Scaling limits of pattern-avoiding permutations

Mickaël Maazoun — UMPA, ENS de Lyon Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot

Journées ALEA 2018 May 15th, 2018

1 – The scaling limit of separable permutations After Bassino, Bouvel, Féray, Gerin, Pierrot 2016

Permutations

A permutation $\sigma \in \mathfrak{S}_n$ is a word $(\sigma(1), \ldots, \sigma(n))$ which contains every element of $\{1, \ldots, n\}$. Diagram of $(4128376) \in \mathfrak{S}_8$:

$\sigma = (10, 6, 2, 5, 3, 9, 1, 7, 4, 8, 11) \in \mathfrak{S}_{11}$

 $\sigma = (10, 6, 2, 5, 3, 9, 1, 7, 4, 8, 11) \in \mathfrak{S}_{11}$

 $\sigma = (10, 6, 2, 5, 3, 9, 1, 7, 4, 8, 11) \in \mathfrak{S}_{11}$

Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern extraction. Can always be written as Av(B), the set of permutations that avoid patterns in some basis B.

Classes of permutation and pattern-avoidance

Permutation class: set of permutations closed under pattern extraction. Can always be written as Av(B), the set of permutations that avoid patterns in some basis B.

Separable permutations: Av(3142, 2413)

(Avis-Newborn '80, Bose-Buss-Lubiw '93)

A large uniform separable permutation

A large uniform separable permutation

A permuton is a probability measure on $[0, 1]^2$ with both marginals uniform.

A permuton is a probability measure on $[0, 1]^2$ with both marginals uniform.

 \implies compact metric space (with weak convergence).

A permuton is a probability measure on [0, 1]² with both marginals uniform.

 \implies compact metric space (with weak convergence).

A permuton is a probability measure on [0, 1]² with both marginals uniform.

 \implies compact metric space (with weak convergence).

We say that a sequence (σ_n) converges to μ when $\mu_{\sigma_n} \xrightarrow[n \to \infty]{w} \mu$.

Density of patterns

For $\sigma \in \mathfrak{S}_n$, $\pi \in \mathfrak{S}_k$, $\widetilde{\operatorname{occ}}(\pi, \sigma)$ is the proportion of π among the $\binom{n}{k}$ subpermutations of σ of size k.

Density of patterns

For $\sigma \in \mathfrak{S}_n$, $\pi \in \mathfrak{S}_k$, $\widetilde{\operatorname{occ}}(\pi, \sigma)$ is the proportion of π among the $\binom{n}{k}$ subpermutations of σ of size k.

For instance, $\widetilde{occ}(21, \cdot)$ is the proportion of inversions: $\widetilde{occ}(21, 13254) = 2/10$
Density of patterns

For $\sigma \in \mathfrak{S}_n$, $\pi \in \mathfrak{S}_k$, $\widetilde{\operatorname{occ}}(\pi, \sigma)$ is the proportion of π among the $\binom{n}{k}$ subpermutations of σ of size k.

For instance, $\widetilde{occ}(21, \cdot)$ is the proportion of inversions: $\widetilde{occ}(21, 13254) = 2/10$

Similarly, if μ is a permuton, the density of π in μ is the probability that k independent points drawn from μ are ordered like π .

$$\widetilde{\operatorname{occ}}(\pi,\mu) = \int_{[0,1]^{2k}} \mu(dx_1 dy_1) \cdots \mu(dx_k dy_k) \mathbf{1}[(\vec{x},\vec{y}) \sim \pi].$$

Density of patterns

For $\sigma \in \mathfrak{S}_n$, $\pi \in \mathfrak{S}_k$, $\widetilde{\operatorname{occ}}(\pi, \sigma)$ is the proportion of π among the $\binom{n}{k}$ subpermutations of σ of size k.

