r} for the sets A_{1} and A_{2} Hence Duplicator wins whp

It follows that for each k two random graphs are \equiv_{k} equivalent Hence they satisfy exactly the same same formulas of depth k

For each ϕ, almost all graphs satisfy ϕ or satisfy $\neg \phi$

The 0-1 law does not hold in $G\left(n, p=\frac{1}{n}\right)$
$p=1 / n$ is the threshold for the appearance of a triangle
The number of triangles in $G(n, p=1 / n)$ tends to Poisson $(1 / 6)$ The probability of having a triangle tends to $1-\exp (-1 / 6)$

The threshold for the appearance of a balanced graph H is

$$
n^{-v(H) / e(H)}
$$

Shelah, Spencer 1988

- The 0-1 law holds in $G\left(n, p=n^{-\alpha}\right)$ for $\alpha \in[0,1]$ irrational
- For $\alpha \in[0,1]$ rational there are non-convergent FO properties

Joel Spencer The strange logic of random graphs (Springer 2001)

Constrained classes of graphs

- H-free graphs
- d-regular graphs
- Trees
- Planar graphs

In all cases uniform distribution on labelled graphs with n vertices

The convergence law holds if \mathcal{G} the limit

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(G \models \phi: G \in \mathcal{G}_{n}\right)
$$

exists for each formula ϕ

Examples

- Triangle-free graphs

Erdős, Kleitman, Rothschild (1976)
Almost all triangle-free graphs are bipartite
0-1 law as for $G(n, p)$ from extension axioms

- K_{t+1}-free graphs

Kolaitis, Prömmel, Rothschild (1987)
Almost all K_{t+1}-free are t-partite

- d-regular graphs
- Lynch (2005) Convergence law for constant d using the configuration model Number of triangles \rightarrow Poisson law
- Haber, Krivelevich (2010)

Zero-one law for $d \approx \delta n$ by comparison with $G(n, p)$

- Trees McColm (2002)

Random trees

\mathcal{T} labelled trees $\quad\left|\mathcal{T}_{n}\right|=n^{n-2}$
Typical properties of a random tree

- Has $\sim e^{-1} n$ leaves
- Has αn pendant copies of any fixed tree
T has T^{\prime} as a pendant copy if it has a rooted subtree isomorphic to T^{\prime} joined to T by a single edge

Zero-one law for trees

Theorem (McColm)
The zero-one law in FO holds for trees
Sketch of proof
Consider rooted trees for the game strategy (but the root is not part of the language)
T_{1}, \ldots, T_{m} representatives of all \equiv_{k} types of rooted trees Construct a 'universal' tree U_{k} : take k copies of each T_{i} and glue them by identifying the roots

- A random tree contains a pendant copy of U_{k} w.h.p.
- If T, T^{\prime} both contain a pendant copy of U_{k} then $T \equiv_{k} T^{\prime}$

Duplicator wins $\operatorname{Ehr}_{k}\left(T, T^{\prime}\right)$ by playing in suitable subtrees of U_{k} Hence T and T^{\prime} satisfy the same formulas of depth $\leq k$ whp

What follows is joint work with

Tobias Müller

Peter Heinig

Anusch Taraz

- Extension to forests
- Extension to more general classes of graphs

Forests

There is no zero-one law in the class \mathcal{F} of forests

$$
\mathbf{P}(\text { Random forest has an isolated vertex }) \rightarrow e^{-1}
$$

Properties of random forests

- Is connected with probability $\rightarrow e^{-1 / 2} \approx 0.607$
- The largest component has expected size $n-O(1)$
- Fragment $=$ complement of largest component H unlabelled forest, $\quad \mathbf{P}($ Fragment $\simeq H) \rightarrow \mu_{H}$

Theorem

A convergence law holds for forests
Sketch of proof
Type of the components determines type of the forest
Largest component has a.a. the same type (because of 0-1 law for trees).
Sum over fragments $\mathcal{A}(\phi)$ that make ϕ hold:

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(F_{n} \vDash \phi\right)=\sum_{H \in \mathcal{A}(\phi)} \mu_{H}
$$

Planar graphs

For each k there exists a planar graph U_{k} such that

- If G, G^{\prime} planar contain a pedant copy of U_{k} then $G \equiv_{k} G^{\prime}$
- W.h.p. a random planar graph contains a pendant copy of U_{k} McDiarmid, Steger, Welsh 2005 Giménez, N. 2009

Theorem
The zero-one law holds for connected planar graphs
The convergence law holds for arbitrary planar graphs

