Topics on general stochastic matching models

Pascal Moyal (Based on common works with J. Mairesse, O. Perry and A. Bušić)

Université de Technologie de Compiègne

Journées ALEA 2018 CIRM - Marseille, 13/03/2018

Bipartite matching model

Classical skill-based queueing theory

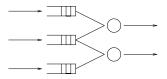


Figure: Queueing model of a call center.

Bipartite matching model: Complete symmetry between customers/servers. C/S arrive and depart simultaneously

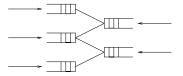


Figure: Bipartite matching model

Bipartite matching model

- R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite matching of servers and customers". *Adv. Appl. Probab*, 41(3):695–730, 2009.
- 2 I. Adan and G. Weiss. "Exact FCFS matching rates for two infinite multi-type sequences". Operations Research, 60(2):475–489, 2012.
- 3 A. Bušić, V. Gupta, and J. Mairesse. "Stability of the bipartite matching model". Adv. Appl. Probab., 45(2):351–378, 2013.

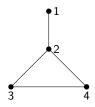
Applications

- Healthcare systems: Organ transplantation systems, Blood banks... (bipartite graphs);
- Matching interfaces: On-line dating, Job search, Public Housing allocations,... (bipartite graphs);
- **Collaborative economy**: Peer-to-peer sharing platforms, BlaBlaCar, Uberdrive, Bike-sharing...(general graphs);
- Assemble-to-order systems (general graphs and hypergraphs).

• ...

General stochastic matching model

Fix a simple connected graph $G = (\mathcal{V}, \mathcal{E})$,



- Items of the various classes in V arrive one by one; their class i is drawn following μ on V.
- Any incoming item is matched, if possible, with a compatible item present in the system. Otherwise it is stored in a buffer;
- If several possible matches are possible, the incoming item follows a given matching policy ϕ .

General stochastic matching model

Usual types of matching policies:

- Priority type:
 - 2 choses 3 or 4 over 1,
 - 2 choses 1 over 3 or 4,
 - ...
- Class-uniform: visit the compatible classes in a uniformly random order, and pick an item of the first non-empty one.

- 'Match the Longest' (ML), 'Match the Shortest' (MS),...
- FCFM, LCFM, etc.

State space(s)

Let \mathcal{V}^* be the free monoid associated to $\mathcal{V},$ and

$$\mathbb{W} = \Big\{ w \in \mathcal{V}^* : \forall (i,j) \in \mathcal{E}, |w|_i | w|_j = 0 \Big\}.$$

Buffer detail

At any arrival time n,

$$W_n = w = w_1 w_2 \dots w_q \in \mathcal{V}^*,$$

where w_i = class of the *i*-th oldest item in line.

Class detail At any *n*,

$$X_n = [W_n] := (|w|_i)_{i \in \mathcal{V}} \in \mathbb{N}^{|\mathcal{V}|},$$

i.e. the commutative image of the buffer detail at n.

Stochastic recursive representations

For any admissible matching policy ϕ , if the original state is $Y \in \mathbb{W}$ we get that

$$\begin{cases} W_0^{\{Y\}} = Y; \\ W_{n+1}^{\{Y\}} = \left(W_n^{\{Y\}} \odot_{\phi} V_n\right), n \in \mathbb{N}, \end{cases}$$
a.s.

For any *class-admissible* matching policy ϕ , if the original state is $Y \in \mathbb{W}$,

$$\begin{cases} X_0^{\{[Y]\}} &= [Y]; \\ X_{n+1}^{\{[Y]\}} &= \left(X_n^{\{[Y]\}} \odot_{\phi} V_n\right), \ n \in \mathbb{N}, \end{cases}$$
a.s.

 \hookrightarrow Priorities, Match the Longest, class-uniform are class-admissible; \hookrightarrow LCFM, FCFM are not.

