
New perspectives of graph searches on structured families of graphs

New perspectives of graph searches on structured
families of graphs

Michel Habib
habib@irif.fr

http://www.irif.fr/~habib

CIRM : Alea 2018 14 mars 2018

http://www.irif.fr/~habib

New perspectives of graph searches on structured families of graphs

Schedule

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Figure – Some well-structured graph classes

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

I We are really involved in efficient graph algorithm design,
trying to understand why greedy algorithms work so well in
practice.

I We mostly play with linear time algorithms or heuristics.

I But our algorithms are always based on graph structures (even
if we do not always understand why !)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

I We are really involved in efficient graph algorithm design,
trying to understand why greedy algorithms work so well in
practice.

I We mostly play with linear time algorithms or heuristics.

I But our algorithms are always based on graph structures (even
if we do not always understand why !)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

I We are really involved in efficient graph algorithm design,
trying to understand why greedy algorithms work so well in
practice.

I We mostly play with linear time algorithms or heuristics.

I But our algorithms are always based on graph structures (even
if we do not always understand why !)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Some definitions

Graph Search

The graph is supposed to be connected so as the set of visited
vertices. After choosing an initial vertex, a search of a connected
graph visits each of the vertices and edges of the graph such that a
new vertex is visited only if it is adjacent to some previously visited
vertex.
At any point there may be several vertices that may possibly be
visited next. To choose the next vertex we need a tie-break rule.
The breadth-first search (BFS) and depth-first search (DFS)
algorithms are the traditional strategies for determining the next
vertex to visit.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Graph searches are very well known and used in many
situations :

1. ”Fil d’ariane” in the Greek mythology.

2. Euler (1735) for solving the famous walk problem in
Kœnisberg city

3. Euler’s theorem proved by Hierholzer in 1873.

4. Tremaux (1882) and Tarry (1895) using DFS to solve maze
problems

5. Fleury, proposed a nice algorithm to compute an Euler Tour,
cited in E. Lucas, Récréations mathématiques, Paris, 1891.

6. Computer scientists from 1950, in particular in the 70’s,
Tarjan for new applications of DFS....

7. 4 points characterizations Corneil, Krueger (2008), and the
definition of LDFS a new interesting basic search.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

G. Tarry, Le problème des labyrinthes, Nouvelles Annales de
Mathématique, Vol 14 : 187-190 (1895).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

They are many formalisms to represent graph search depending on
the view point :

I Data structures involved

I Implementation issues

I Path algebras

I Bio-inspired graph searches (as used by Amos Korman with
ants)

I Reachability problems in complexity theory

I Here we want to focus on the visiting ordering of the vertices
and on the tie-break process that distinguishes graph searches

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

1. For us a graph search just produces a total ordering of the
vertices. Can be seen as a streaming algorithm visiting the
graph leaving just a number in each node a label with logn
bits.

2. In the following an ordering of the vertices, always means a
total ordering of the vertices.

3. Seminal paper with a systematic study of graph search :
D.G. Corneil et R. M. Krueger, A unified view of graph
searching, SIAM J. Discrete Math, 22, Num 4 (2008)
1259-1276

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

2

1

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

3

1

2

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

4

1

2

3

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

5

1

2

3

4

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

6

1

2

3

4

5
Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic Search

7

1

2

3

4

56
Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic search

S ← {s}
for i ← 1 to n do

Pick an unnumbered vertex v of S
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w /∈ S then
Add w to S

end
end

end

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E), an ordering σ on V is a generic search of
G iff σ satisfies property (Generic).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (Generic)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E), an ordering σ on V is a generic search of
G iff σ satisfies property (Generic).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Most of the searches that we will study are refinement of this
generic search

I i.e. we just add new rules to follow for the choice of the next
vertex to be visited

I DFS (Stack), BFS(Queue), Dijkstra (Heap), . . .

