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Outline of the lectures

1. First order logic and Ehrenfeucht-Fraissé games

2. Logical limit laws: planar graphs an related classes

Partly based on joint work with

» Peter Heinig, Anusch Taraz (Munich/Hamburg),
Tobias Miiller (Utrecht) J. Combin. Theory Ser. B

» Albert Atserias (Barcelona), Stephan Kreutzer (Berlin)
in preparation



First order logic (FO)

Quantifiers: Vv, 3
Variables: x,y,z, ...
Boolean connectives and syntax: V, A, =, —, (),=

For a given class of structures we add relations of any given arity
Graphs: E(x, y) adjacency relation, written x ~ y

Some examples in graphs

» Existence of an isolated vertex: 3x,Yy —(x ~ y)
» Existence of a triangle: 3x, 3y, 3z (x ~ y)A(y ~z)A(z ~ x)

» Existence of vertices with given degrees. Existence of fixed H
as a subgraph (or induced subgraph)

» Existence of a connected component is isomorphic to H

» Connectivity?



A preview of things to come

> Inexpressability in FO
Graph connectivity cannot be expressed in FO logic

» The classical Zero-One Law
R, random labelled graph on n vertices: P(R, = G) =

For every graph property P expressible in FO logic

lim P(R, satisfies P) € {0,1}

n—o0

Almost every graphs satisfies P or almost no graph satisfies P



Graph connectivity

A graph (V, E) is connected if

VxVy =(x = y) — 3Ixq,..., xk distinct from x and y
X~ X1, X1 ™~ X2y oy Xpe ™Y



Graph connectivity

A graph (V, E) is connected if

VxVy =(x = y) — 3Ixq,..., xk distinct from x and y
X~ X1, X1 ™~ X2y oy Xpe ™Y

Not in FO
But diameter < k (for fixed k) is in FO

Another attempt at expressing connectivity
VACV,A£D0,A#V 3xeAdydA(x~y)

This is a second order formula: quantification over sets



Theorem Graph connectivity is not expressible in FO

First proof idea: analyze each FO formula and show it cannot
express connectivity

Vx3yVz ((x ~z) A=(y ~ 2))VIw((z ~ w) V=(x ~ w))



Theorem Graph connectivity is not expressible in FO

First proof idea: analyze each FO formula and show it cannot
express connectivity

Vx3yVz ((x ~z) A=(y ~ 2))VIw((z ~ w) V=(x ~ w))

Theorem (Trakhtenbrot)
Given a FO formula ¢ it is undecidable whether
there exists some finite graph satisfying ¢



Winning idea: analyze simultaneously all formulas of given depth
Depth of formula ¢ = maximum number of nested quantifiers in ¢
» depth(¢) =0 if ¢ is quantifier free
» depth(y)) +1 if ¢ = Vxy)(x)
» depth(y)) +1 if ¢ = Ixe)(x)
Logical equivalence of graphs
G =4 H if G and H satisfy exactly the same formulas of depth < k
Suppose for each k > 1 we find graphs G, Hy such that
» Gy is connected and Hj is not
» Gy = Hy



Winning idea: analyze simultaneously all formulas of given depth
Depth of formula ¢ = maximum number of nested quantifiers in ¢
» depth(¢) =0 if ¢ is quantifier free
» depth(y)) +1 if ¢ = Vxy)(x)
» depth(y)) +1 if ¢ = Ixe)(x)
Logical equivalence of graphs
G =4 H if G and H satisfy exactly the same formulas of depth < k
Suppose for each k > 1 we find graphs G, Hy such that
» Gy is connected and Hj is not
» Gy = Hy

Suppose ¢ expresses connectivity and let k = depth(¢)
Contradiction!



Logical types

= is an equivalence relation in graphs
The equivalence classes are called = types

Theorem
For each k the number of = types is finite

2

But large: 22



Logic through combinatorial games

Ehrenfeucht-Fraissé game Ehry (G, H)

» Spoiler and Duplicator play k rounds on two graphs G, H

» At each round Spoiler picks a vertex (from any graph) and
Duplicator picks a vertex from the other graph

(a1,...,ax) vertices selected from G
(b1, ..., bk) vertices selected from H
Duplicator wins if (a1,...,ax) <> (b1,... bx) partial isomorphism

(same adjacencies)

