Topics on general stochastic matching models

Pascal Moyal

(Based on common works with J. Mairesse, O. Perry and A. Bušić)

Université de Technologie de Compiègne

Journées ALEA 2018
CIRM - Marseille, 13/03/2018

Bipartite matching model

Classical skill-based queueing theory

Figure: Queueing model of a call center.

Bipartite matching model: Complete symmetry between customers/servers. C/S arrive and depart simultaneously

Figure: Bipartite matching model

Bipartite matching model

(1) R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite matching of servers and customers". Adv. Appl. Probab, 41(3):695-730, 2009.
(2) I. Adan and G. Weiss. "Exact FCFS matching rates for two infinite multi-type sequences". Operations Research, 60(2):475-489, 2012.
(3) A. Bušić, V. Gupta, and J. Mairesse. "Stability of the bipartite matching model". Adv. Appl. Probab., 45(2):351-378, 2013.

Applications

- Healthcare systems: Organ transplantation systems, Blood banks... (bipartite graphs);
- Matching interfaces: On-line dating, Job search, Public Housing allocations,... (bipartite graphs);
- Collaborative economy: Peer-to-peer sharing platforms, BlaBlaCar, Uberdrive, Bike-sharing...(general graphs);
- Assemble-to-order systems (general graphs and hypergraphs).

General stochastic matching model

Fix a simple connected graph $G=(\mathcal{V}, \mathcal{E})$,

- Items of the various classes in \mathcal{V} arrive one by one; their class i is drawn following μ on \mathcal{V}.
- Any incoming item is matched, if possible, with a compatible item present in the system. Otherwise it is stored in a buffer;
- If several possible matches are possible, the incoming item follows a given matching policy ϕ.

General stochastic matching model

Usual types of matching policies:

- Priority type:
- 2 choses 3 or 4 over 1 ,
- 2 choses 1 over 3 or 4 ,
- ...
- Class-uniform: visit the compatible classes in a uniformly random order, and pick an item of the first non-empty one.
- 'Match the Longest' (mL), 'Match the Shortest' (mS),...
- FCFM, LCFM, etc.

State space(s)

Let \mathcal{V}^{*} be the free monoid associated to \mathcal{V}, and

$$
\mathbb{W}=\left\{w \in \mathcal{V}^{*}: \forall(i, j) \in \mathcal{E},|w| i|w|_{j}=0\right\} .
$$

Buffer detail
At any arrival time n,

$$
W_{n}=w=w_{1} w_{2} \ldots w_{q} \in \mathcal{V}^{*},
$$

where $w_{j}=$ class of the i-th oldest item in line.
Class detail
At any n,

$$
X_{n}=\left[W_{n}\right]:=\left(|w|_{i}\right)_{i \in \mathcal{V}} \in \mathbb{N}^{|\mathcal{V}|},
$$

i.e. the commutative image of the buffer detail at n.

Stochastic recursive representations

For any admissible matching policy ϕ,
if the original state is $Y \in \mathbb{W}$ we get that

$$
\left\{\begin{array}{l}
W_{0}^{\{Y\}}=Y ; \\
W_{n+1}^{\{Y\}}=\left(W_{n}^{\{Y\}} \odot_{\phi} V_{n}\right), n \in \mathbb{N},
\end{array}\right.
$$

For any class-admissible matching policy ϕ,
if the original state is $Y \in \mathbb{W}$,

$$
\left\{\begin{array}{l}
X_{0}^{\{[Y]\}}=[Y] ; \\
X_{n+1}^{\{[Y]\}}=\left(X_{n}^{\{[Y]\}} \odot_{\phi} V_{n}\right), n \in \mathbb{N},
\end{array}\right.
$$

\hookrightarrow Priorities, Match the Longest, class-uniform are class-admissible;
\hookrightarrow LCFM, FCFM are not.

Outline

(1) Stability study and the geometry of G
(2) A product form for FCFM matchings
(3) Loynes construction for the general matching model

Stability problem

The stability region of (G, ϕ), denoted $\operatorname{Stab}(G, \phi)$, is the set of probability measures μ on \mathcal{V} such that the natural Markov chain of (G, μ, ϕ) is positive recurrent.

Natural necessary condition on μ
$\operatorname{Stab}(G, \phi)$ is included in the set
$\operatorname{NCond}(G):=\left\{\mu: \sum_{i \in \mathcal{I}} \mu(i)<\sum_{j \in \mathcal{E}(\mathcal{I})} \mu(j)\right.$ for all independent sets $\left.\mathcal{I}\right\}$.
ϕ is said maximal if $\operatorname{Stab}(G, \phi)=\operatorname{Ncond}(G)$.