I Graph searches mainly differ by the management of the
tie-break set

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

BFS

Algorithm 1: Breadth First Search (BFS)

Data: a graph G = (V ,E) and a start vertex s ∈ V

Result: an ordering σ of V

Initialize queue to {s}
for i ← 1 à n do

dequeue v from beginning of queue
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w is not already in queue then
enqueue w to the end of queue

end
end

end

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (BFS)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a BFS of G iff σ
satisfies property (BFS).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of BFS

1. Distance computations (unit length), diameter and centers,

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of BFS

1. Distance computations (unit length), diameter and centers,

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of BFS

1. Distance computations (unit length), diameter and centers,

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Lexicographic Breadth First Search (LBFS)

Algorithm 2: LBFS

Data: a graph G = (V ,E) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

{7}{7} 7

{7}

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

6 7

{7}

{7}{6}

{6}

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

{5}

7 {7}{6} 6

5{65}

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

{54}

7{6} 6

5{65}

4

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

3

76

5

4

{54}

{63}

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

2 76

5

4

{54}3

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

1

76

5

4

3

2

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

It is just a breadth first search with a tie break rule.
We are now considering a characterization of the
order in which a LBFS explores the vertices.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (LexB)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E et
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LBFS of G iff σ
satisfies property (LexB).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (LexB)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that d <σ a et db ∈ E et
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LBFS of G iff σ
satisfies property (LexB).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property

On every tie-break set S , LBFS operates on G (S) as a LBFS.

proof

Consider a, b, c ∈ S such that a <σ b <σ c and ac ∈ E and
ab /∈ E , then it must exist a vertex d such that d <σ a et db ∈ E
et dc /∈ E . But then necessarily d ∈ S .

Remark

Analogous properties are false for other classical searches.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example last
vertex is simplicial for chordal graphs)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example last
vertex is simplicial for chordal graphs)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LBFS

1. Most famous one : chordal graph recognition via simplicial
elimination schemes (easy application of the 4-points
condition)

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example last
vertex is simplicial for chordal graphs)

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LDFS

DFS

d cba

LDFS

d cba

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (LD)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that a <σ d <σ b and db ∈ E
and dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LDFS of G iff σ
satisfies property (LD).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Property (LD)

For an ordering σ on V , if a <σ b <σ c and ac ∈ E and ab /∈ E ,
then it must exist a vertex d such that a <σ d <σ b and db ∈ E
and dc /∈ E .

d cba

Theorem

For a graph G = (V ,E), an ordering σ on V is a LDFS of G iff σ
satisfies property (LD).

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Lexicographic Depth First Search (LDFS)

Data: a graph G = (V ,E) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 à n do

Pick an unnumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w)
end

end

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS example

a
•

b•c •d •

e•

LDFS visiting a then b

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS example II

a
•

b•c (2, 1)•d (1)•

e (2)
•

LDFS visiting a then b must visit c

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS example III

a
•

b•c •d (3, 1)•

e (3, 2)
•

LDFS visiting a, b, c must visit e

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

LDFS example IV

a
•

b•c •d (3, 1)•

e•

LDFS visiting a, b, c , e and must finish in d

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, J.
Creusefond’s work during his PhD.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, J.
Creusefond’s work during his PhD.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, J.
Creusefond’s work during his PhD.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

Applications of LDFS

I Hard to find application of this new tool !

I Finding long paths, a very simple greedy algorithm :

I LDFS-based certifying algorithm for the Minimum Path Cover
problem on cocomparability graphs
D. Corneil, B. Dalton and M. Habib SIAM J. of Computing
42(3) : 792-807 (2013).

I Nice graph based heuristics for community detection, J.
Creusefond’s work during his PhD.

New perspectives of graph searches on structured families of graphs

Motivation to the study of graph searches

So far we have

I We have considered visiting orderings of the vertices which
characterize graph searches such as Generic Search, BFS,
DFS, LBFS, LDFS.