Minor-closed classes of graphs

H is a minor of G if it can be obtained from a subgraph of G by contracting edges
\mathcal{G} is minor-closed if

$$
G \in \mathcal{G}, \quad H \text { minor of } G \Rightarrow H \in \mathcal{G}
$$

Forests, Planar, Graphs embeddable in a fixed surface S Outerplanar, Series-Parallel, Bounded tree-width
\mathcal{G} addable if it is closed under disjoint unions and adding bridges between different components

Graphs on a fixed surface is not an addable class

Theorem (McDiarmid 2009)
\mathcal{G} addable and minor-closed, H fixed graph in \mathcal{G}
A random graph in \mathcal{G} contains a pendant copy of H w.h.p.
Theorem
The zero-one law holds for connected graphs in \mathcal{G}
The convergence law holds for arbitrary graphs in \mathcal{G}
All these results hold in
Monadic Second Order (MSO) logic
$\mathrm{MSO}=\mathrm{FO}+$ Quantification over sets of vertices
Connectivity

$$
\forall A \subset V, A \neq \emptyset, A \neq V \quad \exists x \in A, \exists y \notin A(x \sim y)
$$

No zero-one law for caterpillars (not addable)

\mathbf{P} (Endpoints of the spine of a caterpillar have given degrees) \rightarrow constant $\neq 0,1$

The set of limiting probabilities

$$
L=\left\{\lim \mathbf{P}\left(G_{n} \models \phi\right): \phi \text { FO formula }\right\}
$$

$L \subseteq[0,1]$ is countable and symmetric with respect to $1 / 2$
Theorem
If \mathcal{G} addable minor-closed class then \bar{L} is a finite union of closed intervals

Forests

$$
\begin{aligned}
& \bar{L}=[0,0.1703] \cup[0.2231,0.3935] \cup[0.6065,0.7769] \cup[0.8297,1] \\
& 0.6065 \cdots=e^{-1 / 2}=\lim \mathbf{P}(\text { Random forest is connected }) \\
& \phi \text { a.s. true for trees } \Rightarrow \lim \mathbf{P}(\phi) \geq 0.6065 \\
& \phi \text { a.s. false for trees } \Rightarrow \lim \mathbf{P}(\phi) \leq 1-0.6065=0.3935
\end{aligned}
$$

Lemma (Pólya)
$p_{1} \geq p_{2} \geq \cdots \geq p_{n} \cdots>0$ and $\sum p_{n}<+\infty$
If $p_{n} \leq \sum_{k>n} p_{k}$ for $n \geq n_{0}$ then

$$
\left\{\sum_{i \in A} p_{i}: A \subset \mathbb{N}\right\}
$$

is a finite union of closed intervals

In our case the p_{i} are the probabilities of the possible fragments

- Same \bar{L} for FO and MSO
- At least two intervals since

$$
\mathcal{G} \text { addable } \Longrightarrow \lim \mathbf{P}(\text { connectivity }) \geq e^{-1 / 2} \approx 0.06065
$$

Conjecture (McDiarmid, Steger, Welsh) proved by Addario-Berry, McDiarmid, Reed (2012) and by Kang, Panagiotou (2013) In a stronger form by Chapuy, Perarnau (2015)

Lemma (Pólya)
$p_{1} \geq p_{2} \geq \cdots \geq p_{n} \cdots>0$ and $\sum p_{n}<+\infty$
If $p_{n} \leq \sum_{k>n} p_{k}$ for $n \geq n_{0}$ then

$$
\left\{\sum_{i \in A} p_{i}: A \subset \mathbb{N}\right\}
$$

is a finite union of closed intervals

In our case the p_{i} are the probabilities of the possible fragments

- Same \bar{L} for FO and MSO
- At least two intervals since

$$
\mathcal{G} \text { addable } \Longrightarrow \lim \mathbf{P}(\text { connectivity }) \geq e^{-1 / 2} \approx 0.06065
$$

Conjecture (McDiarmid, Steger, Welsh) proved by Addario-Berry, McDiarmid, Reed (2012) and by Kang, Panagiotou (2013) In a stronger form by Chapuy, Perarnau (2015)

For planar graphs $\bar{L}=$ union of 108 intervals of length $\approx 10^{-6}$

Graphs on surfaces

\mathcal{G}_{S} class of graphs embeddable in S Minor-closed but not addable: K_{5} embeds in the torus not $K_{5} \cup K_{5}$

$$
B(x, r)=\{y: d(x, y) \leq r\}
$$

A random graph in \mathcal{G}_{S} satisfies w.h.p.

