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I We are really involved in efficient graph algorithm design,
trying to understand why greedy algorithms work so well in
practice.

I We mostly play with linear time algorithms or heuristics.

I But our algorithms are always based on graph structures (even
if we do not always understand why !)
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Some definitions

Graph Search

The graph is supposed to be connected so as the set of visited
vertices. After choosing an initial vertex, a search of a connected
graph visits each of the vertices and edges of the graph such that a
new vertex is visited only if it is adjacent to some previously visited
vertex.
At any point there may be several vertices that may possibly be
visited next. To choose the next vertex we need a tie-break rule.
The breadth-first search (BFS) and depth-first search (DFS)
algorithms are the traditional strategies for determining the next
vertex to visit.
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Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) using DFS to solve maze
problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
cited in E. Lucas, Récréations mathématiques, Paris, 1891.

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.
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G. Tarry, Le problème des labyrinthes, Nouvelles Annales de
Mathématique, Vol 14 : 187-190 (1895).
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They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches
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1. For us a graph search just produces a total ordering of the
vertices. Can be seen as a streaming algorithm visiting the
graph leaving just a number in each node a label with logn
bits.

2. In the following an ordering of the vertices, always means a
total ordering of the vertices.

3. Seminal paper with a systematic study of graph search :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276
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Generic Search

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected
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Generic search

S ← {s}
for i ← 1 to n do

Pick an unnumbered vertex v of S
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w /∈ S then
Add w to S

end
end

end
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Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?
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Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E ), an ordering σ on V is a generic search of
G iff σ satisfies property (Generic).
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Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set
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BFS

Algorithm 1: Breadth First Search (BFS)

Data: a graph G = (V ,E ) and a start vertex s ∈ V

Result: an ordering σ of V

Initialize queue to {s}
for i ← 1 à n do

dequeue v from beginning of queue
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w is not already in queue then
enqueue w to the end of queue

end
end

end
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Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E ), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).



New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E ), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).



New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of BFS

1. Distance computations (unit length), diameter and centers,

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.
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Lexicographic Breadth First Search (LBFS)

Algorithm 2: LBFS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end
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It is just a breadth first search with a tie break rule.
We are now considering a characterization of the
order in which a LBFS explores the vertices.
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Property (LexB)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E et
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ on V is a LBFS of G iff σ
satisfies property (LexB).
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Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.
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Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example last
vertex is simplicial for chordal graphs)
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Property (LD)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that a <σ d <σ b and db ∈ E
and dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ on V is a LDFS of G iff σ
satisfies property (LD).
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Lexicographic Depth First Search (LDFS)

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 à n do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w)
end

end
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LDFS example

a
•

b•c •d •

e•

LDFS visiting a then b



New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS example II

a
•

b•c (2, 1)•d (1)•

e (2)
•

LDFS visiting a then b must visit c
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LDFS example III

a
•

b•c •d (3, 1)•

e (3, 2)
•

LDFS visiting a, b, c must visit e
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LDFS example IV

a
•

b•c •d (3, 1)•

e•

LDFS visiting a, b, c , e and must finish in d
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Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, J.
Creusefond’s work during his PhD.
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So far we have

I We have considered visiting orderings of the vertices which
characterize graph searches such as Generic Search, BFS,
DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)
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Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G ) = maxx∈G{exc(x)} diameter

I radius(G ) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G )

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min
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Diameter computations with BFS

Trivial bounds

For any graph G :
radius(G ) ≤ diam(G ) ≤ 2radius(G ) and ∀e ∈ G ,
diam(G ) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G ) = 2k = 2radius(G ),
and G admits a unique center, i.e. the middle of the path.

I If radius(G ) = diam(G ), then Center(G ) = V . All vertices are
centers (as for example in a cycle).
It will remain as the typical bad graph structure for diameter
computations.
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If 2.radius(G ) = diam(G ), then *roughly* G has a tree shape (at
least it works for trees).
But there is no nice characterization of this class of graphs.
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Diameter

Applications

1. A graph parameter which measures the quality of services of a
network, in terms of worst cases, when all have a unitary cost.
Find critical edges e s.t. diam(G − e) > diam(G )

2. Many distributed algorithms can be analyzed with this
parameter (when a flooding technique is used to spread
information over the network or to construct routing tables).