I These orderings allow to prove properties on graph searches
(without considering the algorithm itself)

I But also to certify (as for example for BFS and diameter
computations)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G) = maxx∈G{exc(x)} diameter

I radius(G) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G)

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G) = maxx∈G{exc(x)} diameter

I radius(G) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G)

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Trivial bounds

For any graph G :
radius(G) ≤ diam(G) ≤ 2radius(G) and ∀e ∈ G ,
diam(G) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G) = 2k = 2radius(G),
and G admits a unique center, i.e. the middle of the path.

I If radius(G) = diam(G), then Center(G) = V . All vertices are
centers (as for example in a cycle).
It will remain as the typical bad graph structure for diameter
computations.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Trivial bounds

For any graph G :
radius(G) ≤ diam(G) ≤ 2radius(G) and ∀e ∈ G ,
diam(G) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G) = 2k = 2radius(G),
and G admits a unique center, i.e. the middle of the path.

I If radius(G) = diam(G), then Center(G) = V . All vertices are
centers (as for example in a cycle).
It will remain as the typical bad graph structure for diameter
computations.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Trivial bounds

For any graph G :
radius(G) ≤ diam(G) ≤ 2radius(G) and ∀e ∈ G ,
diam(G) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G) = 2k = 2radius(G),
and G admits a unique center, i.e. the middle of the path.

I If radius(G) = diam(G), then Center(G) = V . All vertices are
centers (as for example in a cycle).
It will remain as the typical bad graph structure for diameter
computations.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Trivial bounds

For any graph G :
radius(G) ≤ diam(G) ≤ 2radius(G) and ∀e ∈ G ,
diam(G) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G) = 2k = 2radius(G),
and G admits a unique center, i.e. the middle of the path.

I If radius(G) = diam(G), then Center(G) = V . All vertices are
centers (as for example in a cycle).
It will remain as the typical bad graph structure for diameter
computations.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

If 2.radius(G) = diam(G), then *roughly* G has a tree shape (at
least it works for trees).
But there is no nice characterization of this class of graphs.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Diameter

Applications

1. A graph parameter which measures the quality of services of a
network, in terms of worst cases, when all have a unitary cost.
Find critical edges e s.t. diam(G − e) > diam(G)

2. Many distributed algorithms can be analyzed with this
parameter (when a flooding technique is used to spread
information over the network or to construct routing tables).

3. Verify the small world hypothesis in some large social
networks, using J. Kleinberg’s definition of small world graphs.

4. Compute the diameter of the Internet graph, or some Web
graphs, i.e. massive data.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

1. Examples of diameter searches based on the algorithms
presented in this lecture :
https://files.inria.fr/gang/road/

2. OpenStreetMap (OSM) : 80 millions of nodes, average degree
3

3. Roadmaps graphs a special domain of research interest
Quasi-planar graph (bridges on the roads)

https://files.inria.fr/gang/road/

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Frequently Asked Questions (FAQ)

Usual questions on diameter, centers and radius :

I What is the best Program (resp. algorithm) available ?

I What is the complexity of diameter, center and radius
computations ?

I How to compute or approximate the diameter of huge graphs ?

I Find a center (or all centers) in a network, (in order to install
serveurs).

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I Our aim is to design an algorithm or heuristic to compute the
diameter of very large graphs

I Any algorithm that computes all distances between all pairs of
vertices, complexity O(n3) or O(nm). As for example with |V |
successive Breadth First Searches in O(n(n + m)).

I Best known complexity for an exact algorithm is O(n3

log3n
), in

fact computing all shortest paths.

I But also with at most O(Diam(G)) matrix multiplications.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

New game : computing diameter using fewest BFS possible

1. Let us consider the procedure called : 2 consecutive BFS 1

Data: A graph G = (V ,E)

Result: u, v two vertices

Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)

Therefore it is a linear procedure

1. Proposed the first time by Handler 1973

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Intuition behind the procedure

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I Handler’s classical result 73
If G is a tree, diam(G) = d(u, v)
Easy using Jordan’s theorem.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

First theorem

Camille Jordan 1869 :

A tree admits one or two centers depending on the parity of its
diameter and furthermore all chains of maximum length starting at
any vertex contain this (resp. these) centers.

