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Bipartite matching model
Classical skill-based queueing theory

Figure: Queueing model of a call center.

Bipartite matching model: Complete symmetry between
customers/servers. C/S arrive and depart simultaneously

Figure: Bipartite matching model



Bipartite matching model
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Applications

• Healthcare systems: Organ transplantation systems, Blood
banks... (bipartite graphs);

• Matching interfaces: On-line dating, Job search, Public Housing
allocations,... (bipartite graphs);

• Collaborative economy: Peer-to-peer sharing platforms,
BlaBlaCar, Uberdrive, Bike-sharing...(general graphs);

• Assemble-to-order systems (general graphs and hypergraphs).

• ...



General stochastic matching model

Fix a simple connected graph G = (V, E),

1

2

3 4

• Items of the various classes in V arrive one by one; their class i is
drawn following µ on V.

• Any incoming item is matched, if possible, with a compatible item
present in the system. Otherwise it is stored in a buffer;

• If several possible matches are possible, the incoming item follows a
given matching policy φ.



General stochastic matching model

Usual types of matching policies:

• Priority type:
• 2 choses 3 or 4 over 1,
• 2 choses 1 over 3 or 4,
• ...

• Class-uniform: visit the compatible classes in a uniformly random
order, and pick an item of the first non-empty one.

• ’Match the Longest’ (ml), ’Match the Shortest’ (ms),...

• fcfm, lcfm, etc.



State space(s)

Let V∗ be the free monoid associated to V, and

W =
{
w ∈ V∗ : ∀(i , j) ∈ E , |w |i |w |j = 0

}
.

Buffer detail
At any arrival time n,

Wn = w = w1w2...wq ∈ V∗,

where wj = class of the i-th oldest item in line.

Class detail
At any n,

Xn = [Wn] := (|w |i )i∈V ∈ N|V|,

i.e. the commutative image of the buffer detail at n.



Stochastic recursive representations

For any admissible matching policy φ,
if the original state is Y ∈W we get that{

W
{Y}
0 = Y ;

W
{Y}
n+1 =

(
W
{Y}
n �φ Vn

)
, n ∈ N,

a.s.

For any class-admissible matching policy φ,
if the original state is Y ∈W,{

X
{[Y ]}
0 = [Y ];

X
{[Y ]}
n+1 =

(
X
{[Y ]}
n }φ Vn

)
, n ∈ N,

a.s.

↪→ Priorities, Match the Longest, class-uniform are class-admissible;
↪→ lcfm, fcfm are not.



Outline

1 Stability study and the geometry of G

2 A product form for fcfm matchings

3 Loynes construction for the general matching model



Stability problem

The stability region of (G , φ), denoted Stab(G , φ), is the set of
probability measures µ on V such that the natural Markov chain of
(G , µ, φ) is positive recurrent.

Natural necessary condition on µ
Stab(G , φ) is included in the set

NCond(G ) :=

{
µ :

∑
i∈I

µ(i) <
∑

j∈E(I)

µ(j) for all independent sets I

}
.

φ is said maximal if Stab(G , φ) =Ncond(G ).

• Ncond generalizes the Complete resource pooling condition of [1],
[2] and [3] for the bipartite model;

• Probabilistic analog to the necessary and sufficient condition of the
Marriage Theorem.



Dependence on the matching policy:
example of the ’Paw graph’
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Stability regions
For µ(3) = µ(4),
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Anti-separable graphs

Definition
The graph G is said anti-separable of order p if there exists a partition of
V into p independent sets I1, . . . , Ip, p ≥ 3, such that

∀i 6= j ,∀u ∈ Ii ,∀v ∈ Ij , u is a neighbor of v .
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Quotient←→
1-4

2-5

3-6

Anti-separable ' Complete
An anti-separable graph of order p is projected onto the complete graph
of size p, if quotiented by the equivalence relation ”not being neighbors”.



Stability and the geometry of G

Definition
A connected graph G is said to be

• matching-stable if Ncond(G ) is non-empty and all admissible
policies are maximal;

• matching-unstable if Stab(G , φ) = ∅ for all admissible φ.

Theorem
For any connected graph G ,

(i) G is matching-unstable if and only if is bipartite;

(ii) If G is non-bipartite, then ml is maximal;

(iii) If G is anti-separable, then it is matching-stable.

• J. Mairesse and P. Moyal. ”Stability of the stochastic matching
model”, Journ. Appl. Probab. 53(4), 1064-1077, 2016.



Partial converse

By a continuous-time declination of the model and fluid (in)stability
arguments,

Theorem
Let G7 denote the set of connected graphs inducing an odd cycle of size 7
or more, but no 5-cycle and no Paw graph.
Then the only matching-stable graphs in G c

7 are anti-separable.