Outline

(1) Stability study and the geometry of G

2 A product form for FCFM matchings

3 Loynes construction for the general matching model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Stability problem

The stability region of (G, ϕ) , denoted STAB (G, ϕ) , is the set of probability measures μ on \mathcal{V} such that the natural Markov chain of (G, μ, ϕ) is positive recurrent.

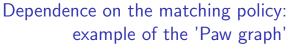
Natural necessary condition on μ

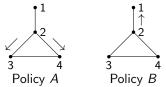
STAB (G, ϕ) is included in the set

$$\operatorname{NCOND}({\boldsymbol{G}}) := \Bigg\{ \mu: \ \sum_{i \in \mathcal{I}} \mu(i) < \sum_{j \in \mathcal{E}(\mathcal{I})} \mu(j) \text{ for all independent sets } \mathcal{I} \Bigg\}.$$

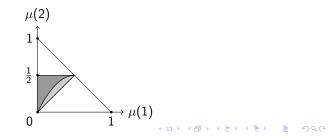
 ϕ is said maximal if STAB $(G, \phi) = \text{NCOND}(G)$.

- NCOND generalizes the Complete resource pooling condition of [1], [2] and [3] for the bipartite model;
- Probabilistic analog to the necessary and sufficient condition of the Marriage Theorem.





Stability regions For $\mu(3) = \mu(4)$,



Anti-separable graphs

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

The graph G is said *anti-separable of order* p if there exists a partition of \mathcal{V} into p independent sets $\mathcal{I}_1, \ldots, \mathcal{I}_p, \ p \geq 3$, such that

 $\forall i \neq j, \forall u \in \mathcal{I}_i, \forall v \in \mathcal{I}_j, \quad u \text{ is a neighbor of } v.$

Anti-separable \simeq Complete

An anti-separable graph of order p is projected onto the complete graph of size p, if quotiented by the equivalence relation "not being neighbors".

Stability and the geometry of G

Definition

A connected graph G is said to be

- matching-stable if NCOND(G) is non-empty and all admissible policies are maximal;
- matching-unstable if $STAB(G, \phi) = \emptyset$ for all admissible ϕ .

Theorem

For any connected graph G,

- (i) G is matching-unstable if and only if is bipartite;
- (ii) If G is non-bipartite, then ML is maximal;
- (iii) If G is anti-separable, then it is matching-stable.

 J. Mairesse and P. Moyal. "Stability of the stochastic matching model", Journ. Appl. Probab. 53(4), 1064-1077, 2016.

Partial converse

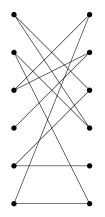
By a continuous-time declination of the model and fluid (in)stability arguments,

Theorem

Let \mathscr{G}_7 denote the set of connected graphs inducing an odd cycle of size 7 or more, but no 5-cycle and no Paw graph. Then the *only* matching-stable graphs in \mathscr{G}_7^c are anti-separable.

• P. Moyal and O. Perry. "On the instability of matching queues", Annals Appl. Probab. 27(6), 3385-343, 2017.

The marriage problem on graphs

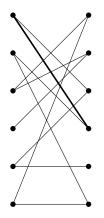


◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

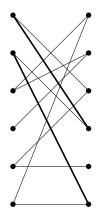
The marriage problem on graphs

Hall's Marriage Theorem

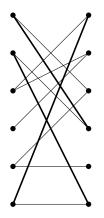
Let $G = (\mathcal{V}, \mathcal{E})$ be a bipartite graph and for all subsets $A \subset \mathcal{V}$, $\mathcal{E}(A)$ denote the neighborhood of the nodes of A. Then there exists a perfect matching iff for all $A \subset \mathcal{V}$, $|A| \leq |\mathcal{E}(A)|$.



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ



◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Online matching algorithms fail in general to construct a perfect matching.

Outline

2 A product form for FCFM matchings

3 Loynes construction for the general matching model

First Come, First Matched matching model

First Come, First Matched matching model

- At this point, we do not know whether First Come, First Matched has a maximal stability region or not.
- This matching policy proves to have a maximal stability region for the Bipartite Matching model.

