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Heaps of pieces and trace monoids

Heap of pieces Trace monoid
o Pieces:
[2] [b] [<c] [d] o Alphabet:
Y ={a,b,c,d}
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Heaps of pieces and trace monoids

Heap of pieces Trace monoid
o Pieces:
[2] [b] [<c] [d] o Alphabet:
¥ = {a,b,c,d)

@ Horizontal layout:

[a] [b]

12345 12345
| c | | d |
12345 12345

@ Vertical heaps:
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Heaps of pieces and trace monoids

Heap of pieces Trace monoid
o Pieces:
[2] [b] [<c] [d] o Alphabet:
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@ Vertical heaps:
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Heaps of pieces and trace monoids

Heap of pieces Trace monoid
o Pieces:
[2] [b] [<c] [d] o Alphabet:
¥ = {a,b,c,d)

@ Horizontal layout:

[a] [b]

@ Dependence relation:

e T
| c | | d | D:{{avb}z{b7c}7{c’d}}
12345 12345

) @ Trace monoid:
@ Vertical heaps:

M={a,b,c,d|ac=ca,ad=da,bd=db)*

[aF— b <]
Dependency graph
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Heaps of pieces and dependency graph

Dependency graph Heap of pieces
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Heaps of pieces and dependency graph

Dependency graph Heap of (disconnected) pieces
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Heaps of pieces and left divisibility

Heap of pieces
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Heaps of pieces and left divisibility

Heap of pieces

Can you pick one infinite heap uniformly at random?

@ Define your preferred notion of heap length
@ Study uniform distributions on traces of length k: what if kK — o0?
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Heaps of pieces and left divisibility

Heap of pieces

Can you pick one infinite heap uniformly at random?

© Heap length = #pieces in the heap
@ Weak convergence of distributions:

e = v (Vx e M Py [x < €] - Pyx < £])
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Heaps of pieces and left divisibility

Heap of pieces

Can you pick one infinite heap uniformly at random?

© Heap length = #pieces in the heap
@ Weak convergence of distributions:

e = v (Vx e M Py [x < €] - Pyx < £])

Theorem (Abbes & Mairesse 2015)

If 11k is the unifom measure on My = {( € M :|(| = k},
v exists and is the critical Bernoulli distribution of M.
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Heaps of pieces and left divisibility

Heap of pieces

Can you pick one infinite heap uniformly at random?

© Heap length = #pieces in the heap
@ Weak convergence of distributions:

e = v (Vx e M Py [x < €] - Pyx < £])

Theorem (Abbes & Mairesse 2015) — not constructive!

If f1k is the unifom measure on My = {( € M :|(| = k},
v exists and is the critical Bernoulli distribution of M.
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Bernoulli distributions

Definition

A probability measure i on M is:
e Bernoulli if Yx e M,Vo e £,Py[x0 < (| x < (] =P,lo
e uniform Bernoulli of parameter p if, furthermore, P[0 <
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Bernoulli distributions

Definition
A probability measure i on M is:
e Bernoulli if Yx e M,Vo e X, P,[x0 < (| x < (] =P,lo < (]
e uniform Bernoulli of parameter p if, furthermore, P,[c < (] = p

Which are the possible values of the parameter p?

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids




Bernoulli distributions

Definition
A probability measure i on M is:
e Bernoulli if Yx e M,Vo e X, P,[x0 < (| x < (] =P,lo < (]
e uniform Bernoulli of parameter p if, furthermore, P,[c < (] = p

Which are the possible values of the parameter p?

Uniform Bernoulli = P,[x < ¢] = p¥l = P,[x = ¢] o pP.
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Bernoulli distributions

Definition
A probability measure i on M is:
e Bernoulli if Yx e M,Vo e X, P,[x0 < (| x < (] =P,lo < (]
e uniform Bernoulli of parameter p if, furthermore, P,[c < (] = p
Which are the possible values of the parameter p?
Uniform Bernoulli = P,[x < ¢] = p¥l = P,[x = ¢] o pP.
84 9(p) " n 13 H(p) = 1/G(p) 5
6 5 0.75 g
e n
4 g8 0.5 =
2 S 0.25 E
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0 01 02 034/3=p 4/3 = pc