Theorem (Ehrenfeucht-Fraissé)
Duplicator has a winning strategy for Ehry (G, H) <— G = H

Provides a purely combinatorial characterization of FO logic



, [ < )
Roland Fraissé (1920-2008) Andrzej Ehrenfeucht
left (with Abraham Robinson)

g

Roland Fraissé [Wikipedia] Professeur a I'université de Provence ou
il a formé toute une génération de logiciens



An example

Let (L, <) be a linear order on n elements
Lemma If n,m > 2k then L, =4 L

(a1,...,a;) and (b1, ..., b;) selections up to move i
Guarantee that for j, 7 <
1. d(aj,ar) < k= — d(bj, be) = d(aj, ar)
2. d(aj,ar) > 2k = d(bj, by) > 2k
3.a<a <= b<b
Assume spoiler plays ajy1 with a; < aj11 < ay
Choose b1 depending on whether
> d(aj,a) < 2k
> d(aj,ap) > 2k



Proofs of non-expressability in FO

Connectivity
G:C3k, H:C3kUC3k

Claim: G=( H
Proof by induction on k as before

v

Aciclicity

v

3-colorability

v

Hamiltonicity

v

Eulerian

v

Planarity

» Rigidity (no non-trivial automorphism)

Exercises



Zero-one laws

G class of (labelled) graphs
G, graphs in G with n vertices
Probability distribution on G, for each n

The zero-one law holds in G if for every formula ¢ in FO

lim P(GE¢: Geg,e{0,1}

n—oo

Whp every object satisfies ¢ or whp no object satisfies ¢

Property A holds in G with high probability (whp) if
limp—oo P(G satisfies A: G € G,) =1



The classical example

G class of all labelled graphs |Gn| = 2(5)

Uniform distribution P(G) = (1n), Geg,
2\2

Theorem Glebski, Kogan, Liagonkii, Talanov (1969) Fagin (1976)
The zero-one law holds for labelled graphs




The G(n, p) model

» Class: Labelled graph with n vertices

» Each possible edge xy independently with probability p
P(G) = plEl(1 - p))E
G(n,1/2) is the uniform distribution

The extension property E,:
For all disjoint A, B C {1,...,n} with |A|=|B|=r

Jdz¢ AUB (VxeA z~x) AN (VyeB zy)

Lemma G(n, p) satisfies E, whp for constant p

P(G, K E)) < () ( - r>(1p,(1p),)n_2, 0, asn o0



Theorem The 0-1 law holds in G(n, p) for constant p
Assume (a1,...,a;) <> (b1,...,b;) and Spoiler plays a1
Let

Ar ={ajlait1 ~a,1 <j<i}

Ar = {ajlait1 # a;, 1 <j < i}

Then Duplicator plays bj11 = z as in E, for the sets A; and Aj
Hence Duplicator wins whp

It follows that for each k two random graphs are = equivalent
Hence they satisfy exactly the same same formulas of depth k

For each ¢, almost all graphs satisfy ¢ or satisfy —¢



The 0-1 law does not hold in G (n,p=1)

n

p = 1/n is the threshold for the appearance of a triangle
The number of triangles in G(n, p =1/n) tends to Poisson(1/6)
The probability of having a triangle tends to 1 — exp(—1/6)

The threshold for the appearance of a balanced graph H is

v(H)/e(H)

Shelah, Spencer 1988

» The 0-1 law holds in G(n,p = n~?) for a € [0, 1] irrational
» For a € [0, 1] rational there are non-convergent FO properties



Joel Spencer The strange logic of random graphs (Springer 2001)

b3 Algarithms and Combinatorics

The Strange
Logic

of Random
Graphs

J:Spencer

@ Springer



Constrained classes of graphs

v

H-free graphs

v

d-regular graphs
> Trees

v

Planar graphs

In all cases uniform distribution on labelled graphs with n vertices

The convergence law holds if G the limit

lim P(GE¢: GeG)

n—oo

exists for each formula ¢



Examples

» Triangle-free graphs

Erdés, Kleitman, Rothschild (1976)
Almost all triangle-free graphs are bipartite
0-1 law as for G(n, p) from extension axioms

> Kiy1-free graphs

Kolaitis, Prommel, Rothschild (1987)
Almost all Kyy1-free are t-partite

> d-regular graphs

» Lynch (2005)
Convergence law for constant d using the configuration model
Number of triangles — Poisson law

