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Introduction

Theorem (Tutte 60's for g = 0, Bender Can�eld 91 for g > 0)

For any g ≥ 0, the generating series Mg (z) of maps of genus g

enumerated by edges is a rational function of z and
√
1− 12z.

Labeled maps (mobiles):

in the plane: Cori Vauquelin 81, Schae�er 98, Bouttier Di Francesco

Guitter 04...

in higher genus: Chapuy Marcus Schae�er 09...

on non-orientable surfaces: Bettinelli 16, Chapuy Dolega 17...

Blossoming maps:

in the plane: Schae�er 97, Bouttier Di Francesco Guitter 02,

Poulhalon Schae�er 06, Bernardi 07...

in higher genus: Despres Gonçalves Leveque 17, Bernardi Chapuy 11...
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The radial map

A classical representation of a toroidal map
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The radial map

The radial construction
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The radial map

The radial construction

Proposition

There is a bijection between:

general maps of genus g with n edges, and

4-valent bicolorable maps of genus g with n vertices.
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Bicolorable orientations

A 4-valent map with an Eulerian orientation

De�nition

Eulerian map: all vertices have even degree

Eulerian orientation: all vertices have equal out- and in-degrees
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Bicolorable orientations

This orientation has no clockwise face...

Theorem

An Eulerian map has a unique Eulerian orientation with no clockwise face.
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Bicolorable orientations

0
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11
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... It is the dual-geodesic orientation
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Bicolorable orientations

A 4-valent bicolorable toroidal map along with its dual-geodesic orientation

De�nition

Bicolorable orientation: any dual cycle has as many edges going to the left

and to the right.

Mathias Lepoutre (École polytechnique) Bijection for higher-genus maps March 14, 2018 6 / 23



Bicolorable orientations

Theorem (Propp 93)

The set of bicolorable orientations of a �xed map with face-�ip (except for

the root-face) as a cover relation forms a distributive lattice.

Its minimum is the dual-geodesic orientation.

A face-flip

Corollary

The dual-geodesic orientation is the unique bicolorable orientation with no

clockwise face.
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Opening a 4-valent planar map [Schae�er 97]

A 4-valent (Eulerian) planar map with its dual-geodesic orientation
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Opening a 4-valent planar map [Schae�er 97]

An unvisited

outgoing edge is cut

An unvisited ingoing

edge is followed

A visited leaf is

ignored

A visited outoing

edge is followed
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Opening a 4-valent planar map [Schae�er 97]

Theorem (Schae�er 97)

The opening algorithm is a bijection between 4-valent maps and

well-rooted Eulerian 4-valent blossoming trees.
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Opening a 4-valent bicolorable map
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1
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3

A 4-valent bicolorable map with dual-geodesic orientation

Mathias Lepoutre (École polytechnique) Bijection for higher-genus maps March 14, 2018 9 / 23



Opening a 4-valent bicolorable map
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We apply the opening algorithm...
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Opening a 4-valent bicolorable map

A

A

AB

B

B

2
3

2

1

2
1 2

1
2

1

210

1

1

0

2

1

0

1 2

3

2

3

0

1

1
2

... And obtain a unicellular map

Mathias Lepoutre (École polytechnique) Bijection for higher-genus maps March 14, 2018 9 / 23



Opening a 4-valent bicolorable map

A
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1

1
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2

Theorem (L.)

The opening algorithm is a bijection between bicolorable 4-valent map and

(so-called) well-rooted well-oriented well-labeled 4-valent unicellular maps.
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Closing an Eulerian 4-valent blossoming tree

A 4-valent Eulerian rooted tree
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Closing an Eulerian 4-valent blossoming tree

The root is reversed
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Closing an Eulerian 4-valent blossoming tree

A bud and a leaf following one another are matched
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Closing an Eulerian 4-valent blossoming tree

This is repeated until no such pair exists
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Closing an Eulerian 4-valent blossoming tree