0 0.1 0.2 03
Generating function G(p) u Mébius polynomial H(p)
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Bernoulli distributions
Definition
A probability measure i on M is:
e Bernoulli if Yx e M,Vo e X, P,[x0 < (| x < (] =P,lo < (]

e uniform Bernoulli of parameter p if, furthermore, P,[c < (] = p

o critical Bernoulli if p = p. (requires infinite heaps)

v

Which are the possible values of the parameter p? 0<p<pc

Uniform Bernoulli = P,[x < (] = pXl = Pu[x = (] o plx! z p|X"H(p).

g(p H(p) =1/G(p
8 9(p) " n 14H(p) = 1/G(p) g
6 G @ 0.75 =
o0 .2 3
f- 0
4 g3 0.5 9
2 3 0.25 £
0 T T 1P 0 T T r P
0 01 02 034/3=p 0 01 02 034/3=np
Generating function G(p) H Mébius polynomial H(p)
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Bernoulli distributions
Definition
A probability measure ;. on M is:
e Bernoulli if Yx e M,Vo e X, P,[x0 < (| x < (] =P,lo < (]

e uniform Bernoulli of parameter p if, furthermore, P,[c < (] = p

o critical Bernoulli if p = p. (requires infinite heaps)

v

Which are the possible values of the parameter p? 0<p<pc

Uniform Bernoulli = P,[x < (] = pXl = P,[x = (] « pl = pIX17¢(p).

g(p H(p) =1/G(p
8 9(p) " n 14H(p) = 1/G(p) g
6 G @ 0.75 =
o0 .2 3
f- 0
4 g3 0.5 9
2 3 0.25 £
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0 01 02 034/3=p 0 01 02 034/3=np
Generating function G(p) H Mébius polynomial H(p)
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Infinite heaps

Heap of pieces
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Infinite heaps
Heap of pieces Sets of interest
M

T M oM
i b finite | infinite
d

heaps heaps

alc | . all heaps

M is the compactification of M for the topology induced by fx = {¢ : x < ¢}

Reminder: jy —» v < (VYxe MT P, [x <& > Py [x <€)
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Infinite heaps
Heap of pieces Sets of interest
M

T M oM
i b finite | infinite
d

heaps heaps

alc | . all heaps

M is the compactification of M for the topology induced by fx = {¢ : x < ¢}

Reminder: jy —» v < (VYxe MT P, [x <& > Py [x <€)

Fact #1 (Abbes & Mairesse 2015) J

The limit v is a distribution on the set M with support oM.
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Simulating the limit v

Idea #1: Pick (x ~ u, pick a piece x wisely and set (411 = (x-x

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #1: Pick (x ~ u, pick a piece x wisely and set (411 = (x-x
Problem: In general, (x1 cannot be distributed according to jix1

Example in the monoid {a, b, ¢ | ac = cay™

Dependency graph

m(fa v te) =2/3 > ia(fa v fe) = 5/8

[ vy B v N 2 R v+ nl v
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

10 |O
10
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

This approach works because v is Bernoulli!

Fact #2 (Abbes & Mairesse 2015) J
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Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

a |
alliel]
Fact #2 (Abbes & Mairesse 2015)
This approach works because v is Bernoulli! J

Problems: Huge state space (exponential number of possible floors)
Adding one floor implies synchronising many pieces
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Simulating the limit v piece by piece®

Idea #3: Decompose heaps ecur_sivé_ly by using pyramids
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Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using pyramids

S

a—pyramid =
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Simulating the limit v piece by piece

A

Idea #3: Decompose heaps recursively by using pyramids

[ d ] a d |

a I alcl

a d
a

a—pyralmlid : b—lpyramlid

Example: Recursive decomposition using b-pyramids
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Simulating the limit v piece by piece

A

Idea #3: Decompose heaps recursively by using pyramids

=

c | alc
d | a d | a
a I al cl| a
a-pyramid b-pyramid

c—lpyramid d:pyre;mlidl

Example: Recursive decomposition using b-pyramids
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Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using pyramids

d | a d | a d
a I al cl| a

a—pyralmlid : b—lpyramlid ¢-pyramid d:pyre; mid

Example: Recursive decomposition using b-pyramids, then a-pyramids. ..

