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Bipartite matching model

Classical skill-based queueing theory
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Figure: Queueing model of a call center.

Bipartite matching model: Complete symmetry between
customers/servers. C/S arrive and depart simultaneously
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Figure: Bipartite matching model




Bipartite matching model

@ R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite
matching of servers and customers”. Adv. Appl. Probab,
41(3):695-730, 2009.

® |. Adan and G. Weiss. "Exact FCFS matching rates for two infinite
multi-type sequences”. Operations Research, 60(2):475-489, 2012.

® A. Busi¢, V. Gupta, and J. Mairesse. " Stability of the bipartite
matching model”. Adv. Appl. Probab., 45(2):351-378, 2013.



Applications

Healthcare systems: Organ transplantation systems, Blood
banks... (bipartite graphs);

Matching interfaces: On-line dating, Job search, Public Housing
allocations,... (bipartite graphs);

Collaborative economy: Peer-to-peer sharing platforms,
BlaBlaCar, Uberdrive, Bike-sharing...(general graphs);

Assemble-to-order systems (general graphs and hypergraphs).



General stochastic matching model

Fix a simple connected graph G = (V, £),

1

e Items of the various classes in V arrive one by one; their class i is
drawn following 1 on V.

e Any incoming item is matched, if possible, with a compatible item
present in the system. Otherwise it is stored in a buffer;

o If several possible matches are possible, the incoming item follows a
given matching policy ¢.



General stochastic matching model

Usual types of matching policies:

e Priority type:
e 2 choses 3 or 4 over 1,

e 2 choses 1 over 3 or 4,
o ...

e Class-uniform: visit the compatible classes in a uniformly random
order, and pick an item of the first non-empty one.

e 'Match the Longest’ (ML), 'Match the Shortest’ (MS),...

e FCFM, LCFM, etc.



State space(s)

Let V* be the free monoid associated to V, and

W= {wev* L Y(i,j) € €, |W|,-|W\,-:o}.

Buffer detail

At any arrival time n,
W, =w=ww..wg € V",
where w; = class of the i-th oldest item in line.

Class detail
At any n,
Xn = [Wa] := (Iw]))iev € NV,

i.e. the commutative image of the buffer detail at n.



Stochastic recursive representations

For any admissible matching policy ¢,
if the original state is Y € W we get that

{ WO{Y} =Y

wi? = (Wi ey ve), nen, T
For any class-admissible matching policy ¢,
if the original state is Y € W,
a.s.

Y
X =y
X = (Xn“y” ®p vn)  neN,

< Priorities, Match the Longest, class-uniform are class-admissible;
— LCFM, FCFM are not.
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@ Stability study and the geometry of G



Stability problem

The stability region of (G, ¢), denoted STAB(G, ¢), is the set of
probability measures p on V such that the natural Markov chain of
(G, i, @) is positive recurrent.

Natural necessary condition on p
STAB(G, ¢) is included in the set

NConND(G { Z,u Z w(j) for all independent sets I}.

i€eT JEE(T)
¢ is said maximal if STAB(G, ¢) =NconD(G).

e NCOND generalizes the Complete resource pooling condition of [1],
[2] and [3] for the bipartite model;

e Probabilistic analog to the necessary and sufficient condition of the
Marriage Theorem.



Dependence on the matching policy:
example of the 'Paw graph’

Policy A Policy B

Stability regions
For p(3) = u(4),

1(2)

1
2




Anti-separable graphs
Definition
The graph G is said anti-separable of order p if there exists a partition of
V into p independent sets Z1,...,Z,, p > 3, such that

Vi # j,Yu eI,V eI, u is a neighbor of v.

Anti-separable ~ Complete

An anti-separable graph of order p is projected onto the complete graph
of size p, if quotiented by the equivalence relation "not being neighbors”.



Stability and the geometry of G

Definition
A connected graph G is said to be

e matching-stable if NCOND(G) is non-empty and all admissible
policies are maximal,

e matching-unstable if STAB(G, ¢) = () for all admissible ¢.

Theorem
For any connected graph G,

(i) G is matching-unstable if and only if is bipartite;
(ii) If G is non-bipartite, then ML is maximal;
(iii) If G is anti-separable, then it is matching-stable.

e J. Mairesse and P. Moyal. " Stability of the stochastic matching
model”, Journ. Appl. Probab. 53(4), 1064-1077, 2016.