For instance, $\widetilde{occ}(21, \cdot)$ is the proportion of inversions: $\widetilde{occ}(21, 13254) = 2/10$

Similarly, if μ is a permuton, the density of π in μ is the probability that k independent points drawn from μ are ordered like π .

$$\widetilde{\operatorname{occ}}(\pi,\mu) = \int_{[0,1]^{2k}} \mu(dx_1 dy_1) \cdots \mu(dx_k dy_k) \mathbf{1}[(\vec{x},\vec{y}) \sim \pi].$$

Theorem (Hoppen *et. al.*, 2013) The sequence (σ_n) converges to μ iff for every $\pi \in \mathfrak{S}$, $\widetilde{\operatorname{occ}}(\pi, \sigma_n) \to \widetilde{\operatorname{occ}}(\pi, \mu)$.

If σ_n is a sequence of random permutations, we can consider the convergence in distribution of the random permutons μ_{σ_n} . Let σ_n = uniform of size *n* in some class *C*.

If σ_n is a sequence of random permutations, we can consider the convergence in distribution of the random permutons μ_{σ_n} . Let σ_n = uniform of size *n* in some class *C*.

$$\mathcal{C} = \mathfrak{S} : \sigma_n \xrightarrow{\mathbb{P}} \operatorname{Leb}_{[0,1]^2}$$

If σ_n is a sequence of random permutations, we can consider the convergence in distribution of the random permutons μ_{σ_n} . Let σ_n = uniform of size *n* in some class *C*.

$$\mathcal{C} = \operatorname{Av}(231) \text{ or } \operatorname{Av}(321) : \sigma_n \xrightarrow{\mathbb{P}} (\operatorname{id}, \operatorname{id})_* \operatorname{Leb}_{[0,1]}$$

Pictures by C. Hoffman, D. Rizzolo, E. Slivken

If σ_n is a sequence of random permutations, we can consider the convergence in distribution of the random permutons μ_{σ_n} . Let σ_n = uniform of size *n* in some class *C*.

 $C = Av(2413, 3142) = \{separables\}:$

Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016) σ_n converges in distribution to some random permuton μ , called the Brownian separable permuton.

- **Theorem** (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017) The following are equivalent:
 - 1. The random measure μ_{σ_n} converges in distribution to some random permuton μ .
- 2. The random variables $\widetilde{occ}(\pi, \sigma_n)$ converge in distribution, jointly in $\pi \in \mathfrak{S}$.
- 3. $\mathbb{E}[\widetilde{occ}(\pi, \sigma_n)]$ converges to some Δ_{π} for every $\pi \in \mathfrak{S}$. Moreover, the law of μ is characterized by $\mathbb{E}[\widetilde{occ}(\pi, \mu)] = \Delta_{\pi}, \pi \in \mathfrak{S}$

- **Theorem** (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017) The following are equivalent:
 - 1. The random measure μ_{σ_n} converges in distribution to some random permuton μ .
- 2. The random variables $\widetilde{occ}(\pi, \sigma_n)$ converge in distribution, jointly in $\pi \in \mathfrak{S}$.
- 3. $\mathbb{E}[\widetilde{occ}(\pi, \sigma_n)]$ converges to some Δ_{π} for every $\pi \in \mathfrak{S}$. Moreover, the law of μ is characterized by $\mathbb{E}[\widetilde{occ}(\pi, \mu)] = \Delta_{\pi}, \pi \in \mathfrak{S}$
- Remark: $\mathbb{E}[\widetilde{occ}(\pi, \sigma_n)] = \mathbb{P}[\operatorname{pat}_{I_n^k}(\sigma_n) = \pi]$, where I_n^k is a uniform *k*-subset of [n], independent of σ_n .

It suffices to show that $\forall k$, pat_{I_n^k}(σ_n) converges, where I_n^k is a uniform k-subset of [n], independent of σ_n .

It suffices to show that $\forall k$, pat_{I_n^k}(σ_n) converges, where I_n^k is a uniform k-subset of [n], independent of σ_n .

When σ_n uniform in C_n , this is only a matter of enumeration: how many of the $\binom{n}{k}|C_n|$ pairs $(I, \sigma) \in [n] \times C_n$ are such that $\text{pat}_I(\sigma) = \pi$?