And radius(G) = ddiam(G)
2 e

Camille Jordan, Sur les assemblages de lignes, Journal für reine
und angewandte Mathematik 70 (1869), 185–190.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Unfortunately it is not an algorithm !

Figure – u ← BFS(x) = {x , b, v , a, u} and
a← BFS(u) = {u, b, v , x , a}. But diam(G) = 3 with [a, b, u, v]

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Experimental results : M.H., M.Latapy, C. Magnien 2008

Randomized BFS procedure

Data: A graph G = (V ,E)

Result: u, v two vertices

Repeat α times :
Randomly Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)
Select the vertices u0, v0 s.t. distance(u0, v0) is maximal.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G) ≤ diam(G − e)).

3. Spanning trees given by the BFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G) ≤ diam(G − e)).

3. Spanning trees given by the BFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G) ≤ diam(G − e)).

3. Spanning trees given by the BFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, H., Paul 2001, using
a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G) ≤ d(u, v) + 1

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Chordal graphs and split graphs

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Disjoint sets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Disjoint sets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

SETH : Strong Exponential Time Hypothesis

Computing diameter is now a hot subject due to lower bounds
techniques

SETH

There is no algorithm for solving the k-SAT problem with n
variables in O((2)n−ε) where ε does not depend on k.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Let us consider an instance I of k-SAT with 2n boolean variables
x1, . . . , x2n, and a set of m clauses C = {C1, . . .Cm}, we build an
instance of Disjoint-set problem as follows :

I The gound set X is the set of clauses + 2 extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Let us consider an instance I of k-SAT with 2n boolean variables
x1, . . . , x2n, and a set of m clauses C = {C1, . . .Cm}, we build an
instance of Disjoint-set problem as follows :

I The gound set X is the set of clauses + 2 extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Let us consider an instance I of k-SAT with 2n boolean variables
x1, . . . , x2n, and a set of m clauses C = {C1, . . .Cm}, we build an
instance of Disjoint-set problem as follows :

I The gound set X is the set of clauses + 2 extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth v assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth u assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .

I Therefore :
I is satisfiable iff there exist 2 disjoint sets Su,Sv .

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth v assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth u assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .

I Therefore :
I is satisfiable iff there exist 2 disjoint sets Su,Sv .

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth v assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth u assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .

I Therefore :
I is satisfiable iff there exist 2 disjoint sets Su, Sv .

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Complexity issues

I Size of the k-SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K), so in the whole : O(2n+1K).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k-SAT in less than O(22n)
contradicting the SETH.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Complexity issues

I Size of the k-SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K), so in the whole : O(2n+1K).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k-SAT in less than O(22n)
contradicting the SETH.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Complexity issues

I Size of the k-SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K), so in the whole : O(2n+1K).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k-SAT in less than O(22n)
contradicting the SETH.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Complexity issues

I Size of the k-SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K), so in the whole : O(2n+1K).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k-SAT in less than O(22n)
contradicting the SETH.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Consequences

It could be difficult to design a linear time algorithm for :

1. Disjoint set problem

2. Diameter computations for chordal graphs and split graphs

3. And many other related problems . . . such as betweenness
centrality

4. but not all O(mn) problems as for example transitive closure,
existence of a triangle . . .

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Research Problem

I Since sparse graphs are not available for the above reduction.

I Can we compute in linear time the diameter of planar graphs ?