3. Verify the small world hypothesis in some large social
networks, using J. Kleinberg’s definition of small world graphs.

4. Compute the diameter of the Internet graph, or some Web
graphs, i.e. massive data.
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1. Examples of diameter searches based on the algorithms
presented in this lecture :
https://files.inria.fr/gang/road/

2. OpenStreetMap (OSM) : 80 millions of nodes, average degree
3

3. Roadmaps graphs a special domain of research interest
Quasi-planar graph (bridges on the roads)

https://files.inria.fr/gang/road/
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Frequently Asked Questions (FAQ)

Usual questions on diameter, centers and radius :

I What is the best Program (resp. algorithm) available ?

I What is the complexity of diameter, center and radius
computations ?

I How to compute or approximate the diameter of huge graphs ?

I Find a center (or all centers) in a network, (in order to install
serveurs).
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I Our aim is to design an algorithm or heuristic to compute the
diameter of very large graphs

I Any algorithm that computes all distances between all pairs of
vertices, complexity O(n3) or O(nm). As for example with |V |
successive Breadth First Searches in O(n(n + m)).

I Best known complexity for an exact algorithm is O( n3

log3n
), in

fact computing all shortest paths.

I But also with at most O(Diam(G )) matrix multiplications.
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New game : computing diameter using fewest BFS possible

1. Let us consider the procedure called : 2 consecutive BFS 1

Data: A graph G = (V ,E )

Result: u, v two vertices

Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)

Therefore it is a linear procedure

1. Proposed the first time by Handler 1973
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Intuition behind the procedure
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Diameter computations with BFS

I Handler’s classical result 73
If G is a tree, diam(G ) = d(u, v)
Easy using Jordan’s theorem.
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First theorem

Camille Jordan 1869 :

A tree admits one or two centers depending on the parity of its
diameter and furthermore all chains of maximum length starting at
any vertex contain this (resp. these) centers.

And radius(G ) = ddiam(G)
2 e

Camille Jordan, Sur les assemblages de lignes, Journal für reine
und angewandte Mathematik 70 (1869), 185–190.
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Unfortunately it is not an algorithm !

Figure – u ← BFS(x) = {x , b, v , a, u} and
a← BFS(u) = {u, b, v , x , a}. But diam(G ) = 3 with [a, b, u, v ]
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Experimental results : M.H., M.Latapy, C. Magnien 2008

Randomized BFS procedure

Data: A graph G = (V ,E )

Result: u, v two vertices

Repeat α times :
Randomly Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)
Select the vertices u0, v0 s.t. distance(u0, v0) is maximal.
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1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G ) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G ) ≤ diam(G − e)).

3. Spanning trees given by the BFS.
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Diameter computations with BFS

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !
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Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1
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Chordal graphs and split graphs
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Diameter computations with BFS

Disjoint sets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph
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SETH : Strong Exponential Time Hypothesis

Computing diameter is now a hot subject due to lower bounds
techniques

SETH

There is no algorithm for solving the k-SAT problem with n
variables in O((2)n−ε) where ε does not depend on k.
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Let us consider an instance I of k-SAT with 2n boolean variables
x1, . . . , x2n, and a set of m clauses C = {C1, . . .Cm}, we build an
instance of Disjoint-set problem as follows :

I The gound set X is the set of clauses + 2 extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).
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Diameter computations with BFS

I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth v assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth u assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .

I Therefore :
I is satisfiable iff there exist 2 disjoint sets Su,Sv .
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Complexity issues

I Size of the k-SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K ), so in the whole : O(2n+1K ).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k-SAT in less than O(22n)
contradicting the SETH.
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Consequences

It could be difficult to design a linear time algorithm for :

1. Disjoint set problem

2. Diameter computations for chordal graphs and split graphs

3. And many other related problems . . . such as betweenness
centrality

4. but not all O(mn) problems as for example transitive closure,
existence of a triangle . . .
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Research Problem

I Since sparse graphs are not available for the above reduction.