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

Use the bijection with signed Schröder trees: $\sigma_n = \text{perm}(t_n)$, where t_n is a uniform signed Schröder tree with n leaves.

For "nice" varieties of trees, the uniform k-leaf-subtree in a large tree converges to the uniform binary tree with k leaves.

For "nice" varieties of trees, the uniform *k*-leaf-subtree in a large tree converges to the uniform binary tree with *k* leaves.

Recursive trees counted by number of leaves. T(z) = z + E(T(z)) (Schröder: $E(t) = \sum_{i=1}^{n} t$

T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k\geq 2} t^k$).

For "nice" varieties of trees, the uniform k-leaf-subtree in a large tree converges to the uniform binary tree with k leaves.

Recursive trees counted by number of leaves. T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k\geq 2} t^k$).

For "nice" varieties of trees, the uniform *k*-leaf-subtree in a large tree converges to the uniform binary tree with *k* leaves.

Recursive trees counted by number of leaves. T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k>2} t^k$).

For "nice" varieties of trees, the uniform *k*-leaf-subtree in a large tree converges to the uniform binary tree with *k* leaves.

Recursive trees counted by number of leaves. T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k>2} t^k$).

For "nice" varieties of trees, the uniform k-leaf-subtree in a large tree converges to the uniform binary tree with k leaves.

ρ

(Z)

Recursive trees counted by number of leaves. T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k>2} t^k$).

For "nice" varieties of trees, the uniform k-leaf-subtree in a large tree converges to the uniform binary tree with k leaves.

ρ

(Z)

Recursive trees counted by number of leaves. T(z) = z + F(T(z)) (Schröder: $F(t) = \sum_{k>2} t^k$).

In this case, "nice" $\stackrel{def}{\iff}$ $\exists \quad 0 < u < R_F, F'(u) = 1.$ Then *T* has a unique dominant square root singularity in ρ with $T(\rho) = u$ (smooth implicit function schema).

This is the case for Schröder (*F* rational)

$$z^k T'(z) \prod_{v \text{ internal node of } \tau} T'(z)^{\deg(v)} \frac{1}{\deg(v)!} F^{(\deg(v))}(T(z))$$

$$z^{k}T'(z) \prod_{v \text{ internal node of } \tau} T'(z)^{\deg(v)} \frac{1}{\deg(v)!} F^{(\deg(v))}(T(z))$$

$$z^{k}T'(z) \prod_{v \text{ internal node of } \tau} T'(z)^{\deg(v)} \frac{1}{\deg(v)!} F^{(\deg(v))}(T(z))$$

$$z^{k}T'(z) \prod_{v \text{ internal node of } \tau} T'(z)^{\deg(v)} \frac{1}{\deg(v)!} F^{(\deg(v))}(T(z))$$

$$\underbrace{\tau}_{\tau} \underbrace{\tau}_{\tau} \underbrace{\tau}_{$$

T has square-root singularity at ρ and F analytic at $T(\rho)$. Then, the g.f of trees with k marked leaves that induce the k-tree τ is

1

$$z^{k}T'(z) \prod_{v \text{ internal node of } \tau} T'(z)^{\deg(v)} \frac{1}{\deg(v)!} F^{(\deg(v))}(T(z))$$

$$\sim_{\rho} C_{\tau}(1 - \frac{z}{\rho})^{-\#\{\text{nodes in } \tau\}/2}.$$
Dominates when τ binary.
(Then C_{τ} doesn't depend on τ)
Transfer: $t_{n|I_{n}^{k}}$ converges in
distribution to a uniform
binary tree.

Counting signed trees that induce a given signed tree τ : adding parity constraints on the height of the marked leaf in the marked trees.

Counting signed trees that induce a given signed tree τ : adding parity constraints on the height of the marked leaf in the marked trees.

Replace instances of T' by T'_0 (even height) or T'_1 (odd height). $T'_0 + T'_1 = T'$ and $T'_1 = F'(T)T'_0$, so $T'_0 \sim T'_1 \sim \frac{1}{2}T'$.