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

The 4-sweep method : Crescenzi, Grossi, MH, Lanzi,
Marino 2011

Diam = max{ecc(a1), ecc(a2)} and Rad = min{ecc(r), ecc(m1)}

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture). Knowledge on graph classes can be useful

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture). Knowledge on graph classes can be useful

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

It is still not al algorithm ! !

k

k k

k

u

vw

x

y

2

1

3

45

z

Figure – First [y,v], then [v,w] and [x,y], [y,v] max=2k+2, so [z,w] of
length 2k+3 is never reached.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Stanford Large Network Dataset Collection

http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Stanford Large Network Dataset Collection

http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Graph diam SNAP diam 4-Sweep

soc-Epinions1 14 15

soc-pokec-relationships 11 14

soc-Slashdot0811 10 12

soc-Slashdot0902 11 13

com-lj.ungraph 17 21

com-youtube.ungraph 20 24

com-DBLP 21 23

com-amazon 44 47

email-Enron 11 13

wikiTalk 9 11

cit-HepPh 12 14

cit-HepTh 13 15

CA-CondMat 14 15

CA-HepTh 17 18

web-Google 21 24

Figure – 4-sweep versus SNAP

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Graph diam SNAP diam 4-Sweep

amazon0302 32 38

amazon0312 18 20

amazon0505 20 22

amazon0601 21 25

p2p-Gnutella04 9 10

p2p-Gnutella24 10 11

p2p-Gnutella25 10 11

p2p-Gnutella30 10 11

roadNet-CA 849 865

roadNet-TX 1054 1064

Gowalla-edges 14 16

BrightKite-edges 16 18

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

I How can we beat the value of Stanford database ?

I In fact some * explains in a little footnote that the SNAP
value is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependant are better
that 1000 independant searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

How can we certify our results ?

I By certifying the longest path [x , y] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

How can we certify our results ?

I By certifying the longest path [x , y] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

How can we certify our results ?

I By certifying the longest path [x , y] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-point condition. Which can be checked
in linear time for BFS and DFS.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Graph Name Vertices
Edges

Real Diameter Diam. FourSweep

CA-HepTh 0.190 18 18

CA-GrQc 0.181 17 17

CA-CondMat 0.124 15 15

CA-AstroPh 0.047 14 14

roadNet-CA 0.355 865 865

roadNet-PA 0.353 794 780

roadNet-TX 0.359 1064 1064

email-Enron 0.1 13 13

email-EuAll 0.631 14 14

com-amazon 0.361 47 47

Amazon0302 0.212 38 38

Amazon0312 0.125 20 20

Amazon0505 0.122 22 22

Amazon0601 0.119 25 25

Gowalla edges 0.207 25 16

Brightkite edges 0.272 18 18

soc-Epinions1 0.149 15 15

Figure – 4-Sweep Results

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

An old question to Vlady :

What can you say about the Proba(4-sweep is correct) ?

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Further results

I IFUB an algorithm to compute the excentricity in a bottom
up fashion starting from the leaves of a BFS rooted in m1

with a stoping condition.
Complexity is O(nm) in the worst case, but often linear in
practice.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.
Diametre Facebook = 41 !, Average distance 4.74, Backstrom,
Boldi, Rosa, Uganden, Vigna 2011

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.
Diametre Facebook = 41 !, Average distance 4.74, Backstrom,
Boldi, Rosa, Uganden, Vigna 2011

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Comments

I Boldi and his group had to parallelize our algorithm and a
BFS on the giant connected component of Facebook would
take several hours. But only 17 BFS’s were needed.
Diametre Facebook = 41 !, Average distance 4.74, Backstrom,
Boldi, Rosa, Uganden, Vigna 2011

I The 4-sweep method alway gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

A method symmetric for computing radius and diameter

M. Borassi, P. Crescenzi, R. Grossi, M.H., W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep to k-sweep.

I we generalize to maintain k values in each vertex.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Sketch of the algorithm

I Given a random vertex v1 and setting i = 1, repeat the
following :

1. Perform a BFS from vi and choose the vertex vi+1 as the
vertex x maximizing

∑
i
j=1d(vj , x).

2. Compute the eccentricity of vj+2, the vertex minimizing∑i+1
j=1 d(w , vj).

3. Increment i by 2.
4. Maintain bounds on each vertex for an halting condition

I The maximum eccentricity found, i.e. maxj=1,...,i exc(vj), is a
lower bound for the diameter.