I Can we compute in linear time the diameter of planar graphs ?
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The 4-sweep method : Crescenzi, Grossi, MH, Lanzi,
Marino 2011

Diam = max{ecc(a1), ecc(a2)} and Rad = min{ecc(r), ecc(m1)}
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Diameter computations with BFS

Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture). Knowledge on graph classes can be useful

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.
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Figure – First [y,v], then [v,w] and [x,y], [y,v] max=2k+2, so [z,w] of
length 2k+3 is never reached.
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Stanford Large Network Dataset Collection

http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.



New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Stanford Large Network Dataset Collection

http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.



New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Graph diam SNAP diam 4-Sweep

soc-Epinions1 14 15

soc-pokec-relationships 11 14

soc-Slashdot0811 10 12

soc-Slashdot0902 11 13

com-lj.ungraph 17 21

com-youtube.ungraph 20 24

com-DBLP 21 23

com-amazon 44 47

email-Enron 11 13

wikiTalk 9 11

cit-HepPh 12 14

cit-HepTh 13 15

CA-CondMat 14 15

CA-HepTh 17 18

web-Google 21 24

Figure – 4-sweep versus SNAP
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Graph diam SNAP diam 4-Sweep

amazon0302 32 38

amazon0312 18 20

amazon0505 20 22

amazon0601 21 25

p2p-Gnutella04 9 10

p2p-Gnutella24 10 11

p2p-Gnutella25 10 11

p2p-Gnutella30 10 11

roadNet-CA 849 865

roadNet-TX 1054 1064

Gowalla-edges 14 16

BrightKite-edges 16 18
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I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)
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How can we certify our results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.
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Graph Name Vertices
Edges

Real Diameter Diam. FourSweep

CA-HepTh 0.190 18 18

CA-GrQc 0.181 17 17

CA-CondMat 0.124 15 15

CA-AstroPh 0.047 14 14

roadNet-CA 0.355 865 865

roadNet-PA 0.353 794 780

roadNet-TX 0.359 1064 1064

email-Enron 0.1 13 13

email-EuAll 0.631 14 14

com-amazon 0.361 47 47

Amazon0302 0.212 38 38

Amazon0312 0.125 20 20

Amazon0505 0.122 22 22

Amazon0601 0.119 25 25

Gowalla edges 0.207 25 16

Brightkite edges 0.272 18 18

soc-Epinions1 0.149 15 15

Figure – 4-Sweep Results
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An old question to Vlady :

What can you say about the Proba(4-sweep is correct) ?
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Further results

I IFUB an algorithm to compute the excentricity in a bottom
up fashion starting from the leaves of a BFS rooted in m1

with a stoping condition.
Complexity is O(nm) in the worst case, but often linear in
practice.
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Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.
Diametre Facebook = 41 !, Average distance 4.74, Backstrom,
Boldi, Rosa, Uganden, Vigna 2011

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.
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A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.
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Sketch of the algorithm

I Given a random vertex v1 and setting i = 1, repeat the
following :

1. Perform a BFS from vi and choose the vertex vi+1 as the
vertex x maximizing

∑
i
j=1d(vj , x).

2. Compute the eccentricity of vj+2, the vertex minimizing∑i+1
j=1 d(w , vj).

3. Increment i by 2.
4. Maintain bounds on each vertex for an halting condition

I The maximum eccentricity found, i.e. maxj=1,...,i exc(vj), is a
lower bound for the diameter.

I The minimum eccentricity found, i.e. min{minj=1,...,i exc(vj)},
is an upper bound for the radius.
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Recent results 2018

Feodor Dragan, MH, Laurent Viennot 2018
Yesterday on archiv. We give an explanation of the efficiency of
these algorithms
bounding the complexity in terms of LastBFS vertices.
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Diameter computations with BFS

Real Applications

With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)
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Kevin Bacon

His name was used for a popular TV game in US, The Six Degrees
of Kevin Bacon, in which the goal is to connect an actor to Kevin
Bacon in less than 6 edges.
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Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :
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Shemise Evans → Casual Friday (2008) → Deniz Buga
Deniz Buga → Walking While Sleeping (2009)→ Onur Karaoglu
Onur Karaoglu→ Kardesler (2004)→ Fatih Genckal
Fatih Genckal → Hasat (2012) → Mehmet Ünal
Mehmet Ünal→ Kayip özgürlük (2011)→ Aydin Orak
Aydin Orak → The Blue Man (2014)→Alex Dawe
Alex Dawe→ Taken 2 (2012)→ Rade Serbedzija
Rade Serbedzija→ X-Men : First Class (2011) → Kevin Bacon
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Twitter graph 2011