"B o]

|-
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Simulating the limit v piece by pieceA
Idea #3: Decompose heaps recursively by using independent pyramids

Theorem — continued (Abbes & J. 2017)
If ae ¥ and v is Bernoulli on M(X), then

Heap a-pyramid Heap

a-free heap

where right-hand side random variables are independent.
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Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem — continued (Abbes & J. 2017)
If ae ¥ and v is Bernoulli on M(X), then

Heap a-pyramid Heap a-free heap

where right-hand side random variables are independent.

_ - e S(¢)={cex: (e M" 0o}
= Q e D(a)={ceX:0c-a#a o}

a-pyramid a-free heap ¢ s.t.

S(¢) = D(a)
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Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem — continued (Abbes & J. 2017)
If X < ¥, aeX and v is Bernoulli on M(X), then

Heap ¢ s.t. 2 pyramld a-free heap £ s.t. a-free heap ¢ s.t.
S(¢) =X S(a-§) c X S cX
where right-hand side random variables are independent.

= W < 0 S(§)={cexr: e M" o}
O e D(a)={ceX:0c-a#a o}

a-pyramid a-free heap ¢ s.t.

S(¢) = D(a)
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
°S(@¢)cX=5(()<=X
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S(a()c X=S()cX

Auxiliary goal: Generate a heap £ € M with S(§) € X:

© Generate an a-free heap ¢ € M with S(¢) € X
@ How many a should & contain? (k — Geometric law)
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S(a()c X=S()cX

Auxiliary goal: Generate a heap £ € M with S(§) € X:

© Generate an a-free heap ¢ € M with S(¢) € X
@ How many a should & contain? (k — Geometric law)
» if k=0: output £ =
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S(a()c X=S()cX

Auxiliary goal: Generate a heap £ € M with S(§) € X:
© Generate an a-free heap ¢ € M with S(¢) € X
@ How many a should & contain? (k — Geometric law)

» if k=0: output £ =
» if k> 1and S(a-¢) & X: go back to step #1  (anticipated rejection)
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S(a()c X=S()cX

Auxiliary goal: Generate a heap £ € M with S(§) € X:

© Generate an a-free heap ( € M with S(¢) < X
@ How many a should ¢ contain? (k — Geometric law)
» if k=0: output £ =
» if k> 1and S(a-¢) & X: go back to step #1  (anticipated rejection)
» if k> 1 and S(a-¢) < X: generate a-pyramids (s, ...,k
and output § = (1-C2+++ k¢
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Our algorithm: Generating heaps distributed according to v

Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S(@a)cX=S(()cX — ifaeX, S(a()cX<=5S()cX
) <

Auxiliary goal: Generate a heap £ € M with S(§) € X:

© Generate an a-free heap ( € M with S(¢) < X
@ How many a should ¢ contain? (k — Geometric law)
» if k=0: output £ =
» if k> 1and S(a-¢) & X: go back to step #1  (anticipated rejection)
» if k> 1 and S(a-¢) < X: generate a-pyramids (s, ...,k
and output § = (1-C2+++ k¢

Variant: Choose a € X and avoid rejection
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Our algorithm: Generating heaps distributed according to v
Remarks:
@ if v has support OM, & = infinite sequence of a-pyramids (k «— )
e a-pyramid = ( a-free sequence £ with S(§) < D(a) ) - a
e S@()cX=S5(cX — ifaeX S@(cX<5({()cX
)=

Auxiliary goal: Generate a heap £ € M with S(§) € X:

© Generate an a-free heap ¢ € M with S(¢) € X

@ How many a should & contain? (k — Geometric law)
» if k=0: output £ =
» if k> 1and S(a-¢) & X: go back to step #1  (anticipated rejection)
» if k> 1 and S(a-¢) < X: generate a-pyramids (s, ...,k

and output § = (1-C2+++ k¢
Variant: Choose a € X and avoid rejection

Running time/piece: nq or n Read-only memory usage: n or 2"
where M’ = M(X\{a}) and ¢ = G (pc) < 1/pf (g = n®" is possible)
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A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation
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A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):
@ small storage — anticipated rejection — rather low efficiency

@ huge storage — no rejection — high, guaranteed efficiency
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A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):
@ small storage — anticipated rejection — rather low efficiency

@ huge storage — no rejection — high, guaranteed efficiency

Very efficient on graphs with:
o few cycles (small storage/high efficiency for a mix between variants)

@ small tree-width (no preprocessing/storage)
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