Counting signed trees that induce a given signed tree τ : adding parity constraints on the height of the marked leaf in the marked trees.

Replace instances of T' by T'_0 (even height) or T'_1 (odd height). $T'_0 + T'_1 = T'$ and $T'_1 = F'(T)T'_0$, so $T'_0 \sim T'_1 \sim \frac{1}{2}T'$. g.f. of Trees with k marked leaves that induce the signed k-tree τ :

$$z^{k}(T'_{0} + T'_{1})T'^{b}_{0}T'^{a}_{1}T'^{k} \prod_{v \text{ internal node of } \tau} \frac{1}{\deg(v)!}F^{(\deg(v))}(T(z))$$

where a (resp. b) is the number of edges of τ incident to two nodes of the same (resp. different) signs

Counting signed trees that induce a given signed tree τ : adding parity constraints on the height of the marked leaf in the marked trees.

Replace instances of T' by T'_0 (even height) or T'_1 (odd height). $T'_0 + T'_1 = T'$ and $T'_1 = F'(T)T'_0$, so $T'_0 \sim T'_1 \sim \frac{1}{2}T'$. g.f. of Trees with k marked leaves that induce the signed k-tree τ :

$$z^{k}(T'_{0} + T'_{1})T'^{b}_{0}T'^{a}_{1}T'^{k} \prod_{v \text{ internal node of } \tau} \frac{1}{\deg(v)!}F^{(\deg(v))}(T(z))$$

where a (resp. b) is the number of edges of τ incident to two nodes of the same (resp. different) signs

Hence all signed binary trees have the same asymptotic probability. Hence convergence in distribution to a permuton.

Link with scaling limits of trees

 t_n uniform of size n in T = z + F(T) is Galton-Watson conditioned on the number of leaves. F "nice" = critical GW with exponential moments (Boltzmann sampling)

Link with scaling limits of trees

 t_n uniform of size n in T = z + F(T) is Galton-Watson conditioned on the number of leaves. F "nice" = critical GW with exponential moments (Boltzmann sampling)

In this case, if C_n is the contour exploration of t_n , then for some constant c > 0, $cn^{-1/2}C_n$ converges in distribution to the normalized Brownian excursion. (Kortchemski '12, Pitman-Rizzolo '15)

Link with scaling limits of trees

 t_n uniform of size n in T = z + F(T) is Galton-Watson conditioned on the number of leaves. F "nice" = critical GW with exponential moments (Boltzmann sampling)

In this case, if C_n is the contour exploration of t_n , then for some constant c > 0, $cn^{-1/2}C_n$ converges in distribution to the normalized Brownian excursion. (Kortchemski '12, Pitman-Rizzolo '15)

Link with scaling limits of trees

 t_n uniform of size n in T = z + F(T) is Galton-Watson conditioned on the number of leaves. F "nice" = critical GW with exponential moments (Boltzmann sampling)

So uniform extracted subtrees from C_n converge to uniform extracted subtrees from the Brownian excursion, which are uniform binary trees (Aldous '93, Le Gall '93)

2 – Universality of permuton limits in substitution-closed classes. Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot [arXiv:1706.08333]

Generalizing \oplus and \ominus ?

Generalizing \oplus and \ominus ?

For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i .

Example : 132[21, 312, 2413] = 219784635.

Generalizing \oplus and \ominus ? For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i . Example : 132[21, 312, 2413] = 219784635.

Generalizing \oplus and \ominus ? For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i . Example : 132[21, 312, 2413] = 219784635.

Generalizing \oplus and \ominus ?

For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i .

Example : 132[21, 312, 2413] = 219784635.

Generalizing \oplus and \ominus ? For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i . Example : 132[21, 312, 2413] = 219784635. \oplus (resp. \ominus) is just the substitution into (12 \cdots r) (resp. $(r \cdots 21)$).

Given σ , either :

Generalizing \oplus and \ominus ? For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i . Example : 132[21, 312, 2413] = 219784635. \oplus (resp. \ominus) is just the substitution into (12 \cdots r) (resp. (r \cdots 21)).