In the end the 2 remaining leaves are merged
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Closing an Eulerian 4-valent blossoming tree

We obtain a map
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Closing an Eulerian 4-valent blossoming tree

Theorem (Schae�er 97)

The closing algorithm is the inverse bijection of the opening algorithm.
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Closing a well-rooted well-labeled well-oriented 4-valent
unicellular blossoming map
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A special map (cf. the never-ending title)
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Closing a well-rooted well-labeled well-oriented 4-valent
unicellular blossoming map
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Matching stems
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Closing a well-rooted well-labeled well-oriented 4-valent
unicellular blossoming map

0
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1

1
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2

3

We again obtain a map, with its dual-geodesic orientation
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Closing a well-rooted well-labeled well-oriented 4-valent
unicellular blossoming map
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Theorem (L.)

The closing algorithm is the inverse bijection of the opening algorithm.
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Well-rooted is an inconveniently global condition

Theorem (Schae�er 97 for g = 0, L. for g > 0)

For a �xed interior map m with n leaves, there is a 2-to-(n + 1) map from

well-rooted well-labeled well-oriented 4-regular unicellular map with

interior map m, to

rooted well-labeled well-oriented 4-regular unicellular map with interior

map m (which has n leaves).
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The structure of unicellular maps

A

B

A

A

A

B

B

B

A

A A

AA

The schemes of genus 1
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Pruning the map
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The opened map contains treelike parts
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Pruning the map

2
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These treelike parts are removed
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Rerooting on the scheme

2

3

2

1

2
1 2

1 2

1

210

1

A

A

AB

B

B

The pruned map...
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Rerooting on the scheme

0

1

0

1
0 1

0
1

0

10-1

0

-1

A

A

AB

B

B

...is rerooted on the scheme
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Replace branches by decorated Motzkin paths

i i+1 i i

i i

i+1i-1

i-1 i-1 i-1 i-1i-2

i

There are 6 type of vertices of interior degree 2, each of which can be represented
by a decorated Motzkin step
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What about generating series?

Notation

The series of decorated Motzkin bridges is B(z).
The series of decorated Motzkin positive bridges followed by a downstep

is D(z).
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What about generating series?

Notation

The series of decorated Motzkin bridges is B(z).
The series of decorated Motzkin positive bridges followed by a downstep

is D(z).

The generating series of Motzkin paths from height i to j is: B · D |i−j |.

We can hence write a closed formula for Rs(t), the series of scheme-rooted

pruned well-labeled well-oriented unicellular blossoming map, with a given

unlabeled scheme s.
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What about generating series?

We can hence write a closed formula for Rs(t), the series of scheme-rooted

pruned well-labeled well-oriented unicellular blossoming map, with a given

unlabeled scheme s.

Lemma (L.)

Rs(z) is rational and symmetric in D.

Proof (rough sketch).

We rewrite the expression of Rs(z) as a sum over partial permutations.

An inclusion-exclusion argument allows to prove the symmetry.
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What about generating series?

Lemma (L.)

Rs(z) is rational and symmetric in D.

Notation

The series of decorated Motzkin bridges is B(z).
The series of decorated Motzkin positive bridges followed by a downstep

is D(z).

We have D = z(1 + 4D + D2) and B = 1 + 4zB + 2zDB .

Hence B = 1+4D+D2

1−D2 and z = 1
D−1+4+D

.
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What about generating series?

Lemma (L.)

Rs(z) is rational and symmetric in D.

We have D = z(1 + 4D + D2) and B = 1 + 4zB + 2zDB .

Hence B = 1+4D+D2

1−D2 and z = 1
D−1+4+D

.

Lemma (Chapuy Marcus Schae�er 09)

A series is rational in z if and only if it is rational and symmetric in D.

A series F in D is symmetric in D if F (D−1) = F (D).
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Let's put everything together

We derive from the previous work that the generating series Ms(t) of all

maps (counted by number of edges) with a given (unlabeled) scheme s is:

Ms(t) =
2t2g−2

2g − v4(s)
· T (t) · Rs(T (t)),

where T is the series of trees, and Rs the series of scheme-rooted

well-oriented well-labeled pruned unicellular maps with unlabeled scheme s.