• P. Moyal and O. Perry. ”On the instability of matching queues”,
Annals Appl. Probab. 27(6), 3385-343, 2017.



The marriage problem on graphs

Hall’s Marriage Theorem
Let G = (V, E) be a bipartite graph and for all subsets A ⊂ V, E(A)
denote the neighborhood of the nodes of A. Then there exists a perfect
matching iff for all A ⊂ V, |A| ≤ |E(A)|.
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The matching problem on graphs

Online matching algorithms fail in general to construct a perfect
matching.
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The matching problem on graphs

•

•

Online matching algorithms fail in general to construct a perfect
matching.
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First Come, First Matched matching
model

• At this point, we do not know whether First Come, First Matched
has a maximal stability region or not.

• This matching policy proves to have a maximal stability region for
the Bipartite Matching model.

1 R. Caldentey, E.H. Kaplan, and G. Weiss. ”FCFS Infinite bipartite
matching of servers and customers”. Adv. Appl. Probab,
41(3):695–730, 2009.

2 I. Adan, A. Bušić, J. Mairesse and G. Weiss. ”Reversibility and
further properties of the FCFM Bipartite matching model”. ArXiv
math.PR 1507.05939.
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Auxiliary Markov chains

Let V̄ be a copy of V and V = V ∪ V̄. We define at all n the following
V∗-valued chains Bn and Fn,

Backwards chain
For all n, let i(n) ≤ n is the index of the oldest item in line. For any
` ∈ |[1, n − i(n) + 1]|, we set

Bn(`) =

{
Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;
Vk if Vi(n)+`−1 is matched with Vk , with k ≤ n.

Forwards chain
For all n, let j(n) > n be the largest index of an item that is matched
with an item entered up to n. For any ` ∈ |[1, j(n)− n]|, we let

Fn(`) =

{
Vn+` if Vn+` is not matched with an item arrived up to n;
Vk if Vn+` is matched with Vk (k ≤ n).



Example on the Paw graph

1 3 4 2 3 1 3 2 2 1 4
W0 = ∅, B0 = ∅, F0 = ∅

1 3 4 1̄ 3 1 3 2 2 1 4
W1 = 1, B1 = 1, F1 = 341̄

1 3 3̄ 1̄ 3 1 3 2 2 1 4
W2 = 13, B2 = 13, F2 = 3̄1̄

1 4̄ 3̄ 1̄ 3 1 3 2 2 1 4
W3 = 1, B3 = 14̄3̄, F3 = 1̄

1 4̄ 3̄ 1̄ 3 1 3 2 2 1 4
W4 = ∅, B4 = ∅, F4 = ∅

1 4̄ 3̄ 1̄ 3 1 3 3̄ 2 1 4
W5 = 3, B5 = 3, F5 = 133̄

1 4̄ 3̄ 1̄ 3 1 3 3̄ 1̄ 1 4
W6 = 31, B6 = 31, F6 = 33̄1̄

1 4̄ 3̄ 1̄ 3 1 3 3̄ 1̄ 1 3̄
W7 = 313, B7 = 313, F7 = 3̄1̄13̄

1 4̄ 3̄ 1̄ 3 1 3 3̄ 1̄ 1 3̄
W8 = 13, B8 = 133̄, F8 = 113̄



Reversibility
Let for any w ∈ V∗ and any i ∈ V, |w |i be the number of occurrences of
letter i or ī in the word w .

Proposition
Suppose that µ ∈ Ncond(G ). Then the Backwards chain {Bn} and the
Forwards chain {Fn} both admit the following unique stationary
distribution on V∗:

ΠB (w) = α

p∏
i=1

µ(i)|w|i+|w|i .

↪→ Consequence of Kelly’s Lemma together with

Proposition
For any two admissible states w,w′ ∈ V∗ for {Bn}, the states ~w and ~w′

are admissible for {Fn} and we have that

ΠB(w)P [Bn+1 = w′|Bn = w] = ΠB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
.
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Reversibility
Let for any w ∈ V∗ and any i ∈ V, |w |i be the number of occurrences of
letter i or ī in the word w .

Proposition
Suppose that µ ∈ Ncond(G ). Then the Backwards chain {Bn} and the
Forwards chain {Fn} both admit the following unique stationary
distribution on V∗:

ΠB (w) = α

p∏
i=1

µ(i)|w|i+|w|i .