Given σ , either :

• We can find a proper interval mapped to an interval, and then σ can be written as a substitution of smaller permutations

Generalizing \oplus and \ominus ? For $\sigma \in \mathfrak{S}_k$, $\rho_1, \ldots, \rho_k \in \mathfrak{S}$, define $\sigma[\rho_1, \ldots, \rho_k]$ by replacing the *i*-th dot in σ by π_i . Example : 132[21, 312, 2413] = 219784635. \oplus (resp. \ominus) is just the substitution into (12 \cdots r) (resp. (r \cdots 21)).

Given σ , either :

- We can find a proper interval mapped to an interval, and then σ can be written as a substitution of smaller permutations
- Or σ can't be decomposed by a nontrivial substitution : σ is a **simple permutation**. Ex : 1, 12, 21, 2413, 3142, 31524, ... $\sim \frac{n!}{e^2}$.

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

Theorem (Albert, Atkinson 2005): Any permutation can be decomposed into a substitution tree with \oplus , \ominus nodes, and simple nodes of length \geq 4, unique as long as adjacent \oplus and \ominus are merged.

 $\mathcal{S} \subset \{ \text{simple permutations of length } \geq 4 \}.$

$\mathcal{S} \subset \{ \text{simple permutations of length } \geq 4 \}.$

 $\langle S \rangle = \{ \text{permutations built by substituting } \bullet, \oplus, \ominus, \text{ and } \alpha \in S \}.$

 $S \subset \{\text{simple permutations of length} \geq 4\}.$ $\langle S \rangle = \{\text{permutations built by substituting } \bullet, \oplus, \ominus, \text{ and } \alpha \in S\}.$ Examples : $\langle \emptyset \rangle = \{\text{ separables }\} = \text{Av}(3142, 2413).$ $\langle 3142 \rangle = \text{Av}(2413, 41352, 415263, 531642).$

 $S \subset \{\text{simple permutations of length} \geq 4\}.$ $\langle S \rangle = \{\text{permutations built by substituting } \bullet, \oplus, \ominus, \text{ and } \alpha \in S\}.$ Examples : $\langle \emptyset \rangle = \{\text{ separables }\} = \text{Av}(3142, 2413).$ $\langle 3142 \rangle = \text{Av}(2413, 41352, 415263, 531642).$

Let σ_n be a uniform permutation of size n in $\langle S \rangle$.

 $S(z) = \sum_{\alpha \in S} z^{|\alpha|}$ generating function of the simples, radius R. Set $a = S'(R) - 2/(1+R)^2 + 1$ and b = S''(R)

 $S \subset \{\text{simple permutations of length} \geq 4\}.$ $\langle S \rangle = \{\text{permutations built by substituting } \bullet, \oplus, \ominus, \text{ and } \alpha \in S\}.$ Examples : $\langle \emptyset \rangle = \{\text{ separables }\} = \text{Av}(3142, 2413).$ $\langle 3142 \rangle = \text{Av}(2413, 41352, 415263, 531642).$

Let σ_n be a uniform permutation of size n in $\langle S \rangle$.

 $S(z) = \sum_{\alpha \in S} z^{|\alpha|}$ generating function of the simples, radius R. Set $a = S'(R) - 2/(1+R)^2 + 1$ and b = S''(R)

 $S \subset \{\text{simple permutations of length} \geq 4\}.$ $\langle S \rangle = \{\text{permutations built by substituting } \bullet, \oplus, \ominus, \text{ and } \alpha \in S\}.$ Examples : $\langle \emptyset \rangle = \{\text{ separables }\} = \text{Av}(3142, 2413).$ $\langle 3142 \rangle = \text{Av}(2413, 41352, 415263, 531642).$

Let σ_n be a uniform permutation of size n in $\langle S \rangle$.

