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1 – The scaling limit of separable permutationsAfter Bassino, Bouvel, Féray, Gerin, Pierrot 2016



Permutations
A permutation σ ∈ Sn is a word (σ (1), . . . , σ (n)) whichcontains every element of {1, . . . , n}.Diagram of (4128376) ∈ S8:
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Permutation patterns
σ = (10, 6, 2, 5, 3, 9, 1, 7, 4, 8, 11) ∈ S11

1 3 4 7 912
34
56
78
91011

2 5 6 10

pat{2,5,6,10}(σ ) = (2143)

8 11 pat{8,11}(σ ) = (12)



Classes of permutation and pattern-avoidance
Permutation class: set of permutations closed under patternextraction. Can always be written as Av(B), the set ofpermutations that avoid patterns in some basis B.



Classes of permutation and pattern-avoidance

Separable permutations: Av(3142, 2413)
Permutation class: set of permutations closed under patternextraction. Can always be written as Av(B), the set ofpermutations that avoid patterns in some basis B.

(Avis-Newborn ’80, Bose-Buss-Lubiw ’93)
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Separable permutations

Separable permutationperm(τ) = (1 2 10 7 6 5 8 9 4 3)
⊕

⊕
	

	

Alternating-signs Schröder tree
Counted by large Schröder numbers1, 2, 6, 22, 90, 394, 1806, 8558, . . . � (3 +√8)nn−3/2
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PermutonsA permuton is aprobability measureon [0, 1]2 with bothmarginals uniform. 1 2
4 4

=⇒ compact metric space (with weak convergence).

1 n 0 10

1

1

n density 0
density n

σ µσ

We say that a sequence (σn) converges to µ when µσn w−−−→
n→∞

µ.

Permutations of all sizes are densely embedded in permutons.
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Density of patterns
For σ ∈ Sn, π ∈ Sk , õcc(π, σ ) is the proportion of π amongthe (nk) subpermutations of σ of size k .For instance, õcc(21, ·) is the proportion of inversions:õcc(21, 13254) = 2/10Similarly, if µ is a permuton, the density of π in µ is theprobability that k independent points drawn from µ areordered like π.

õcc(π, µ) = ∫[0,1]2k µ(dx1dy1) · · · µ(dxkdyk )1[(~x, ~y) ∼ π].
Theorem (Hoppen et. al., 2013)The sequence (σn) converges to µ iff for every π ∈ S,õcc(π, σn)→ õcc(π, µ).



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.

1

C = S : σn P−→ Leb[0,1]2 .



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.
C = Av(231) or Av(321) : σn P−→ (id, id)∗Leb[0,1].

Pictures by C. Hoffman, D. Rizzolo, E. Slivken



Sequences of random permutationsIf σn is a sequence of random permutations, we can considerthe convergence in distribution of the random permutons µσn .Let σn = uniform of size n in some class C.
C = Av(2413, 3142) = {separables}:
Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016)
σn converges in distribution to some random permuton µ,called the Brownian separable permuton.



A portmanteau theorem for random permutons
Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)The following are equivalent:1. The random measure µσn converges in distribution to somerandom permuton µ.2. The random variables õcc(π, σn) converge in distribution,jointly in π ∈ S.3. E[õcc(π, σn)] converges to some ∆π for every π ∈ S.Moreover, the law of µ is characterized by
E[õcc(π, µ)] = ∆π , π ∈ S



A portmanteau theorem for random permutons
Theorem (Bassino, Bouvel, Feray, Gerin, M., Pierrot. 2017)The following are equivalent:1. The random measure µσn converges in distribution to somerandom permuton µ.2. The random variables õcc(π, σn) converge in distribution,jointly in π ∈ S.3. E[õcc(π, σn)] converges to some ∆π for every π ∈ S.Moreover, the law of µ is characterized by
E[õcc(π, µ)] = ∆π , π ∈ SRemark: E[õcc(π, σn)] = P[patIkn (σn) = π], where Ikn is auniform k-subset of [n], independent of σn.
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A portmanteau theorem for random permutons

When σn uniform in Cn, this is only a matter of enumeration:how many of the (nk)|Cn| pairs (I, σ ) ∈ [n]× Cn are such thatpatI (σ ) = π ?

It suffices to show that ∀k , patIkn (σn) converges, where Ikn is auniform k-subset of [n], independent of σn.
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Idea of proofUse the bijection with signed Schröder trees: σn = perm(tn),where tn is a uniform signed Schröder tree with n leaves.Fix k(= 3). Then patIn (σn) = perm(tn|Ikn ), where tn|Ikn is thereduced subtree of tn induced by the leaves with indexes in Ikn .

tn

In

What does it look like as n→∞?
⊕

tn|In patIn (σn)
⊕
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Analytic combinatorics for leaf-counted treesFor "nice" varieties of trees, the uniform k-leaf-subtree in alarge tree converges to the uniform binary tree with k leaves.Recursive trees counted by number of leaves.
T (z) = z + F (T (z)) (Schröder: F (t) =∑k≥2 tk ).
In this case, "nice" def⇐⇒
∃ 0 < u < RF , F ′(u) = 1.Then T has a uniquedominant square rootsingularity in ρ with
T (ρ) = u (smooth implicitfunction schema).