Directed Graph of 500 millions of nodes
2,5 billiard of edges
150 diameter of the giant strongly connected component.
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Algorithm 3: LBFS, Rose, Tarjan, and Lueker 1970s

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end
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a

b

c

d

e f

σ(i) Affected Vertices σ

σ(6) = d label(b) = label(c) = label(f ) = 6 d
σ(5) = c label(b) = 65 and label(a) = 5 d, c
σ(4) = b label(a) = 54 and label(e) = 4 d, c, b
σ(3) = f label(e) = 43 d, c, b, f
σ(2) = a d, c, b, f, a
σ(1) = e d, c, b, f, a, e

Figure – A step by step computation of a LBFS ordering on G starting
at vertex d .
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The + tie-break rule

The + tie-break rule

At each step of the algorithm, the next vertex to be visited is the
rightmost (or last) vertex of S in the ordering τ . S is the set of
eligible vertices.
This + rule is due to K. Simon (1992). He used it in an
”algorithm” to recognize interval graphs.

Intuitively

This tool is used for multisweep graph searches. And the idea is to
keep for tied vertices the ordering of the previous search.
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a

b

c

d

e f

Figure – with
σ0 = d , c , b, f , a, e

LBFS+(G , σ0) = σ1 = e, f , b, d , c , a
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A cycling problem with LexBFS

Starting from and ordering of the vertices σ0 we compute the
following sequence : σi+1 = LBFS+(G , σi ).
It should be noticed that σi+1 is uniquely defined by
LBFS+(G , σi ).

Cycling

Due to the finite number of vertex orderings such a sequence must
loop in a finite cycle of vertex orderings, which leads to the
following definition.

Definition

Let us define for a graph G , LexCycle(G ) as the maximum length
of a cycle of vertex orderings obtained via a sequence of LBFS+. a

a. It should be noticed that in this definition there is no assumption on the
starting vertex ordering σ0.
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a

b

c

d

e f

Figure – with
σ0 = d , c , b, f , a, e

LBFS+(G , σ0) = σ1 = e, f , b, d , c , a
LBFS+(G , σ1) = σ2 = a, c , b, d , e, f
LBFS+(G , σ2) = σ3 = f , e, b, d , c , a

LBFS+(G , σ3) = σ4 = a, c, b, d , e, f = σ2
Therefore with the cycle [σ2, σ3, σ2], LexCycle(G ) ≥ 2 and there is

no cycle of length 3 (to be checked by hand) then
LexCycle(G ) = 2.
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Another example

a
b

c

d

e

f

σ0 = f , d , a, e, b, c
σ1 = LBFS+(G , σ0) = c , b, d , f , a, e
σ2 = LBFS+(G , σ1) = e, f , d , b, a, c

σ3 = LBFS+(G , σ2) = c , b, d , f , a, e = σ1
C2 = [σ1, σ2, σ1]
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I We will study here the first properties of this new graph
invariant. Due to the + rule, LexCycle(G ) ≥ 2.

I At first glance we know that LexCycle(G ) ≤ |V (G )|!, more
precisely LexCycle(G ) is bounded by the number of LBFS
orderings of G .

I But there is no evidence for another general bound such as for
example |V (G )|2.
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Asteroidal number

A set A ⊆ V of G forms an asteroidal set if for each vertex a ∈ A,
the set A\{a} is contained in one connected component of
G [V \N[a]]. The maximum cardinality of an asteroidal set of G ,
denoted an(G ), is called the asteroidal number of G . A graph is
AT-free if it does not contain an asteroidal triple.