I The minimum eccentricity found, i.e. min{minj=1,...,i exc(vj)},
is an upper bound for the radius.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Recent results 2018

Feodor Dragan, MH, Laurent Viennot 2018
Yesterday on archiv. We give an explanation of the efficiency of
these algorithms
bounding the complexity in terms of LastBFS vertices.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Real Applications

With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Real Applications

With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Kevin Bacon

His name was used for a popular TV game in US, The Six Degrees
of Kevin Bacon, in which the goal is to connect an actor to Kevin
Bacon in less than 6 edges.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Shemise Evans → Casual Friday (2008) → Deniz Buga
Deniz Buga → Walking While Sleeping (2009)→ Onur Karaoglu
Onur Karaoglu→ Kardesler (2004)→ Fatih Genckal
Fatih Genckal → Hasat (2012) → Mehmet Ünal
Mehmet Ünal→ Kayip özgürlük (2011)→ Aydin Orak
Aydin Orak → The Blue Man (2014)→Alex Dawe
Alex Dawe→ Taken 2 (2012)→ Rade Serbedzija
Rade Serbedzija→ X-Men : First Class (2011) → Kevin Bacon

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Twitter graph 2011

Directed Graph of 500 millions of nodes
2,5 billiard of edges
150 diameter of the giant strongly connected component.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Theoretical aspects
I D. Corneil, F. Dragan, M. Habib, C. Paul, Diameter

determination on restricted families of graphs, Discrete
Applied Mathematic, Vol 113(2-3) : 143-166 (2001)

I V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxes,
Diameters, centers, and approximating trees of
delta-hyperbolic geodesic spaces and graphs, ACM
Symposium on Computational Geometry 2008 : 59-68.

I V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxes, Notes
on diameters, centers, and approximating trees of δ-hyperbolic
geodesic spaces and graphs, TGCT08 Paris, Electronic
Notes in Discrete Mathematics 31(2008)231-234.

I V. Chepoi, F. Dragan, B. Estrellon, M. Habib, Y. Vaxes et Y.
Xiang Additive Spanners and Distance and Routing Labeling
Schemes for Hyperbolic Graphs, Algorithmica 62-(3-4)
(2012) 713-732.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Algorithmic and experimental aspects

I C. Magnien, M. Latapy, M. Habib, Fast computation of
empirically tight bounds for the diameter of massive graphs,
Journal of Experimental Algorithmics, 13 (2008).

I P. Crescenzi, R. Grossi, M. Habib, L. Lanzi and A. Marino, On
Computing the Diameter of Real-World Undirected graphs,
Theor. Comput. Sci. 514 : 84-95 (2013).

I M. Borassi, P. Crescenzi, R. Grossi, M. Habib, W. Kosters, A.
Marino and F. Takes, Fast diameter and radius BFS-based
computation in (weakly connected) real-world graphs : With
an application to the six degrees of separation games, Theor.
Comput. Sci. 586 : 59-80 (2015)

I F. Dragan, M. Habib, L. Viennot, Revisiting Radius,
Diameter, and all Eccentricity Computation in Graphs through
Certificates 2018, hal-01729748.

New perspectives of graph searches on structured families of graphs

Diameter computations with BFS

Complexity aspects

I Michele Borassi, Pierluigi Crescenzi, Michel Habib, Into the
Square : On the Complexity of Some Quadratic-time Solvable
Problems, Electr. Notes Theor. Comput. Sci. 322 : 51-67
(2016).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Algorithm 3: LBFS, Rose, Tarjan, and Lueker 1970s

Data: a graph G = (V ,E) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

a

b

c

d

e f

σ(i) Affected Vertices σ

σ(6) = d label(b) = label(c) = label(f) = 6 d
σ(5) = c label(b) = 65 and label(a) = 5 d, c
σ(4) = b label(a) = 54 and label(e) = 4 d, c, b
σ(3) = f label(e) = 43 d, c, b, f
σ(2) = a d, c, b, f, a
σ(1) = e d, c, b, f, a, e

Figure – A step by step computation of a LBFS ordering on G starting
at vertex d .