- Ncond generalizes the Complete resource pooling condition of [1], [2] and [3] for the bipartite model;
- Probabilistic analog to the necessary and sufficient condition of the Marriage Theorem.

Dependence on the matching policy: example of the 'Paw graph'

 Policy B

Stability regions
For $\mu(3)=\mu(4)$,

Anti-separable graphs

Definition

The graph G is said anti-separable of order p if there exists a partition of \mathcal{V} into p independent sets $\mathcal{I}_{1}, \ldots, \mathcal{I}_{p}, p \geq 3$, such that

$$
\forall i \neq j, \forall u \in \mathcal{I}_{i}, \forall v \in \mathcal{I}_{j}, \quad u \text { is a neighbor of } v .
$$

Anti-separable \simeq Complete

An anti-separable graph of order p is projected onto the complete graph of size p, if quotiented by the equivalence relation " not being neighbors".

Stability and the geometry of G

Definition

A connected graph G is said to be

- matching-stable if $\operatorname{NCOND}(G)$ is non-empty and all admissible policies are maximal;
- matching-unstable if $\operatorname{Stab}(G, \phi)=\emptyset$ for all admissible ϕ.

Theorem
For any connected graph G,
(i) G is matching-unstable if and only if is bipartite;
(ii) If G is non-bipartite, then ML is maximal;
(iii) If G is anti-separable, then it is matching-stable.

- J. Mairesse and P. Moyal. "Stability of the stochastic matching model", Journ. Appl. Probab. 53(4), 1064-1077, 2016.

Partial converse

By a continuous-time declination of the model and fluid (in)stability arguments,

Theorem
Let \mathscr{G}_{7} denote the set of connected graphs inducing an odd cycle of size 7 or more, but no 5 -cycle and no Paw graph.
Then the only matching-stable graphs in \mathscr{G}_{7}^{c} are anti-separable.

- P. Moyal and O. Perry. "On the instability of matching queues", Annals Appl. Probab. 27(6), 3385-343, 2017.

The marriage problem on graphs

The marriage problem on graphs

Hall's Marriage Theorem
Let $G=(\mathcal{V}, \mathcal{E})$ be a bipartite graph and for all subsets $A \subset \mathcal{V}, \mathcal{E}(A)$ denote the neighborhood of the nodes of A. Then there exists a perfect matching iff for all $A \subset \mathcal{V},|A| \leq|\mathcal{E}(A)|$.

The matching problem on graphs

The matching problem on graphs

The matching problem on graphs

The matching problem on graphs

Online matching algorithms fail in general to construct a perfect matching.

Outline

(1) Stability study and the geometry of G
(2) A product form for FCFM matchings
(3) Loynes construction for the general matching model

First Come, First Matched matching model

First Come, First Matched matching model

- At this point, we do not know whether First Come, First Matched has a maximal stability region or not.
- This matching policy proves to have a maximal stability region for the Bipartite Matching model.
(1) R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite matching of servers and customers". Adv. Appl. Probab, 41(3):695-730, 2009.
(2 I. Adan, A. Bušić, J. Mairesse and G. Weiss. "Reversibility and further properties of the FCFM Bipartite matching model". ArXiv math.PR 1507.05939.

Auxiliary Markov chains

Let $\overline{\mathcal{V}}$ be a copy of \mathcal{V} and $\mathbf{V}=\mathcal{V} \cup \overline{\mathcal{V}}$. We define at all n the following \mathbf{V}^{*}-valued chains B_{n} and F_{n},

Backwards chain
For all n, let $i(n) \leq n$ is the index of the oldest item in line. For any $\ell \in[1, n-i(n)+1]$, we set
$B_{n}(\ell)= \begin{cases}V_{i(n)+\ell-1} & \text { if } V_{i(n)+\ell-1} \text { has not been matched up to time } n ; \\ \frac{V_{k}}{} & \text { if } V_{i(n)+\ell-1} \text { is matched with } V_{k}, \text { with } k \leq n .\end{cases}$

Forwards chain

For all n, let $j(n)>n$ be the largest index of an item that is matched with an item entered up to n. For any $\ell \in[1, j(n)-n]$, we let
$F_{n}(\ell)= \begin{cases}V_{n+\ell} & \text { if } V_{n+\ell} \text { is not matched with an item arrived up to } n ; \\ V_{k} & \text { if } V_{n+\ell} \text { is matched with } V_{k}(k \leq n) .\end{cases}$

Example on the Paw graph

Reversibility

Let for any $w \in \mathbf{V}^{*}$ and any $i \in \mathcal{V},|w|_{i}$ be the number of occurrences of letter i or \bar{i} in the word w.