» Haber, Krivelevich (2010)
Zero-one law for d = dn by comparison with G(n, p)

» Trees McColm (2002)



Random trees

T labelled trees | Tn| = n"—2
Typical properties of a random tree

» Has ~ e~ 1n leaves

» Has an pendant copies of any fixed tree

T has T’ as a pendant copy if it has a rooted subtree isomorphic
to T’ joined to T by a single edge



Zero-one law for trees

Theorem (McColm)
The zero-one law in FO holds for trees

Sketch of proof

Consider rooted trees for the game strategy (but the root is not
part of the language)

T1,..., T, representatives of all =, types of rooted trees
Construct a ‘universal’ tree Uy: take k copies of each T; and glue
them by identifying the roots

» A random tree contains a pendant copy of Uy w.h.p.
» If T, T’ both contain a pendant copy of U, then T =, T’

Duplicator wins Ehry (T, T') by playing in suitable subtrees of Uy

Hence T and T’ satisfy the same formulas of depth < k whp



What follows is joint work with

Tobias Miiller Peter Heinig Anusch Taraz

» Extension to forests

» Extension to more general classes of graphs



Forests

There is no zero-one law in the class F of forests

P(Random forest has an isolated vertex) — e *

Properties of random forests
» Is connected with probability — e~1/2 &~ 0.607
» The largest component has expected size n — O(1)
» Fragment = complement of largest component
H unlabelled forest, P(Fragment ~ H) — uy
Theorem
A convergence law holds for forests

Sketch of proof
Type of the components determines type of the forest
Largest component has a.a. the same type (because of 0-1 law for
trees).
Sum over fragments A(¢) that make ¢ hold:
Jm PFnf=0)= D um

HeA(9)



Planar graphs

For each k there exists a planar graph Uy such that
» If G, G’ planar contain a pedant copy of Uy then G =, G’

» W.h.p. a random planar graph contains a pendant copy of Uy
McDiarmid, Steger, Welsh 2005 Giménez, N. 2009

Theorem
The zero-one law holds for connected planar graphs
The convergence law holds for arbitrary planar graphs



Minor-closed classes of graphs

H is a minor of G if it can be obtained from a subgraph of G by
contracting edges

G is minor-closed if
Geg, Hminorof G == HegG

Forests, Planar, Graphs embeddable in a fixed surface S
Outerplanar, Series-Parallel, Bounded tree-width

G addable if it is closed under disjoint unions and
adding bridges between different components

Graphs on a fixed surface is not an addable class



Theorem (McDiarmid 2009)
G addable and minor-closed, H fixed graph in G
A random graph in G contains a pendant copy of H w.h.p.

Theorem
The zero-one law holds for connected graphs in G
The convergence law holds for arbitrary graphs in G

All these results hold in
Monadic Second Order (MSO) logic

MSO = FO + Quantification over sets of vertices

Connectivity

VACV,A#40,A#V 3xcATydA(x~y)



No zero-one law for caterpillars (not addable)

P(Endpoints of the spine of a caterpillar have given degrees)
— constant # 0, 1



The set of limiting probabilities

L={limP(G, = ¢): ¢ FO formula}
L C [0,1] is countable and symmetric with respect to 1/2
Theorem

If G addable minor-closed class
then L is a finite union of closed intervals

Forests
L= [0,0.1703] U [0.2231,0.3935] U [0.6065,0.7769] U [0.8297, 1]

0.6065 - - - = e~ /2 = |im P(Random forest is connected)

¢ a.s. true for trees = lim P(¢) > 0.6065
¢ a.s. false for trees = limP(¢) <1 — 0.6065 = 0.3935



Lemma (Pdlya)
prL>p2> > py->0and Y p, < 400

If pp <> ksp Pk for n > no then

{Zp;: AcN}

icA
is a finite union of closed intervals

In our case the p; are the probabilities of the possible fragments

» Same L for FO and MSO

» At least two intervals since
G addable = lim P(connectivity) > e~/ ~ 0.06065

Conjecture (McDiarmid, Steger, Welsh) proved by Addario-Berry,
McDiarmid, Reed (2012) and by Kang, Panagiotou (2013)
In a stronger form by Chapuy, Perarnau (2015)



Lemma (Pdlya)
prL>p2> > py->0and Y p, < 400

If pp <> ksp Pk for n > no then

{Zp;: AcN}

icA
is a finite union of closed intervals
In our case the p; are the probabilities of the possible fragments
» Same L for FO and MSO
» At least two intervals since