z

T (z)
u

ρ
This is the case for Schröder(F rational)



Uniform k-subtree in large unsigned trees
T has square-root singularity at ρ and F analytic at T (ρ).Then, the g.f of trees with k marked leaves that induce the
k-tree τ is

zkT ′(z) ∏
v internal node of τ T

′(z)deg(v ) 1deg(v )!F (deg(v ))(T (z))
τ
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Uniform k-subtree in large unsigned trees
T has square-root singularity at ρ and F analytic at T (ρ).Then, the g.f of trees with k marked leaves that induce the
k-tree τ is

zkT ′(z) ∏
v internal node of τ T

′(z)deg(v ) 1deg(v )!F (deg(v ))(T (z))
∼ρ Cτ (1− z

ρ )−#{nodes in τ}/2.Dominates when τ binary.(Then Cτ doesn’t depend on τ).Transfer: tn|Ikn converges indistribution to a uniformbinary tree.
τ

F (3)3! (T )
zT ′

T ′

zT ′ zT ′



Uniform k-subtree in large signed treesCounting signed trees that induce a given signed tree τ:adding parity constraints on the height of the marked leaf inthe marked trees.
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Uniform k-subtree in large signed treesCounting signed trees that induce a given signed tree τ:adding parity constraints on the height of the marked leaf inthe marked trees.Replace instances of T ′ by T ′0 (even height) or T ′1 (oddheight). T ′0 + T ′1 = T ′ and T ′1 = F ′(T )T ′0, so T ′0 ∼ T ′1 ∼ 12T ′.g.f. of Trees with k marked leaves that induce the signed
k-tree τ :
zk (T ′0 + T ′1)T ′0bT ′1aT ′k ∏

v internal node of τ
1deg(v )!F (deg(v ))(T (z))

where a (resp. b) is the number of edges of τ incident to twonodes of the same (resp. different) signsHence all signed binary trees have the same asymptoticprobability. Hence convergence in distribution to a permuton.
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Link with scaling limits of trees
tn uniform of size n in T = z + F (T ) is Galton-Watsonconditioned on the number of leaves. F "nice" = critical GWwith exponential moments (Boltzmann sampling)In this case, if Cn is the contour exploration of tn, then forsome constant c > 0, cn−1/2Cn converges in distribution tothe normalized Brownian excursion. (Kortchemski ’12,Pitman-Rizzolo ’15)

0 1 t

cn−1/2Cn(t)
d−−−→

n→∞

0 1

e(t)

t



Link with scaling limits of trees
tn uniform of size n in T = z + F (T ) is Galton-Watsonconditioned on the number of leaves. F "nice" = critical GWwith exponential moments (Boltzmann sampling)So uniform extracted subtrees from Cn converge to uniformextracted subtrees from the Brownian excursion, which areuniform binary trees (Aldous ’93, Le Gall ’93)

0 1 t

cn−1/2Cn(t)
d−−−→

n→∞

0 1

e(t)

t



2 – Universality of permuton limits insubstitution-closed classes.Joint work with F. Bassino, M. Bouvel, V. Féray, L. Gerin and A. Pierrot[arXiv:1706.08333]
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Substitution decompositionGeneralizing ⊕ and 	 ?For σ ∈ Sk , ρ1, . . . , ρk ∈ S, define σ [ρ1, . . . , ρk ] by replacingthe i-th dot in σ by πi.Example : 132[21, 312, 2413] = 219784635.
Given σ , either :
• We can find a proper interval mapped to an interval, andthen σ can be written as a substitution of smallerpermutations

⊕ (resp. 	) is just the substitution into(12 · · · r) (resp. (r · · · 21)).

• Or σ can’t be decomposed by a nontrivial substitution : σis a simple permutation. Ex :1, 12, 21, 2413, 3142, 31524, ... ∼ n!
e2 .
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Substitution decomposition

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

42513 2413⊕
		

Theorem (Albert, Atkinson 2005):Any permutation can bedecomposed into a substitutiontree with ⊕, 	 nodes, and simplenodes of length ≥ 4, unique aslong as adjacent ⊕ and 	 aremerged.
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a = S′(R )− 2/(1 + R )2 + 1 and b = S′′(R )

Examples : 〈∅〉 = { separables } = Av(3142, 2413).
〈3142〉 = Av(2413, 41352, 415263, 531642).
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a = S′(R )− 2/(1 + R )2 + 1 and b = S′′(R )

Examples : 〈∅〉 = { separables } = Av(3142, 2413).
〈3142〉 = Av(2413, 41352, 415263, 531642).
Let σn be a uniform permutation of size n in 〈S〉.



Substitution-closed families
S ⊂ {simple permutations of length ≥ 4}.
〈S〉 = {permutations built by substituting •,⊕,	, and α ∈ S}.