Conjecture Juraj Stacho (2015)

LexCycle(G ) ≤ an(G )

But unfortunately we will now construct a counterexample. Let us
consider first some interesting examples with high values of
LexCycle.
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f y

x a e
b c d

z

σ = LBFS(G3) = x , b, a, c, e, f , d , z , y

τ = LBFS+(G3, σ) = y , f , e, a, c , d , b, x , z

θ = LBFS+(G3, τ) = z , d , c , e, a, b, f , y , x

σ = LBFS+(G3, θ) = x , b, a, c , e, f , d , z , y

Figure – G3 with an asteroidal triple (x , y , z), and 3-cycle
C3 = [σ, τ, θ, σ].
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z1 x1
x4

y1 y2

y4
y3

z2

x2

x3

z3

z4

σ = LBFS(G4) = x4, z4, y1, y3, y4, y2, z2, z1, z3, x2, x3, x1

τ = LBFS+(G4, σ) = x1, z1, y2, y4, y1, y3, z3, z2, z4, x3, x4, x2

θ = LBFS+(G4, τ) = x2, z2, y3, y1, y2, y4, z4, z3, z1, x4, x1, x3

ε = LBFS+(G4, θ) = x3, z3, y4, y2, y3, y1, z1, z4, z2, x1, x2, x4

σ = LBFS+(G4, ε) = x4, z4, y1, y3, y4, y2, z2, z1, z3, x2, x3, x1

C4 = [σ, τ, θ, ε, σ]
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Starjoin

For a family of graphs {Gi}1≤i≤k , we define
H = Starjoin(G1, . . .Gk) as follows : For i ∈ [k], add a universal
vertex gi to Gi , then add a root vertex r adjacent to all gi ’s.

Property

If H = Starjoin(G1, . . .Gk) then
an(H) = max{k,max1≤i≤k{an(Gi )}} and
LexCycle(H) ≥ lcm1≤i≤k{|Ci |} where lcm stands for least common
multiple, and Ci is a cycle in a sequence of LBFS+ orderings of Gi .

Counterexample

If H = Starjoin(G3,G4), then an(H) = 5 and LexCycle(H) ≥ 12.
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REPEATED LBFS+

Algorithm 4: LBFS+ multi-sweep

Require: G = (V ,E )
Ensure: an ordering σ
σ ← LBFS(G)
for i = 2 to |V | do
σ ← LBFS+(G,σ)

end for
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Conjecture J. Dusart, M. Habib 2013

LexCycle(G)=2 for cocomparability graphs a.

a. Could be extended to AT-free graphs

Experimental results

Of course before asking this question we check on millions of
cocomparability graphs (easy to generate).
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Comparability graphs

Comparability graph

A graph G = (V ,E ) is a comparability graph if and only if G can
be transitively oriented.

Figure – A comparability graph G and a transitive orientation of G .

Cocomparability graph

A graph G = (V ,E ) is a cococomparability graph if and only if G
is a comparability graph.
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Cocomparability graphs

Definition :

For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that : a <τ b <τ c and ac ∈ E and
ab, bc /∈ E .
A co-comparability (co-comp for short) ordering is an umbrella-free
total ordering of the vertices of G .

a, b, c, an umbrella

Remarks :

A cocomp ordering corresponds to a linear extension of a transitive
orientation of the complement.
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Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and
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I Roughly speaking REPEATED LBFS+ provides such an
ordering for interval (resp. proper interval, cocomparability)
graphs.

I Which can be used as a certificate in the positive case.
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A very useful lemma (Corneil, Dusart, Habib, Kőhler 2011)

The flipping lemma

if σ is a cocomp ordering and τ = LBFS+(G , σ), then for every
non edge xy /∈ E (G )
x <σ y iff y <τ x
In other words σ and τd are two linear extensions of the same
transitive orientation of G .
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The particular case of interval graphs

Theorem (Corneil 2004) (Hell, Huang 2004)

For a proper interval graph, a series of 3 LBFS+ produces a proper
interval ordering.

Theorem (Corneil, Olariu and Stewart 2010)

For an interval graph, a series of 5+1 special consecutive LBFS+

produces an interval ordering.
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Theorem (Dusart, Habib 2013)

If G = (V ,E ) is a cocomparability graph REPEATED LBFS+

always finds a cocomp ordering (so in less than |V | LBFS+).

Best possible

Using a Ma’s family of interval graphs (2000), this result is best
possible, i.e., a constant number of LBFS would not be enough for
all graphs.

Alea typical question

What is the average convergence of REPEATED LBFS+ ?
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LBFS OrderingsLBFS Orderings
Cocomp ordersCocomp orders

Landscape for cocomparability graphs
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Consequences

Dusart, Habib 2013

It gives a very easy to program : REPEATED LBFS+ for
cocomparability graph recognition or transitive orientation of a
comparability graph with O(nm) worst-case complexity.

