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1 — The scaling limit of separable permutations
After Bassino, Bouvel, Féray, Gerin, Pierrot 2016



Permutations

A permutation 0 € G, is a word (o(1)
contains every element of {1,..., nt.

Diagram of (4128376) € Gg:
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Permutation patterns

g =(10,6,2,5,3,9,1,7,4,8,11) € &4
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Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern
extraction. Can always be written as Av(B), the set of
permutations that avoid patterns in some basis B.



Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern
extraction. Can always be written as Av(B), the set of
permutations that avoid patterns in some basis B.

Separable permutations: Av(3142,2413)

(Avis-Newborn '80, Bose-Buss-Lubiw "93)
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Separable permutations

o
A o . .
lternating-signs Schrader tree Separable permutation

w(r) — (1210765894 3)

Counted by large Schroder numbers
1,2,6,22,90,394,1806,8558, ... = (3 + \/§)nn—3/2
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A large uniform separable permutation
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Permutons

A permuton is a

probability measure / 4 4
2 i 1

on [0, 1]* with both / .

marginals uniform.

—> compact metric space (with weak convergence).

Permutations of all sizes are densely embedded in permutons.

Y Ho
n ° 1 _
) % I - density 0
. m
o, ° ) e . " _ density n
Yt n "
1 * ® 0 - |
1 n 0

We say that a sequence (g,,) converges to p when pi;, —— 1.

n—oQ
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the (’,Z) subpermutations of g of size k.
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Density of patterns

For 0 € &,, 1 € &, occ(m, 0) is the proportion of st among
the (’,Z) subpermutations of g of size k.

For instance, occ(21, -) is the proportion of inversions:
occ(21,13254) = 2/10

Similarly, if y is a permuton, the density of o in p is the
probability that k independent points drawn from p are
ordered like .

e (rm, ) = /[ | dyn) - g5 ) ~ )
O"] 2k

Theorem (Hoppen et. al., 2013)
The sequence (a,) converges to p iff for every T € G,
occ(sr, 0,) — occ(s, p).
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It 0, is a sequence of random permutations, we can consider
the convergence in distribution of the random permutons pq .
Let g, = uniform of size n in some class C.
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C=6: O, E) Leb[o’”z.




Sequences of random permutations

It 0, is a sequence of random permutations, we can consider
the convergence in distribution of the random permutons pq .
Let g, = uniform of size n in some class C.

C = Av(231) or Av(321) : g, — (id, id).Leby ;.
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Pictures by C. Hoffman, D. Rizzolo, E. Slivken



Sequences of random permutations

It 0, is a sequence of random permutations, we can consider
the convergence in distribution of the random permutons pq .
Let g, = uniform of size n in some class C.

C = Av(2413,3142) = {separables}:
Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016)

g, converges in distribution to some random permuton g,
called the Brownian separable permuton.

5 X% x|
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A portmanteau theorem for random permutons

Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)

The following are equivalent:

1. The random measure p, converges in distribution to some
random permuton p.

2. The random variables occ(st, g,) converge in distribution,
jointly in T € G.

3. E|occ(, g,)] converges to some A, for every m € .

Moreover, the law of p is characterized by

Elocc(m, )] = Ay, m € &



A portmanteau theorem for random permutons

Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)

The following are equivalent:

1. The random measure p, converges in distribution to some
random permuton p.

2. The random variables occ(st, g,) converge in distribution,
jointly in T € G.

3. E|occ(, g,)] converges to some A, for every m € .

Moreover, the law of p is characterized by

Elocc(m, )] = Ay, m € &

Remark: Elocc(r, 0,)] = Plpaty(a,) = 7], where I* is a
uniform k-subset of |n], independent of g,.
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A portmanteau theorem for random permutons

It suffices to show that Vk, pat.(o,) converges, where /X is a
uniform k-subset of |n], independent of g,.

When g, uniform in C,, this is only a matter of enumeration:
how many of the (7)|C,| pairs (I, 0) € [n] x C, are such that
pat,/(g) = 7 ?
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ldea of proof

Use the bijection with signed Schroder trees: g, = perm(t,),
where t, is a uniform signed Schroder tree with n leaves.