Proposition

Suppose that $\mu \in \operatorname{Ncond}(G)$. Then the Backwards chain $\left\{B_{n}\right\}$ and the Forwards chain $\left\{F_{n}\right\}$ both admit the following unique stationary distribution on \mathbf{V}^{*} :

$$
\Pi_{B}(\mathbf{w})=\alpha \prod_{i=1}^{p} \mu(i)^{|\mathbf{w}|_{i}+|\overline{\mathbf{w}}|_{i}}
$$

Reversibility

Let for any $w \in \mathbf{V}^{*}$ and any $i \in \mathcal{V},|w|_{i}$ be the number of occurrences of letter i or \bar{i} in the word w.

Proposition

Suppose that $\mu \in \operatorname{Ncond}(G)$. Then the Backwards chain $\left\{B_{n}\right\}$ and the Forwards chain $\left\{F_{n}\right\}$ both admit the following unique stationary distribution on \mathbf{V}^{*} :

$$
\Pi_{B}(\mathbf{w})=\alpha \prod_{i=1}^{p} \mu(i)^{|\mathbf{w}|_{i}+|\overline{\mathbf{w}}|_{i}}
$$

\hookrightarrow Consequence of Kelly's Lemma together with

Proposition

For any two admissible states $\mathbf{w}, \mathbf{w}^{\prime} \in \mathbf{V}^{*}$ for $\left\{B_{n}\right\}$, the states $\stackrel{\leftarrow}{\mathbf{w}}$ and $\stackrel{\leftarrow}{\mathbf{w}^{\prime}}$ are admissible for $\left\{F_{n}\right\}$ and we have that

$$
\Pi_{B}(\mathbf{w}) \mathbf{P}\left[B_{n+1}=\mathbf{w}^{\prime} \mid B_{n}=\mathbf{w}\right]=\Pi_{B}\left(\overleftarrow{\left(\mathbf{w}^{\prime}\right.}\right) \mathbf{P}\left[F_{n+1}=\stackrel{\overleftarrow{\mathbf{w}}}{ } \mid F_{n}=\overleftarrow{\mathbf{w}^{\prime}}\right] .
$$

Reversibility

Let for any $w \in \mathbf{V}^{*}$ and any $i \in \mathcal{V},|w|_{i}$ be the number of occurrences of letter i or \bar{i} in the word w.

Proposition

Suppose that $\mu \in \operatorname{Ncond}(G)$. Then the Backwards chain $\left\{B_{n}\right\}$ and the Forwards chain $\left\{F_{n}\right\}$ both admit the following unique stationary distribution on \mathbf{V}^{*} :

$$
\Pi_{B}(\mathbf{w})=\alpha \prod_{i=1}^{p} \mu(i)^{|\mathbf{w}|_{i}+|\overline{\mathbf{w}}|_{i}} .
$$

Theorem

Consider a matching model (G, μ, FCFM), where G is non-bipartite. Then the model is stable if and only if $\mu \in \operatorname{NCOND}(G)$, and in that case the only stationary probability of the Markov chain $\left\{W_{n}\right\}$ is given by

$$
\Pi_{W}(w)=\alpha \prod_{\ell=1}^{q} \frac{\mu\left(w_{\ell}\right)}{\mu\left(\mathcal{E}\left(\left\{w_{1}, \ldots, w_{\ell}\right\}\right)\right)}, \text { for any } w=w_{1} \ldots w_{q} \in \mathcal{V}^{*} .
$$

Outline

(1) Stability study and the geometry of G
(2) A product form for FCFM matchings
(3) Loynes construction for the general matching model

Stochastic recursive representation

- Under stationary ergodic assumptions, we aim at an explicit construction of a (possibly unique) stationary version of the system, using coupling from the past;
- As the model is 2-periodic we work on the Palm space of the input tracked by batches of two;
- For an initial state $Y \in \mathbb{W}_{2}=\{w \in \mathbb{W}:|w|$ is even $\}$ we study the stochastic recursion

$$
\left\{\begin{array}{ll}
W_{0}^{\{Y\}} & =Y ; \\
W_{2(n+1)}^{\{Y\}} & =\left(W_{2 n}^{\{Y\}} \odot_{\phi} V_{2 n}\right) \odot_{\phi} V_{2 n+1} \circ \theta^{n}, n \in \mathbb{N},
\end{array} \quad \overline{\mathbf{P}}-\right.\text { a.s.. }
$$

On the canonical space of arrivals, a stationary version of the system solves the functional equation

$$
U \circ \theta=\left(U \odot_{\phi} V^{0}\right) \odot_{\phi} V^{1}, \text { a.s.. }
$$