Partial converse

By a continuous-time declination of the model and fluid (in)stability
arguments,

Theorem

Let ¢ denote the set of connected graphs inducing an odd cycle of size 7
or more, but no 5-cycle and no Paw graph.

Then the only matching-stable graphs in &5 are anti-separable.

e P. Moyal and O. Perry. "On the instability of matching queues”,
Annals Appl. Probab. 27(6), 3385-343, 2017.



The marriage problem on graphs



The marriage problem on graphs

Hall's Marriage Theorem

Let G = (V, &) be a bipartite graph and for all subsets A C V, £(A)
denote the neighborhood of the nodes of A. Then there exists a perfect
matching iff for all A C V, |A| < |E(A)].



The matching problem on graphs



The matching problem on graphs



The matching problem on graphs



The matching problem on graphs

Online matching algorithms fail in general to construct a perfect
matching.



Outline

@® A product form for FCFM matchings



First Come, First Matched matching
model



First Come, First Matched matching
model

o At this point, we do not know whether First Come, First Matched
has a maximal stability region or not.

e This matching policy proves to have a maximal stability region for
the Bipartite Matching model.

® R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite
matching of servers and customers”. Adv. Appl. Probab,
41(3):695-730, 2009.

® |. Adan, A. Busi¢, J. Mairesse and G. Weiss. " Reversibility and
further properties of the FCFM Bipartite matching model”. ArXiv
math.PR 1507.05939.



Auxiliary Markov chains

Let V be a copy of V and V =V U V. We define at all n the following
V*-valued chains B, and F,,

Backwards chain
For all n, let i(n) < n is the index of the oldest item in line. For any

¢e[l,n—i(n)+ 1], we set

B, (f) = Viiny+e—1 if Vi(n)1e—1 has not been matched up to time n;
T Ve if Vi(n)+¢—1 is matched with Vi, with k < n.

Forwards chain
For all n, let j(n) > n be the largest index of an item that is matched

with an item entered up to n. For any ¢ € [1,j(n) — n], we let

Fo() = Vioie if Vi4p is not matched with an item arrived up to n;
LA B VA if Vii¢ is matched with Vi (k < n).



Example on the Paw graph

} Wo=0,By=0, Fp =0

fg\4 Wy =1, By =1, Ff =341
1 3 4 1 3 13 2 2 1 4
% Wy =13, By = 13, Fp = 31
1 33 1 3 13 2 214
T~ Wi =1, By =183, F3=1
1 2 31 31 3 2 2 1 4
L T~s— gy Wy =0,B,=0, Fp=0
1 2 31 3 13 2 214
C i~ G T Ws =3, Bs =3, Fg5 =133

1 2 31 313 3 2 14
S, e . . Wg =31, By =31, Fg = 33
3 4

1 2 31 313 3 11

S, e Wy -313, B, =313, F = 3113
14313133113

S, T e Wy -13,83-135, R 113
1 2313133113




Reversibility
Let for any w € V* and any i € V, |w/|; be the number of occurrences of
letter i or i in the word w.

Proposition
Suppose that ¢ € NCOND(G). Then the Backwards chain {B,} and the

Forwards chain {F,} both admit the following unique stationary
distribution on V*:

Mg (w) =a H (i)Wl



Reversibility
Let for any w € V* and any i € V, |w/|; be the number of occurrences of
letter i or i in the word w.
Proposition
Suppose that ¢ € NCOND(G). Then the Backwards chain {B,} and the

Forwards chain {F,} both admit the following unique stationary
distribution on V*:

Mg (w) =« H (i)Wl

— Consequence of Kelly’'s Lemma together with

Proposition
For any two admissible states w,w’ € V* for {B,}, the states W and w’
are admissible for {F,} and we have that

Mg(W)P [Byis = W'|By = w] = Mg (ﬁ) P [F,,H — W|F, = ﬂ .



Reversibility
Let for any w € V* and any i € V, |w/|; be the number of occurrences of
letter i or i in the word w.
Proposition
Suppose that ;4 € NCOND(G). Then the Backwards chain {B,} and the

Forwards chain {F,} both admit the following unique stationary
distribution on V*:

Mg (w) = a [ u(i)™=0.