Fix k(= 3). Then pat, (g,) = perm(t,x), where t,x is the
reduced subtree of t, induced by the leaves with indexes in /X.

th|l, pat,n(an)

v

What does it look like as n — o0?
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Analytic combinatorics for leaf-counted trees

-or 'nice" varieties of trees, the uniform k-leaf-subtree in a

large tree converges to the uniform binary tree with k leaves.
I'(z)

Recursive trees counted by number of leaves.
I(z) =z+ F(T(z)) (Schroder: F(t) =) s, t5). u

. W - o def
In this case, 'nice’ <

1 0<u<REg F'(u)=1.
Then T has a unique
dominant square root
singularity in p with

I'(p) = u (smooth implicit
function schema).

This is the case for Schroder
(F rational)

N



Uniform k-subtree in large unsigned trees

I has square-root singularity at p and F analytic at T (p).
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Uniform k-subtree in large unsigned trees

I has square-root singularity at p and F analytic at T (p).
Then, the g.f of trees with k marked leaves that induce the
k-tree T is

1

deq(v) /:(deg(V))(T(Z))

T'(z) || T'(z)%9

v internal node of T

~5 CT“ _ %)—#{nodes inT}/2

Dominates when 1 binary.
(Then C; doesn’'t depend on T).
Transfer: t,x converges in
distribution to a uniform
binary tree.
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Counting signed trees that induce a given signed tree T:
adding parity constraints on the height of the marked leaf in
the marked trees.

Replace instances of 7’ by 7, (even height) or 7] (odd

height). T{+ T{ =T"and T = F/(T)T§,so T{ ~ T{ ~ 3T".

g.f. of Trees with kK marked leaves that induce the signed
k-tree T :

’ b ra 41k 1 eq(v
NI+ THTYTT B deg(v)|F(d IN(T(2))

v internal node of T

where a (resp. b) is the number of edges of T incident to two
nodes of the same (resp. different) signs

Hence all signed binary trees have the same asymptotic
probability. Hence convergence in distribution to a permuton.
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Link with scaling limits of trees

t, uniform of size n in T =z + F(T) is Galton-Watson
conditioned on the number of leaves. F "nice" = critical GW
with exponential moments (Boltzmann sampling)

In this case, it C,, is the contour exploration of t,, then for
some constant ¢ > 0, cn~'"?C,, converges in distribution to
the normalized Brownian excursion. (Kortchemski 12,

Pitman-Rizzolo '15)

A cn712C, (1) A e(t)




Link with scaling limits of trees

t, uniform of size n in T =z + F(T) is Galton-Watson
conditioned on the number of leaves. F "nice" = critical GW
with exponential moments (Boltzmann sampling)

So uniform extracted subtrees from C,, converge to uniform
extracted subtrees from the Brownian excursion, which are
uniform binary trees (Aldous '93, Le Gall "93)




2 — Universality of permuton limits in

substitution-closed classes.

Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot
[arXiv:1706.08333]
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Substitution decomposition
Generalizing & and 6 ?

For 0 € &, p1,...,px € G, define alp1, ..., pr] by replacing
o

the i-th dot in ¢ by ;.

Example : 132[21,312,2413] = 219784635.

@ (resp. ©) is just the substitution into
(12---r) (resp. (r---21)). °

Given g, either :

e We can find a proper interval mapped to an interval, and

then o can be written as a substitution of smaller

permutations

e Or ¢ can't be decomposed by a nontrivial substitution :

s a simple permutation. Ex :
1,12,21,2413,3142,31524, ... ~ 2.
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Substitution decomposition
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Substitution decomposition

Theorem (Albert, Atkinson 2005):
Any permutation can be
decomposed into a substitution
tree with @, © nodes, and simple
nodes of length > 4, unique as

long as adjacent & and & are
merged.
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Substitution-closed families

S C {simple permutations of length > 4}.
(§) = {permutations built by substituting ¢, ®, ©, and a € S}.

Examples : (@) = { separables } = Av(3142,2413).
(3142) = Av(2413, 41352, 415263, 531642)

Let g, be a uniform permutation of size n in (S).

S5(z) =) _4es zl?l generating function of the simples, radius R. Set
a=S(R)—2/(1+R)?+1and b= S5"(R)

Theorem (Bassino, Bouvel, Féray, Gerin, M., Pierrot 2017)

The limit in distribution of g, is
e a biased Brownian separable permuton if a > 0 or a =0,b < o0,
e the same limit v as an uniform simple permutation in § if a <0,
e a stable permuton if a =0, b = 0

When a < 0 additional hypotheses are needed.
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Biased Brownian separable permuton

Regime where the

decomposition tree converges
to a Brownian CRIT.