- R. Caldentey, E.H. Kaplan, and G. Weiss. "FCFS Infinite bipartite matching of servers and customers". Adv. Appl. Probab, 41(3):695-730, 2009.
- I. Adan, A. Bušić, J. Mairesse and G. Weiss. "Reversibility and further properties of the FCFM Bipartite matching model". ArXiv math.PR 1507.05939.

Auxiliary Markov chains

Let $\bar{\mathcal{V}}$ be a copy of \mathcal{V} and $\mathbf{V} = \mathcal{V} \cup \bar{\mathcal{V}}$. We define at all *n* the following \mathbf{V}^* -valued chains B_n and F_n ,

Backwards chain

For all *n*, let $i(n) \le n$ is the index of the oldest item in line. For any $\ell \in [1, n - i(n) + 1]$, we set

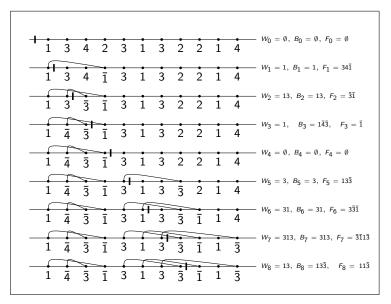
$$B_n(\ell) = \begin{cases} \frac{V_{i(n)+\ell-1}}{V_k} & \text{if } V_{i(n)+\ell-1} \text{ has not been matched up to time } n; \\ if V_{i(n)+\ell-1} \text{ is matched with } V_k, \text{ with } k \leq n. \end{cases}$$

Forwards chain

For all *n*, let j(n) > n be the largest index of an item that is matched with an item entered up to *n*. For any $\ell \in [1, j(n) - n]$, we let

 $F_n(\ell) = \begin{cases} V_{n+\ell} & \text{if } V_{n+\ell} \text{ is not matched with an item arrived up to } n; \\ \overline{V_k} & \text{if } V_{n+\ell} \text{ is matched with } V_k \ (k \le n). \end{cases}$

Example on the Paw graph



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● のへ(で)

Reversibility

Let for any $w \in \mathbf{V}^*$ and any $i \in \mathcal{V}$, $|w|_i$ be the number of occurrences of letter *i* or \overline{i} in the word *w*.

Proposition

Suppose that $\mu \in \text{NCOND}(G)$. Then the Backwards chain $\{B_n\}$ and the Forwards chain $\{F_n\}$ both admit the following unique stationary distribution on \mathbf{V}^* :

$$\Pi_B(\mathbf{w}) = \alpha \prod_{i=1}^{p} \mu(i)^{|\mathbf{w}|_i + |\overline{\mathbf{w}}|_i}.$$

Reversibility

Let for any $w \in \mathbf{V}^*$ and any $i \in \mathcal{V}$, $|w|_i$ be the number of occurrences of letter *i* or \overline{i} in the word *w*.

Proposition

Suppose that $\mu \in \text{NCOND}(G)$. Then the Backwards chain $\{B_n\}$ and the Forwards chain $\{F_n\}$ both admit the following unique stationary distribution on \mathbf{V}^* :

$$\Pi_B(\mathbf{w}) = \alpha \prod_{i=1}^{p} \mu(i)^{|\mathbf{w}|_i + |\overline{\mathbf{w}}|_i}.$$

 \hookrightarrow Consequence of Kelly's Lemma together with

Proposition

For any two admissible states $\mathbf{w}, \mathbf{w}' \in \mathbf{V}^*$ for $\{B_n\}$, the states $\overline{\mathbf{w}}$ and $\overline{\mathbf{w}'}$ are admissible for $\{F_n\}$ and we have that

$$\Pi_B(\mathbf{w})\mathbf{P}\left[B_{n+1}=\mathbf{w}'|B_n=\mathbf{w}\right]=\Pi_B\left(\overset{\leftarrow}{\mathbf{w}'}\right)\mathbf{P}\left[F_{n+1}=\overset{\leftarrow}{\mathbf{w}}|F_n=\overset{\leftarrow}{\mathbf{w}'}\right].$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Reversibility

Let for any $w \in \mathbf{V}^*$ and any $i \in \mathcal{V}$, $|w|_i$ be the number of occurrences of letter *i* or \overline{i} in the word *w*.