Backwards scheme

Value at time zero starting from $\mathbf{0}$ at time $-n$

Figure: Loynes backwards scheme on $\mathbb{R}+$

'Block-wise' sub-additivity

Let for all ϕ and all $z \in \mathcal{V}^{*}$,

$$
Q_{\phi}=\text { word of unmatched letters of } z \text { by } \phi \text { in arrival order. }
$$

Definition (Sub-additivity)
An admissible matching policy ϕ is said to be sub-additive if, for all $z^{\prime}, z^{\prime \prime} \in \mathcal{V}^{*}$ we have that

$$
\left|Q_{\phi}\left(z^{\prime} z^{\prime \prime}\right)\right| \leq\left|Q_{\phi}\left(z^{\prime}\right)\right|+\left|Q_{\phi}\left(z^{\prime \prime}\right)\right| .
$$

'Block-wise' sub-additivity

Let for all ϕ and all $z \in \mathcal{V}^{*}$,

$$
Q_{\phi}=\text { word of unmatched letters of } z \text { by } \phi \text { in arrival order. }
$$

Definition (Sub-additivity)
An admissible matching policy ϕ is said to be sub-additive if, for all $z^{\prime}, z^{\prime \prime} \in \mathcal{V}^{*}$ we have that

$$
\left|Q_{\phi}\left(z^{\prime} z^{\prime \prime}\right)\right| \leq\left|Q_{\phi}\left(z^{\prime}\right)\right|+\left|Q_{\phi}\left(z^{\prime \prime}\right)\right| .
$$

Proposition

The matching policies FCFM, LCFM, Priorities, class-uniform and ML are sub-additive.

Proof.

- Any '1-Lipschitz' policy ϕ (true for mL, Priorities or class-uniform) is sub-additive: $\left\|\left[w^{\prime}\right] \odot_{\phi} v-[w] \odot_{\phi} v\right\| \leq\left\|\left[w^{\prime}\right]-[w]\right\|$,
- Direct proof for FCFM, LCFM.

Sub-additivity (Cd)

Consider the 'Paw graph' and the following arrival scenario:

Figure: 'Match the Longest' is sub-additive...

Sub-additivity (Cd)

Consider the 'Paw graph' and the following arrival scenario:

Figure: 'Match the Longest' is sub-additive...

Figure: 'Match the Shortest' is not.

Coupling result

Definition

Let G a connected graph and ϕ be an admissible matching policy. Let $u \in \mathbb{W}_{2}$. We say that the word $z \in \mathcal{V}^{*}$ is an erasing word of u for (G, ϕ) if $|z|$ is even and $Q_{\phi}(z)=\emptyset$ and $Q_{\phi}(u z)=\emptyset$.

Theorem
Borovkov and Foss's Renovation Theorem applies in particular in particular if:
(1) ϕ is sub-additive;
(2) For any $w \in \mathbb{W}_{2}$ the r.v. $\tau(w):=\inf \left\{n>0, U_{n}^{\{w\}}=\emptyset\right\}$ is integrable (true in particular if $\mu \in \operatorname{NCOND}(G)$ and if $\phi=$ FCFM or ML, or if G is anti-separable);
(3) Erasing words occur often enough (true in particular if the input is iid).
Thus a unique solution exists, to which all sequences $\left(U_{n}^{w}\right)_{n \in \mathbb{N}}, w \in \mathbb{W}_{2}$, couple strongly from the past.

Existence of erasing words

Proposition

If G is non-bipartite and ϕ is sub-additive, then any word $u \in \mathbb{W}_{2}$ admits an erasing word z for (G, ϕ).

Proof.

By sub-additivity is it enough to address the case $u=i j$ for $i \nrightarrow j$, and consider the minimal path $i-i_{1}-\ldots-i_{p-1}-j$ connecting i to j. Then set:

- if p odd, $z=i_{1} i_{2} \ldots i_{p-1}$;
- if p even, $z=i_{1} i_{2} \ldots i_{p-1} i_{p-1} j_{1} j_{1} j_{2} j_{2} \ldots j_{q} j_{q} k_{1} k_{1} k_{2} k_{3} \ldots k_{2 r} k_{2 r+1}$, where

Constructing perfect bi-infinite ϕ-matchings

Corollary

Under the assumptions of the above Theorem, there exist exactly two perfect ϕ-matchings on \mathbb{Z}.

Back to FCFM

Corollary

If all matchings and 'exchanges' are completed by a perfect bi-infinite FCFM matching, then the matching obtained in reversed time on the copies of arrived items, is also a perfect bi-infinite FCFM matching.

- A. Bušić, J. Mairesse and P. Moyal. "A product form and a sub-additive theorem for the stochastic matching". ArXiv math.PR/1711.02620.