B v k)
& e e -

Picture by I. Kortchemski

The signs in a uniform subtree
are biased: P(®) = p, and p
depends explicitely on S.

Here p = 0.2.
N . _

The regime a > 0 covers most known substitution-closed
classes: S finite or subexponential, S rational,...



Degenerate case a<(

Regime where the decomposition tree exhibits a condensation
bhenomenon. Roughly, g, looks like a large uniform simple
permutation in & and converges to the same limit v.

Picture by I. Kortchemski
Example: Av(2413). We still need to understand the permuton
limit of large simples in this class (+ technical hypotheses) to
apply our theorem.



Stable permutons

Regime where the decomposition tree converges to a a-stable
tree, a explicit.



Stable permutons

Regime where the decomposition tree converges to a a-stable

tree, a explicit.
a=1.5 a=1.1
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Pictures by |. Kortchemski



Stable permutons

Regime where the decomposition tree converges to a a-stable

tree, a explicit.
a=1.5 a=1.1
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Branches from each infinite-degree point are reordered
according to an independent copy of v (the limit of large
simples in the class)



3 — Construction of the Brownian Permuton
[arXiv:1711.08986]



The (signed) Brownian excursion and CRT




The (signed) Brownian excursion and CRT




The (signed) Brownian excursion and CRT

A
Pe(y)
N \
.......................... ¢ Pe(x) T,
: : T
0 x y 1 pe(0) = pe(1)

de(x,y) = e(x) + e(y) — 2miny, € T. = ([0,1]/{d. = 0}, d,)



The (signed) Brownian excursion and CRT

A
\ pe(y)
N
B 2 Pl N[ T
+ |
= +
— ! ! T ®

0 X y 1 pe(0) = pe(1)

de(x,y) = e(x) + e(y) — 2miny, € T. = ([0,1]/{d. = 0}, d,)



Constructing the Brownian permuton
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Constructing the Brownian permuton

e Brownian excursion, S i.i.d.
signs indexed by the local

minima of e.
Define a shuffled pseudo-order

on [0,1]: x <12 y if and only if




Constructing the Brownian permuton

Theorem (M. 2017) L Px)

Amost surely there exists a !
Lebesque-preserving,

<2-increasing function (unique :

up to a.e. equality). The random \ s
measure (id, ¢).Leb has the law )i'\ .

of the Brownian separable ')ﬂ.‘.'
permuton. R T

e Brownian excursion, S i.i.d. ot "
signs indexed by the local .t JP""

minima of e. —
Define a shuffled pseudo-order

on [0,1]: x <12 y if and only if




Constructing the Brownian permuton

Theorem (M. 2017) L Px)
Amost surely there exists a !
Lebesque-preserving,
<2-increasing function (unique :
up to a.e. equality). The random \ s
measure (id, ¢).Leb has the law )i'\ .
of the Brownian separable ')ﬂ.‘.'
permuton. ot

e 2,
@ is continuous at every leaf ’P“'
(point which is not a one-sided = S
local minimum) of e (full I _ 4+ T

Lebesgue measure).

~ The support of p is of
Hausdorft dimension 1 Ye(x



Constructing the Brownian permuton

Theorem (M. 2017) L Px)
Amost surely there exists a !
Lebesque-preserving,

<2-increasing function (unique :

up to a.e. equality). The random \‘ s

measure (id, ¢).Leb has the law }s,; .
of the Brownian separable 'H.‘.'
permuton. ot

e 2,
Discontinuities at every strict ’P“'
local minima of e (dense) = S
~ The support of p is totally T

disconnected.




Constructing the Brownian permuton

There exists a A P(x)

Brownian X

excursion f

defined on the :

same probability e s

space such that )i'\ .

fop=e. ‘)tki.'

a.s., 71r is isometric R

to 7,. o "\’P‘_

- 4 S oo

) - L




Self-similarity

The Brownian permuton can be obtained by cut-and-pasting
three independent copies in distribution of itself. The first
copy o is cut according to a sample (Xo, Yo) ~ wo.

The scaling is an independent Dirichlet(1/2,1/2,1/2) vector.
The relative position of pq and p, is chosen independently
and uniformly between & and &.

H1
HO : "\K i T,
o A IR |
f .J& ‘;}
-




Thank you!