 $S(z) = \sum_{\alpha \in S} z^{|\alpha|}$ generating function of the simples, radius R. Set $a = S'(R) - 2/(1+R)^2 + 1$ and b = S''(R)

Theorem (Bassino, Bouvel, Féray, Gerin, M., Pierrot 2017) The limit in distribution of σ_n is

- a **biased** Brownian separable permuton if a > 0 or $a = 0, b < \infty$,
- the same limit v as an uniform simple permutation in S if a < 0,
- a stable permuton if a = 0, $b = \infty$.

When $a \leq 0$ additional hypotheses are needed.

Regime where the decomposition tree converges to a Brownian CRT.

Picture by I. Kortchemski

Regime where the decomposition tree converges to a Brownian CRT.

Picture by I. Kortchemski

The signs in a uniform subtree are biased: $\mathbb{P}(\oplus) = p$, and pdepends explicitly on S. Here p = 0.2.

Regime where the decomposition tree converges to a Brownian CRT.

Picture by I. Kortchemski

The signs in a uniform subtree are biased: $\mathbb{P}(\oplus) = p$, and pdepends explicitly on S. Here p = 0.2.

Regime where the decomposition tree converges to a Brownian CRT.

Picture by I. Kortchemski

The signs in a uniform subtree are biased: $\mathbb{P}(\oplus) = p$, and pdepends explicitly on S. Here p = 0.2.

The regime a > 0 covers most known substitution-closed classes: S finite or subexponential, S rational,...

Degenerate case a<0

Regime where the decomposition tree exhibits a condensation phenomenon. Roughly, σ_n looks like a large uniform simple permutation in S and converges to the same limit v.

Picture by I. Kortchemski

Example: Av(2413). We still need to understand the permuton limit of large simples in this class (+ technical hypotheses) to apply our theorem.

Stable permutons

Regime where the decomposition tree converges to a α -stable tree, α explicit.

Stable permutons

Regime where the decomposition tree converges to a α -stable tree, α explicit.

Pictures by I. Kortchemski
Stable permutons

Regime where the decomposition tree converges to a α -stable tree, α explicit.

Branches from each infinite-degree point are reordered according to an independent copy of v (the limit of large simples in the class)

3 – Construction of the Brownian Permuton [arXiv:1711.08986]

e Brownian excursion, *S* i.i.d. signs indexed by the local minima of *e*.

Define a shuffled pseudo-order on [0, 1]: $x \triangleleft_e^S y$ if and only if

Theorem (M. 2017) Amost surely there exists a Lebesgue-preserving, \lhd_e^S -increasing function (unique up to a.e. equality). The random measure (id, φ)*Leb has the law of the Brownian separable permuton.

e Brownian excursion, *S* i.i.d. signs indexed by the local minima of *e*.

Define a shuffled pseudo-order on [0, 1]: $x \triangleleft_e^S y$ if and only if

Theorem (M. 2017) Amost surely there exists a Lebesgue-preserving, \lhd_e^S -increasing function (unique up to a.e. equality). The random measure (id, φ)*Leb has the law of the Brownian separable permuton.

 φ is continuous at every leaf (point which is not a one-sided local minimum) of e (full Lebesgue measure).

 \rightsquigarrow The support of μ is of Hausdorff dimension 1

Theorem (M. 2017) Amost surely there exists a Lebesgue-preserving, \lhd_e^S -increasing function (unique up to a.e. equality). The random measure (id, φ)*Leb has the law of the Brownian separable permuton.

Discontinuities at every strict local minima of e (dense) \rightsquigarrow The support of μ is totally disconnected.

There exists a Brownian excursion fdefined on the same probability space such that $f \circ \varphi = e$. a.s., T_f is isometric to T_e .

Self-similarity

The Brownian permuton can be obtained by cut-and-pasting three independent copies in distribution of itself. The first copy μ_0 is cut according to a sample $(X_0, Y_0) \sim \mu_0$. The scaling is an independent Dirichlet(1/2, 1/2, 1/2) vector. The relative position of μ_1 and μ_2 is chosen independently and uniformly between \oplus and \ominus .

Thank you!