If the LexCycle conjecture is true

We could avoid some LBFS+ with the following algorithm.
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Algorithm 5: Potential cocomp ordering or transitive orientation
algorithm

Input: G a connected graph

Output: a cocomp ordering of G iff G is a cocomparability graph

σ1 ← LBFS(G );
σ2 ← LBFS+(G , σ1);
σ3 ← LBFS+(G , σ2);
i ← 3;
while σi 6= σi−2 do

i ← i + 1 ;
σi ← LBFS+(G , σi−1);

end
Output σi ;
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Partial results

I LexCycle(T)=2 for every tree T (in fact a result on BFS).

I For a given class of graphs C, if for all prime graphs H
LexCycle(H) = 2, then for every graph G ∈ C
LexCycle(G ) = 2. So the result holds for cographs.

I If G is a proper interval then Algorithm 3 stops with σ5 = σ3
and σ4 = σd3 .

I LexCycle(G ) = 2 for interval graphs and cobipartite graphs
and domino-free cocomparability graphs. But also splits
graphs (not always cocomparability graphs).
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A cycling problem with LexBFS

Alea typical question

What is the average number of steps of LBFS+ to reach a cycle ?
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Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover for cocomp graphs with LDFS

I To find a Minimum Path Cover is NP-hard for arbitrary
graphs (cf. Sophie Laplante’s lecture)

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Ugly polynomial algorithm MH, Möhring, Steiner 1988)

I Another equivalent formulation as the 2-machine scheduling
problem
(Another polynomial algorithm Gabow, Tarjan 1985)



New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover for cocomp graphs with LDFS

I To find a Minimum Path Cover is NP-hard for arbitrary
graphs (cf. Sophie Laplante’s lecture)

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Ugly polynomial algorithm MH, Möhring, Steiner 1988)
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Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover

1. Start with σ any co-comparability ordering of G

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Apply RightMostNeighbour(τ) which gives the path cover

4. Exhibit a certificate of minimality with a cut-set.
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Let us take an example

1. σ = 2, 6, 0, 3, 4, 5, 1, 7, 8, 9 a co-comparability ordering

2. τ = LDFS+(G , σ) = 9, 8, 5, 7, 4, 1, 3, 2, 0, 6

3. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9
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Magic

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected
components.
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Cutset

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected
components. These vertices can be obtained during the
rightmost neighbour procedure and correspond to backward
edges : 17, 74, 28, 85.
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Although the algorithm is quite simple,
the proof is not that simple !
Since we need to prove the certifying step by induction.
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Maximum independent set for cocomparability graph with
LDFS

1. Start with σ any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Apply GreedyIndependentSet(τ) which gives the independent
set

4. Exhibit a certificate of minimality with a clique cover.
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Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 a co-comparability ordering

2. τ = LDFS+(G , σ) = 0, 7, 9, 8, 6, 5, 3, 4, 2, 1
3. GreedyIndependentSet(τ) = {1, 4, 6, 9, 0}
4. Clique cover : {{0}, {7, 9}, {8, 6}, {5, 3, 4}, {2, 1}}
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Greedy algorithm skeleton

1. Start with σ any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Find the rightmost structure (ex : rightmost path cover,
rightmost independent set . . .) with respect to τ

4. Exhibit a certificate of optimality.
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In other words

1. a preprocessing to obtain a cocomp ordering σ

2. LDFS+(G , σ) produces a layered cocomp ordering τ .

3. Following τ collect in a greedy way an optimum solution

4. Exhibit a certificate of optimality.
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I Applying a series of graph searches can be done even on huge
graphs (cf. BFSs for diameter computations)

I Easy extensions : to weighted graphs by substituting Dijkstra’s
algorithm for BFS and to directed graphs

I How much can we learn about the structure of a graph with a
series of graph searches ?

I Other graph searches such as DFS, LDFS ... could also have
such cycling properties with the + rule.

I Understand the ”matroidal” aspects of LDFS. We have found
around 10 algorithms that can be put in this framework
(including the Kosaraju and Sharir’s algorithm for strongly
connected components), in which the lexicographic rightmost
object is the optimum.
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Many thanks for your attention ! !
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