Proposition

Suppose that $\mu \in \text{NCOND}(G)$. Then the Backwards chain $\{B_n\}$ and the Forwards chain $\{F_n\}$ both admit the following unique stationary distribution on \mathbf{V}^* :

$$\Pi_B(\mathbf{w}) = \alpha \prod_{i=1}^p \mu(i)^{|\mathbf{w}|_i + |\overline{\mathbf{w}}|_i}.$$

Theorem

Consider a matching model (G, μ, FCFM), where G is non-bipartite. Then the model is stable if and only if $\mu \in \text{NCOND}(G)$, and in that case the only stationary probability of the Markov chain { W_n } is given by

$$\Pi_{W}(w) = \alpha \prod_{\ell=1}^{q} \frac{\mu(w_{\ell})}{\mu\left(\mathcal{E}\left(\{w_{1}, ..., w_{\ell}\}\right)\right)}, \text{ for any } w = w_{1}...w_{q} \in \mathcal{V}^{*}.$$

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 A product form for FCFM matchings

3 Loynes construction for the general matching model

Stochastic recursive representation

- Under stationary ergodic assumptions, we aim at an explicit construction of a (possibly unique) stationary version of the system, using coupling from the past;
- As the model is 2-periodic we work on the Palm space of the input tracked by batches of two;
- For an initial state $Y \in \mathbb{W}_2 = \{w \in \mathbb{W} : |w| \text{ is even }\}$ we study the stochastic recursion

$$\begin{cases} W_0^{\{Y\}} &= Y; \\ W_{2(n+1)}^{\{Y\}} &= \left(W_{2n}^{\{Y\}} \odot_{\phi} V_{2n}\right) \odot_{\phi} V_{2n+1} \circ \theta^n, \ n \in \mathbb{N}, \end{cases} \quad \bar{\mathbf{P}}-\text{ a.s..}$$

On the canonical space of arrivals, a stationary version of the system solves the functional equation

$$U \circ \theta = \left(U \odot_{\phi} V^0 \right) \odot_{\phi} V^1$$
, a.s..

Backwards scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

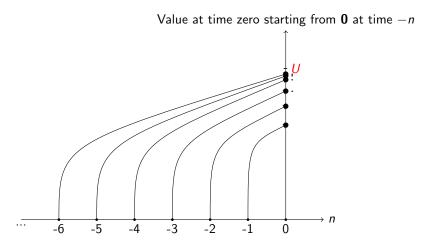


Figure: Loynes backwards scheme on $\mathbb{R}+$

'Block-wise' sub-additivity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let for all ϕ and all $z \in \mathcal{V}^*$,

 $Q_{\phi} =$ word of unmatched letters of z by ϕ in arrival order.

Definition (Sub-additivity)

An admissible matching policy ϕ is said to be *sub-additive* if, for all $z',z''\in \mathcal{V}^*$ we have that

$$|Q_\phi(z'z'')|\leq |Q_\phi(z')|+|Q_\phi(z'')|\,.$$

'Block-wise' sub-additivity

◆□ ▶ ◆□ ▶ ◆ ≡ ▶ ◆ ≡ ▶ ● • • • • •

Let for all ϕ and all $z \in \mathcal{V}^*$,

 $Q_{\phi} =$ word of unmatched letters of z by ϕ in arrival order.

Definition (Sub-additivity)

An admissible matching policy ϕ is said to be sub-additive if, for all $z',z''\in\mathcal{V}^*$ we have that

$$|Q_\phi(z'z'')|\leq |Q_\phi(z')|+|Q_\phi(z'')|\,.$$

Proposition

The matching policies ${\rm FCFM},~{\rm LCFM},$ Priorities, class-uniform and ${\rm ML}$ are sub-additive.