- All balls $B(x, R)$ are planar for fixed $R>0$ Chapuy-Fusy-Giménez-Mohar-N., Bender-Gao 2011
- Contains a pendant copy of any fixed connected planar graph McDiarmid 2008 CFGMN

Gaifman's locality theorem

Every FO formula is equivalent to a Boolean combination of basic local sentences of the form

$$
\exists x_{1} \cdots \exists x_{s} \quad\left(\bigwedge_{i \neq j} d\left(x_{i}, x_{j}\right)>2 r\right) \wedge\left(\bigwedge \psi^{\operatorname{Ball}_{r}\left(x_{i}\right)}\left(x_{i}\right)\right)
$$

Theorem
A zero-one FO law holds for connected graphs in \mathcal{G}_{S}
A convergence FO law holds for arbitrary graphs in \mathcal{G}_{S}

$$
p(\phi)=\lim \mathbf{P}\left(G_{n} \models \phi\right) \text { independent of } S
$$

Gaifman's locality theorem

Every FO formula is equivalent to a Boolean combination of basic local sentences of the form

$$
\exists x_{1} \cdots \exists x_{s} \quad\left(\bigwedge_{i \neq j} d\left(x_{i}, x_{j}\right)>2 r\right) \wedge\left(\bigwedge \psi^{\operatorname{Ball}_{r}\left(x_{i}\right)}\left(x_{i}\right)\right)
$$

Theorem
A zero-one FO law holds for connected graphs in \mathcal{G}_{S}
A convergence FO law holds for arbitrary graphs in \mathcal{G}_{S}

$$
p(\phi)=\lim \mathbf{P}\left(G_{n} \models \phi\right) \text { independent of } S
$$

We conjectured the same results hold in Monadic Second Order logic

What follows is joint work with

Albert Atserias

Stephan Kreutzer

Our results

- No Zero-One MSO law for connected graphs of genus $g>0$
- No convergence MSO law for graphs of genus $g>0$

Proofs use several facts

1. CFGMN 2011

A random graph of genus $g>0$ has w.h.p. a unique non-planar 3-connected component

- 3-connected components are MSO definable
- Minors are MSO definable, hence planarity too

2. Ellingham 1996

A 3-connected graph of genus g has a spanning tree with maximum degree $\leq 4 g$
3. Courcelle 2003

For bounded genus $\mathrm{MSO} \equiv \mathrm{MSO}_{2}$ (quantification over vertices and edges)
4. Giménez-Noy-Rué 2013

Local limit law for $X_{n}=\mid 3$-connected component of genus $g \mid$

$$
\mathbf{P}\left(X_{n}=\alpha n+x n^{2 / 3}\right) \sim n^{-2 / 3} f(x)
$$

$f(x)$ density of an Airy distribution

Theorem

The probability that X_{n} is even is MSO expressible and

$$
\mathbf{P}\left(X_{n} \text { even }\right) \rightarrow 1 / 2
$$

Sketch of proof

Because of spanning tree of bounded degree, parity is MSO expressible

Because of local limit law for $X_{n}, \mathbf{P}\left(X_{n}\right.$ even $) \rightarrow 1 / 2$
$\mathbf{P}\left(X_{n}=0,1, \ldots, a-1 \bmod b\right) \rightarrow a / b$
Hence every rational number in $[0,1]$ is the limiting probability of some MSO formula

$$
\bar{L}=[0,1]
$$

HMNT For planar graphs \bar{L} is a finite union of disjoint intervals

Non-convergence for $g>0$

We can produce an MSO formula ϕ such that
$\mathbf{P}\left(G_{n} \models \phi\right)$ does not converge for random graphs of genus $g>0$
Claim The 3-connected component of genus g contains w.h.p. an MSO definable large grid M

$$
|M| \geq \log \log n
$$

We use the fact that the unique non-planar 3-connected component has face-width $\Omega(\log n)$

Inspired on the capacity of encoding Turing machine computations in a grid one can capture parity of the iterated logarithm $\log ^{*}|M|$ and produce a formula without limiting probability

For fixed $g \geq 0$ random graphs of genus g share many properties independently of g

```
P(being connected) ~ 0.95
E(number of edges) ~ 2.21n
E(size of largest 3-connected component) ~ 0.73n
```

For fixed $g \geq 0$ random graphs of genus g share many properties independently of g

```
P(being connected) ~ 0.95
E(number of edges) ~ 2.21n
E(size of largest 3-connected component) ~ 0.73n
```

For planar planar the largest 3-connected component is indistinguishable in MSO from the other 3-connected components

For graphs of genus $g>0$ the largest 3-connected component is non-planar, hence MSO definable (via minors)

Non convergence typically comes from structures where one can capture parity of some substructure

Theorem Tobias Müller, MN
There exist non-convergent FO formulas in the class of perfect graphs