Theorem
Consider a matching model (G , µ, fcfm), where G is non-bipartite. Then
the model is stable if and only if µ ∈ Ncond(G ), and in that case the
only stationary probability of the Markov chain {Wn} is given by

ΠW (w) = α

q∏
`=1

µ(w`)

µ
(
E ({w1, ...,w`})

) , for any w = w1...wq ∈ V∗.
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Stochastic recursive representation

• Under stationary ergodic assumptions, we aim at an explicit
construction of a (possibly unique) stationary version of the system,
using coupling from the past;

• As the model is 2-periodic we work on the Palm space of the input
tracked by batches of two;

• For an initial state Y ∈W2 = {w ∈W : |w | is even } we study the
stochastic recursion{

W
{Y}
0 = Y ;

W
{Y}
2(n+1) =

(
W
{Y}
2n �φ V2n

)
�φ V2n+1 ◦ θn, n ∈ N,

P̄− a.s..

On the canonical space of arrivals, a stationary version of the system
solves the functional equation

U ◦ θ =
(
U �φ V 0

)
�φ V 1, a.s..



Backwards scheme

n

Value at time zero starting from 0 at time −n

-

-
- .
- .- .- .- U

0-1-2-3-4-5-6
...

Figure: Loynes backwards scheme on R+



’Block-wise’ sub-additivity
Let for all φ and all z ∈ V∗,

Qφ = word of unmatched letters of z by φ in arrival order.

Definition (Sub-additivity)
An admissible matching policy φ is said to be sub-additive if, for all
z ′, z ′′ ∈ V∗ we have that

|Qφ(z ′z ′′)| ≤ |Qφ(z ′)|+ |Qφ(z ′′)| .

Proposition
The matching policies fcfm, lcfm, Priorities, class-uniform and ml are
sub-additive.

Proof.

• Any ’1-Lipschitz’ policy φ (true for ml, Priorities or class-uniform) is
sub-additive: ‖[w ′] }φ v − [w ] }φ v‖ ≤ ‖[w ′]− [w ]‖,

• Direct proof for fcfm, lcfm.
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Sub-additivity (Cd)
Consider the ’Paw graph’ and the following arrival scenario:
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Figure: ’Match the Longest’ is sub-additive...
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Figure: ’Match the Shortest’ is not.



Sub-additivity (Cd)
Consider the ’Paw graph’ and the following arrival scenario:

1 1 1 3 3 2 2 4

1 1 1 3 3 2 2 4

Figure: ’Match the Longest’ is sub-additive...

1 1 1 3 3 2 2 4

1 1 1 3 3 2 2 4

Figure: ’Match the Shortest’ is not.



Coupling result

Definition
Let G a connected graph and φ be an admissible matching policy. Let
u ∈W2. We say that the word z ∈ V∗ is an erasing word of u for (G , φ)
if |z | is even and Qφ (z) = ∅ and Qφ (uz) = ∅.

Theorem
Borovkov and Foss’s Renovation Theorem applies in particular in
particular if:

1 φ is sub-additive;

2 For any w ∈W2 the r.v. τ(w) := inf
{
n > 0,U

{w}
n = ∅

}
is

integrable (true in particular if µ ∈ Ncond(G ) and if φ = fcfm or
ml, or if G is anti-separable);

3 Erasing words occur often enough (true in particular if the input is
iid).

Thus a unique solution exists, to which all sequences (Uw
n )n∈N, w ∈W2,

couple strongly from the past.



Existence of erasing words
Proposition
If G is non-bipartite and φ is sub-additive, then any word u ∈W2 admits
an erasing word z for (G , φ).

Proof.
By sub-additivity is it enough to address the case u = ij for i 6−j , and
consider the minimal path i−i1−...−ip−1−j connecting i to j . Then set:

• if p odd, z = i1i2...ip−1;

• if p even, z = i1i2...ip−1ip−1j1j1j2j2...jqjqk1k1k2k3...k2rk2r+1, where

i

i1
i2 i3 ip−3

ip−2

ip−1

j

j1j2
j3

jq

k1

k2r+1

k2

k2r

kr+3

k3

kr+2

kr+1kr



Constructing perfect bi-infinite
φ-matchings

Corollary
Under the assumptions of the above Theorem, there exist exactly two
perfect φ-matchings on Z.

1
2

3

4
5

6

4 2

4 2

3 5

3 5

6 1

6 1

4 2

4 2

3 5

3 5

6 1

|
0

6 1

4 2

4 2

3 5

3 5

6 1

6 1

4 2

4 2

3 5

3 5

6

6



Back to fcfm
Corollary
If all matchings and ’exchanges’ are completed by a perfect bi-infinite
FCFM matching, then the matching obtained in reversed time on the
copies of arrived items, is also a perfect bi-infinite FCFM matching.

1 3 4 2 3 1 3 2 2 1 4 2

1 3 4 2 3 1 3 2 2 1 4 2

2̄ 4̄ 3̄ 1̄ 2̄ 2̄ 4̄ 3̄ 1̄ 2̄ 3̄ 1̄

• A. Bušić, J. Mairesse and P. Moyal. ”A product form and a
sub-additive theorem for the stochastic matching”. ArXiv
math.PR/1711.02620.
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