S(z) =∑α∈S z|α| generating function of the simples, radius R . Set
a = S′(R )− 2/(1 + R )2 + 1 and b = S′′(R )

Examples : 〈∅〉 = { separables } = Av(3142, 2413).
〈3142〉 = Av(2413, 41352, 415263, 531642).
Let σn be a uniform permutation of size n in 〈S〉.
Theorem (Bassino, Bouvel, Féray, Gerin, M., Pierrot 2017)The limit in distribution of σn is
• a biased Brownian separable permuton if a > 0 or a = 0, b <∞,
• the same limit ν as an uniform simple permutation in S if a < 0,
• a stable permuton if a = 0, b =∞.When a ≤ 0 additional hypotheses are needed.



Biased Brownian separable permutonRegime where thedecomposition tree convergesto a Brownian CRT.
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Biased Brownian separable permutonRegime where thedecomposition tree convergesto a Brownian CRT.
The signs in a uniform subtreeare biased: P(⊕) = p, and pdepends explicitely on S.Here p = 0.2.
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Biased Brownian separable permutonRegime where thedecomposition tree convergesto a Brownian CRT.
The signs in a uniform subtreeare biased: P(⊕) = p, and pdepends explicitely on S.Here p = 0.2.

The regime a > 0 covers most known substitution-closedclasses: S finite or subexponential, S rational,...

Picture by I. Kortchemski



Degenerate case a<0Regime where the decomposition tree exhibits a condensationphenomenon. Roughly, σn looks like a large uniform simplepermutation in S and converges to the same limit ν.

Picture by I. KortchemskiExample: Av(2413). We still need to understand the permutonlimit of large simples in this class (+ technical hypotheses) toapply our theorem.



Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.



Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.
α = 1.5 α = 1.1
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Stable permutonsRegime where the decomposition tree converges to a α-stabletree, α explicit.
α = 1.5 α = 1.1

Branches from each infinite-degree point are reorderedaccording to an independent copy of ν (the limit of largesimples in the class)



3 – Construction of the Brownian Permuton[arXiv:1711.08986]



The (signed) Brownian excursion and CRT

0 1

e



The (signed) Brownian excursion and CRT

0 x y 1

e

de(x, y) = e(x) + e(y)− 2 min[x,y] e



The (signed) Brownian excursion and CRT

pe(0) = pe(1)0 x y 1

e
Tepe(x)

pe(y)

de(x, y) = e(x) + e(y)− 2 min[x,y] e Te = ([0, 1]/{de = 0}, de)



The (signed) Brownian excursion and CRT

pe(0) = pe(1)0 x y 1
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, S

de(x, y) = e(x) + e(y)− 2 min[x,y] e Te = ([0, 1]/{de = 0}, de)



Constructing the Brownian permuton
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Constructing the Brownian permuton

x

e(x)
−

−

+ +−Define a shuffled pseudo-orderon [0, 1]: x CSe y if and only if
x y⊕ y x	

or

e Brownian excursion, S i.i.d.signs indexed by the localminima of e.



Constructing the Brownian permuton

x

e(x)

φ(x)

−
−

+ +−

Theorem (M. 2017)Amost surely there exists aLebesgue-preserving,
CSe -increasing function (uniqueup to a.e. equality). The randommeasure (id, φ)?Leb has the lawof the Brownian separablepermuton.
Define a shuffled pseudo-orderon [0, 1]: x CSe y if and only if

x y⊕ y x	
or

e Brownian excursion, S i.i.d.signs indexed by the localminima of e.



Constructing the Brownian permuton

x

e(x)

φ(x)

−
−

+ +−

Theorem (M. 2017)Amost surely there exists aLebesgue-preserving,
CSe -increasing function (uniqueup to a.e. equality). The randommeasure (id, φ)?Leb has the lawof the Brownian separablepermuton.
φ is continuous at every leaf(point which is not a one-sidedlocal minimum) of e (fullLebesgue measure).
 The support of µ is ofHausdorff dimension 1



Constructing the Brownian permuton

x

e(x)

φ(x)

−
−

+ +−

Theorem (M. 2017)Amost surely there exists aLebesgue-preserving,
CSe -increasing function (uniqueup to a.e. equality). The randommeasure (id, φ)?Leb has the lawof the Brownian separablepermuton.Discontinuities at every strictlocal minima of e (dense)
 The support of µ is totallydisconnected.



Constructing the Brownian permuton

x

e(x)
f (φ(x))

φ(x)

−
−

+ +−

There exists aBrownianexcursion fdefined on thesame probabilityspace such that
f ◦ φ = e.a.s., Tf is isometricto Te.



Self-similarity

µ1
µ2µ0

µ(X0, Y0)

The Brownian permuton can be obtained by cut-and-pastingthree independent copies in distribution of itself. The firstcopy µ0 is cut according to a sample (X0, Y0) ∼ µ0.The scaling is an independent Dirichlet(1/2, 1/2, 1/2) vector.The relative position of µ1 and µ2 is chosen independentlyand uniformly between ⊕ and 	.



Thank you!