Theorem (L.)

The generating series Ms(t) is a rational function of T (t).
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Let's put everything together

Theorem (L.)

The generating series Ms(t) is a rational function of T (t).

Since the set of unlabeled schemes Sg is �nite for any �xed g , it implies

that Mg (t) =
∑
s∈Sg

Ms(t) is rational in T (t), and proves our main theorem.

Theorem (Tutte 60's for g = 0, Bender Can�eld 91 for g > 0)

For any g, the generating series Mg (t) is a rational function of T (t).
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The end

Thanks for your attention!
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Obtaining an equation for a given scheme

R l =
∏

(vi ,vj )∈El

B · D |hi−hj |

Rs =
∑

h1···hnv ∈N
min(h1,···,hnv )=0

∏
(vi ,vj )∈Es

B · D |hi−hj |

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

DCut(Si )

1−UCut(Si )

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

Φ(Si )

= B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

l is a labeled scheme

El is the set of its edges

hi is the label of vertex vi .
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∑
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i=1

Φ(Si )

= B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

s is an unlabeled scheme.

Labels are de�ned up to translation, so we decide to force the minimal

label to be 0.
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Obtaining an equation for a given scheme

R l =
∏

(vi ,vj )∈El

B · D |hi−hj |

Rs =
∑

h1···hnv ∈N
min(h1,···,hnv )=0

∏
(vi ,vj )∈Es

B · D |hi−hj |

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

DCut(Si )

1−UCut(Si )

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

Φ(Si )

= B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

∅ = S0  S1  · · ·  Sk = Vs is the ordered partition corresponding

to the ordering of labels.

Cut(S) is the number of edges going from S to S .
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Obtaining an equation for a given scheme

R l =
∏

(vi ,vj )∈El

B · D |hi−hj |

Rs =
∑

h1···hnv ∈N
min(h1,···,hnv )=0

∏
(vi ,vj )∈Es

B · D |hi−hj |

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

DCut(Si )

1−UCut(Si )

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

Φ(Si )

= B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

Φ(S) = DCut(S)

1−DCut(S) .

Mathias Lepoutre (École polytechnique) Bijection for higher-genus maps March 14, 2018 21 / 23



Obtaining an equation for a given scheme

R l =
∏

(vi ,vj )∈El

B · D |hi−hj |

Rs =
∑

h1···hnv ∈N
min(h1,···,hnv )=0

∏
(vi ,vj )∈Es

B · D |hi−hj |

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

DCut(Si )

1−UCut(Si )

= B |El | ·
∑

S0 S1 ··· Sk

k−1∏
i=1

Φ(Si )

= B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

The ordered partition is called π instead of S0  S1  · · ·  Sk .
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Proving that this expression is symmetric

Rs = B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

Rs = (−1)|El | · B |El | ·
∑
π

(
(−1)k−1 ·

k−1∏
i=1

(1 + Φ(Si ))

)
= (−1)|El | · B |El | ·

∑
π

(
(−1)k(π)−1 ·

∑
µ<π

k(µ)−1∏
i=1

Φ(Si (µ))

)
= (−1)|El | · B |El | ·

∑
π

k(π)−1∏
i=1

Φ(Si (π)) ·
∑
π<ρ

(
(−1)k(ρ)−1

)
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(−1)k(π)−1 ·
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= (−1)|El | · B |El | ·

∑
π

k(π)−1∏
i=1

Φ(Si (π)) ·
∑
π<ρ

(
(−1)k(ρ)−1

)

B is antisymmetric.