G addable = lim P(connectivity) > e~/ ~ 0.06065

Conjecture (McDiarmid, Steger, Welsh) proved by Addario-Berry,
McDiarmid, Reed (2012) and by Kang, Panagiotou (2013)
In a stronger form by Chapuy, Perarnau (2015)

For planar graphs L = union of 108 intervals of length ~ 105



Graphs on surfaces

Gs class of graphs embeddable in S
Minor-closed but not addable: Kgs embeds in the torus not K5 U Kjs

B(x,r) ={y:d(x,y) <r}

A random graph in Ggs satisfies w.h.p.

» All balls B(x, R) are planar for fixed R > 0
Chapuy-Fusy-Giménez-Mohar-N., Bender-Gao 2011

» Contains a pendant copy of any fixed connected planar graph
McDiarmid 2008 CFGMN



Gaifman’s locality theorem
Every FO formula is equivalent to a Boolean combination of basic
local sentences of the form

Ixq -+ - Ixe /\ d(xi,xj) >2r | A (/\ wBallr(X;)(Xi)>
i#]

Theorem
A zero-one FO law holds for connected graphs in Gg
A convergence FO law holds for arbitrary graphs in Gg

p(¢) = limP(G, = ¢) independent of S



Gaifman’s locality theorem
Every FO formula is equivalent to a Boolean combination of basic
local sentences of the form

Ixq -+ - Ixe /\ d(xi,xj) >2r | A (/\ wBallr(X;)(Xi)>
i#]

Theorem
A zero-one FO law holds for connected graphs in Gg
A convergence FO law holds for arbitrary graphs in Gg

p(¢) = limP(G, = ¢) independent of S

We conjectured the same results hold in Monadic Second Order
logic



What follows is joint work with

Albert Atserias Stephan Kreutzer



Our results

» No Zero-One MSO law for connected graphs of genus g > 0
» No convergence MSO law for graphs of genus g > 0



Proofs use several facts

1. CFGMN 2011
A random graph of genus g > 0 has w.h.p. a unique
non-planar 3-connected component

» 3-connected components are MSO definable
» Minors are MSO definable, hence planarity too

2. Ellingham 1996
A 3-connected graph of genus g has a spanning tree
with maximum degree < 4g

3. Courcelle 2003
For bounded genus MSO = MSO, (quantification over
vertices and edges)

4. Giménez-Noy-Rué 2013
Local limit law for X, = |3-connected component of genus g|

P(X, = an+ xn?/3) ~ n72/3f(x)

f(x) density of an Airy distribution



Theorem
The probability that X, is even is MSO expressible and

P(X, even) — 1/2

Sketch of proof
Because of spanning tree of bounded degree, parity is MSO
expressible

Because of local limit law for X, P(X, even) — 1/2

P(X,=0,1,...,a—1 mod b) — a/b
Hence every rational number in [0, 1] is the limiting probability of
some MSO formula

L=10,1]

HMNT For planar graphs L is a finite union of disjoint intervals



Non-convergence for g > 0

We can produce an MSO formula ¢ such that
P(G, = ¢) does not converge for random graphs of genus g > 0

Claim The 3-connected component of genus g contains w.h.p.
an MSO definable large grid M

M| > loglog n
We use the fact that the unique non-planar 3-connected
component has face-width Q(log n)

Inspired on the capacity of encoding Turing machine computations
in a grid one can capture parity of the iterated logarithm log* |M|
and produce a formula without limiting probability



For fixed g > 0 random graphs of genus g share many properties
independently of g

P(being connected) ~ 0.95
E(number of edges) ~ 2.21n
E(size of largest 3-connected component) ~ 0.73n



For fixed g > 0 random graphs of genus g share many properties
independently of g

P(being connected) ~ 0.95
E(number of edges) ~ 2.21n
E(size of largest 3-connected component) ~ 0.73n

For planar planar the largest 3-connected component is
indistinguishable in MSO from the other 3-connected components

For graphs of genus g > 0 the largest 3-connected component is
non-planar, hence MSO definable (via minors)



Non convergence typically comes from structures where one can
capture parity of some substructure

Theorem Tobias Miller, MN

There exist non-convergent FO formulas in the
class of perfect graphs