Proof.

- Any '1-Lipschitz' policy φ (true for ML, Priorities or class-uniform) is sub-additive: ||[w'] ⊚_φ v − [w] ⊚_φ v|| ≤ ||[w'] − [w]||,
- Direct proof for FCFM, LCFM.

Sub-additivity (Cd)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consider the 'Paw graph' and the following arrival scenario:

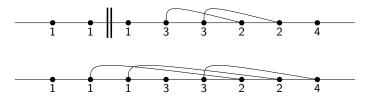
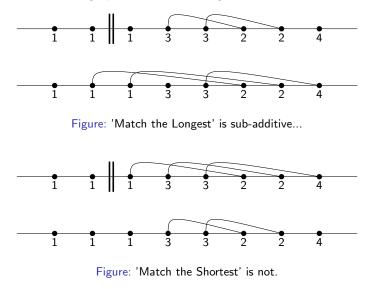


Figure: 'Match the Longest' is sub-additive...

Sub-additivity (Cd)

Consider the 'Paw graph' and the following arrival scenario:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Coupling result

Definition

Let G a connected graph and ϕ be an admissible matching policy. Let $u \in \mathbb{W}_2$. We say that the word $z \in \mathcal{V}^*$ is an *erasing word* of u for (G, ϕ) if |z| is even and $Q_{\phi}(z) = \emptyset$ and $Q_{\phi}(uz) = \emptyset$.

Theorem

Borovkov and Foss's Renovation Theorem applies in particular in particular if:

- **1** ϕ is sub-additive;
- ② For any w ∈ W₂ the r.v. $\tau(w) := \inf \left\{ n > 0, U_n^{\{w\}} = \emptyset \right\}$ is integrable (true in particular if $\mu \in \text{NCOND}(G)$ and if $\phi = \text{FCFM}$ or ML, or if G is anti-separable);
- Series and the series of th

Thus a unique solution exists, to which all sequences $(U_n^w)_{n \in \mathbb{N}}$, $w \in \mathbb{W}_2$, couple strongly from the past.

Existence of erasing words

・ロン ・四マ ・ヨマ ・ヨマ

Proposition

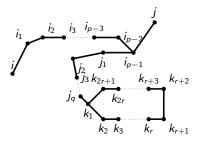
If G is non-bipartite and ϕ is sub-additive, then any word $u \in \mathbb{W}_2$ admits an erasing word z for (G, ϕ) .

Proof.

By sub-additivity is it enough to address the case u = ij for $i \neq j$, and consider the minimal path $i-i_1-\ldots-i_{p-1}-j$ connecting i to j. Then set:

• if
$$p$$
 odd, $z = i_1 i_2 \dots i_{p-1}$;

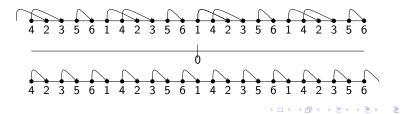
• if p even,
$$z = i_1 i_2 \dots i_{p-1} i_{p-1} j_1 j_1 j_2 j_2 \dots j_q j_q k_1 k_1 k_2 k_3 \dots k_{2r} k_{2r+1}$$
, where



Constructing perfect bi-infinite ϕ -matchings

Corollary

Under the assumptions of the above Theorem, there exist exactly **two** perfect ϕ -matchings on \mathbb{Z} .

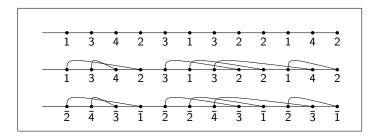


900

Back to $\ensuremath{\operatorname{FCFM}}$

Corollary

If all matchings and 'exchanges' are completed by a perfect bi-infinite FCFM matching, then the matching obtained in reversed time on the copies of arrived items, is also a perfect bi-infinite FCFM matching.



 A. Bušić, J. Mairesse and P. Moyal. "A product form and a sub-additive theorem for the stochastic matching". ArXiv math.PR/1711.02620.