Φ(S) = −(1 + Φ(S)).
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Proving that this expression is symmetric

Rs = B |El | ·
∑
π
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Φ(Si )
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π

(
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(1 + Φ(Si ))

)
= (−1)|El | · B |El | ·

∑
π

(
(−1)k(π)−1 ·

∑
µ<π

k(µ)−1∏
i=1

Φ(Si (µ))

)

= (−1)|El | · B |El | ·
∑
π

k(π)−1∏
i=1

Φ(Si (π)) ·
∑
π<ρ

(
(−1)k(ρ)−1

)

µ < π means that π re�nes µ as an ordered partition.

We apply the inclusion-exclusion principle.
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Proving that this expression is symmetric

Rs = B |El | ·
∑
π

k−1∏
i=1

Φ(Si )

Rs = (−1)|El | · B |El | ·
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π

(
(−1)k−1 ·

k−1∏
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(1 + Φ(Si ))

)
= (−1)|El | · B |El | ·

∑
π

(
(−1)k(π)−1 ·

∑
µ<π

k(µ)−1∏
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Φ(Si (µ))

)
= (−1)|El | · B |El | ·

∑
π

k(π)−1∏
i=1

Φ(Si (π)) ·
∑
π<ρ

(
(−1)k(ρ)−1

)
We swap the two sumations.
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Proving that this expression is symmetric

1|2|3

2|1|3

2|3|1

1|3|2

3|1|2

3|2|1
3|12 23|1

1|23 12|3

13|2 2|13123

3|4|1|2
4|3|1|2

4|3|2|1
3|4|2|1

3|1|4|2

3|2|4|1

3|2|1|4

1|3|4|21|4|3|2

1|4|2|3

1|2|4|3
1|2|3|4

2|1|3|4
1|3|2|4

4|1|2|3

4|1|3|2

2|3|1|4
3|1|2|4

134|2

14|23

1|234

13|24

3|124

123|4

34|12

4|13|2

14|3|2
4|1|23

14|2|3
1|4|23

1|24|3

13|2|4

1|23|4

13|4|2 3|1|24

13|2|4

23|1|4

3|2|14
3|14|2

3|24|1

12|3|4
1|2|34

2|13|4

34|2|1
3|4|1234|1|2

4|3|12

ordered partitions are faces of the permutahedron.

Euler-Poincaré's formula states:

0 =
d∑

i=−1
(−1)i fi (P),

where P is a polytope of degree d with fi (P) faces of degree i .
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The o�set graph

A B
0 -1

0

1
0

1 2
1

0
1

An offset edge (purple)
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The o�set graph

A B
0 -1

0

1
0

1 2
1

0
1

An offset edge (purple)

Theorem (L.)

The o�set graph of a scheme-rooted well-oriented well-labeled unicellular

map is acyclic.
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The o�set graph

Theorem (L.)

The o�set graph of a scheme-rooted well-oriented well-labeled unicellular

map is acyclic.

Proof.

0 1
1 2

0 1
1 2

A B

e2

e3

e4

b1

e5

e6

e7

0 1
1 2

B

e5

e6

0 1
1 2

A

e4

b1

e2

e3

e7

The two possible case for the first step of an offset cycle
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The o�set graph

A B
0 -1

0

1
0

1 2
1

0
1

An offset edge (purple)

With an o�set graph:

Rs = B |El | ·
∑

S0 S1 ··· Sk

(
k−1∏
i=1

Φ(Si )

)
· Dnt+na−ni .
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The o�set graph

With an o�set graph:

Rs = B |El | ·
∑

S0 S1 ··· Sk

(
k−1∏
i=1

Φ(Si )

)
· Dnt+na−ni .

By consequence:

Rs = (−1)|El |·B |El |·
∑
π

k(π)−1∏
i=1

Φ(Si (π))·
∑
π<ρ

(
(−1)k(ρ)−1 · D−nt(ρ)−na(ρ)+ni (ρ)

)

We need to prove the following lemma:

Lemma (L.)

∑
π−1<ρ

(
(−1)k(ρ)−1 · U−nt(ρ)−na(ρ)+ni (ρ)

)
= (−1)|Es | · Dnt(π)+na(π)−ni (π)
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