Theorem

Consider a matching model (G, u, FCFM), where G is non-bipartite. Then
the model is stable if and only if ;4 € NCOND(G), and in that case the
only stationary probability of the Markov chain {W,} is given by

p(we)
({wi, ..., WZ}))

, forany w=w..wg € V*.

HW(W):QEM(S
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© Loynes construction for the general matching model



Stochastic recursive representation

e Under stationary ergodic assumptions, we aim at an explicit
construction of a (possibly unique) stationary version of the system,
using coupling from the past;

e As the model is 2-periodic we work on the Palm space of the input
tracked by batches of two;

e For an initial state Y € Wy = {w € W : |w| is even } we study the
stochastic recursion

wi =y, _
' P— as.
{ W2{(:_i1) - (Wz{ny} ®¢ V2n) ®¢ V2n+l o en, ne N7

On the canonical space of arrivals, a stationary version of the system
solves the functional equation

Uof=(Udy V%) 0y V', as..



Backwards scheme

Value at time zero starting from 0 at time —n

4 3 2 -1 0

Figure: Loynes backwards scheme on R+



'‘Block-wise’ sub-additivity
Let for all ¢ and all z € V*,
@y = word of unmatched letters of z by ¢ in arrival order.
Definition (Sub-additivity)

An admissible matching policy ¢ is said to be sub-additive if, for all
7z, z" € V* we have that

Qo (2'2") < Qs ()] + Qs (2")] -



'‘Block-wise’ sub-additivity
Let for all ¢ and all z € V*,

@y = word of unmatched letters of z by ¢ in arrival order.

Definition (Sub-additivity)
An admissible matching policy ¢ is said to be sub-additive if, for all
7z, z" € V* we have that

Qo (2'2") < Qs ()] + Qs (2")] -

Proposition
The matching policies FCFM, LCFM, Priorities, class-uniform and ML are
sub-additive.
Proof.
e Any '1-Lipschitz’ policy ¢ (true for ML, Priorities or class-uniform) is
sub-additive: [w'] © v — [w] © v]| < [|[w] - [wll]
e Direct proof for FCFM, LCFM.



Sub-additivity (Cd)

Consider the 'Paw graph' and the following arrival scenario:

1 1 1 3 3 2 2 4
1 1 1 3 3 2 2 4

Figure: 'Match the Longest’ is sub-additive...



Sub-additivity (Cd)

Consider the 'Paw graph' and the following arrival scenario:

1 1 1 3 3 2 2 4
1 1 1 3 3 2 2 4

1 1 1 3 3 2 2 4
1 1 1 3 3 2 2 4

Figure: 'Match the Shortest’ is not.



Coupling result

Definition

Let G a connected graph and ¢ be an admissible matching policy. Let

u € W,. We say that the word z € V* is an erasing word of u for (G, ¢)
if |z| is even and Q4 (z) = 0 and Q, (uz) = 0.

Theorem
Borovkov and Foss's Renovation Theorem applies in particular in
particular if:

@ ¢ is sub-additive;
® For any w € W, the r.v. 7(w) := inf {n >0, Ui = @} is
integrable (true in particular if 4 € NCOND(G) and if ¢ = FCFM or
ML, or if G is anti-separable);
@® Erasing words occur often enough (true in particular if the input is
iid).
Thus a unique solution exists, to which all sequences (UY)pen, w € W3,
couple strongly from the past.



Existence of erasing words

Proposition
If G is non-bipartite and ¢ is sub-additive, then any word u € W, admits
an erasing word z for (G, ).

Proof.
By sub-additivity is it enough to address the case u = ij for i+j, and
consider the minimal path /—i;—...—i,_1—j connecting i/ to j. Then set:

o if podd, z=i1ir...ip—1;
o if p even, z = i1i2...ip_1ip_ljljljzjz...jqjqklk1k2k3...k2,k2,+1, where

Ip—1
Jkoria ks kri2



Constructing perfect bi-infinite
¢-matchings

Corollary

Under the assumptions of the above Theorem, there exist exactly two
perfect ¢-matchings on Z.

423561423561423561423586
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Back to FCFM

Corollary

If all matchings and 'exchanges’ are completed by a perfect bi-infinite
FCFM matching, then the matching obtained in reversed time on the
copies of arrived items, is also a perfect bi-infinite FCFM matching.

e A. Busi¢, J. Mairesse and P. Moyal. " A product form and a
sub-additive theorem for the stochastic matching”. ArXiv
math.PR/1711.02620.
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