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

The + tie-break rule

The + tie-break rule

At each step of the algorithm, the next vertex to be visited is the
rightmost (or last) vertex of S in the ordering τ . S is the set of
eligible vertices.
This + rule is due to K. Simon (1992). He used it in an
”algorithm” to recognize interval graphs.

Intuitively

This tool is used for multisweep graph searches. And the idea is to
keep for tied vertices the ordering of the previous search.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

The + tie-break rule

The + tie-break rule

At each step of the algorithm, the next vertex to be visited is the
rightmost (or last) vertex of S in the ordering τ . S is the set of
eligible vertices.
This + rule is due to K. Simon (1992). He used it in an
”algorithm” to recognize interval graphs.

Intuitively

This tool is used for multisweep graph searches. And the idea is to
keep for tied vertices the ordering of the previous search.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

a

b

c

d

e f

Figure – with
σ0 = d , c , b, f , a, e

LBFS+(G , σ0) = σ1 = e, f , b, d , c , a

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starting from and ordering of the vertices σ0 we compute the
following sequence : σi+1 = LBFS+(G , σi).
It should be noticed that σi+1 is uniquely defined by
LBFS+(G , σi).

Cycling

Due to the finite number of vertex orderings such a sequence must
loop in a finite cycle of vertex orderings, which leads to the
following definition.

Definition

Let us define for a graph G , LexCycle(G) as the maximum length
of a cycle of vertex orderings obtained via a sequence of LBFS+. a

a. It should be noticed that in this definition there is no assumption on the
starting vertex ordering σ0.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starting from and ordering of the vertices σ0 we compute the
following sequence : σi+1 = LBFS+(G , σi).
It should be noticed that σi+1 is uniquely defined by
LBFS+(G , σi).

Cycling

Due to the finite number of vertex orderings such a sequence must
loop in a finite cycle of vertex orderings, which leads to the
following definition.

Definition

Let us define for a graph G , LexCycle(G) as the maximum length
of a cycle of vertex orderings obtained via a sequence of LBFS+. a

a. It should be noticed that in this definition there is no assumption on the
starting vertex ordering σ0.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starting from and ordering of the vertices σ0 we compute the
following sequence : σi+1 = LBFS+(G , σi).
It should be noticed that σi+1 is uniquely defined by
LBFS+(G , σi).

Cycling

Due to the finite number of vertex orderings such a sequence must
loop in a finite cycle of vertex orderings, which leads to the
following definition.

Definition

Let us define for a graph G , LexCycle(G) as the maximum length
of a cycle of vertex orderings obtained via a sequence of LBFS+. a

a. It should be noticed that in this definition there is no assumption on the
starting vertex ordering σ0.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

a

b

c

d

e f

Figure – with
σ0 = d , c , b, f , a, e

LBFS+(G , σ0) = σ1 = e, f , b, d , c , a
LBFS+(G , σ1) = σ2 = a, c , b, d , e, f
LBFS+(G , σ2) = σ3 = f , e, b, d , c , a

LBFS+(G , σ3) = σ4 = a, c, b, d , e, f = σ2
Therefore with the cycle [σ2, σ3, σ2], LexCycle(G) ≥ 2 and there is

no cycle of length 3 (to be checked by hand) then
LexCycle(G) = 2.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Another example

a
b

c

d

e

f

σ0 = f , d , a, e, b, c
σ1 = LBFS+(G , σ0) = c , b, d , f , a, e
σ2 = LBFS+(G , σ1) = e, f , d , b, a, c

σ3 = LBFS+(G , σ2) = c , b, d , f , a, e = σ1
C2 = [σ1, σ2, σ1]

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

I We will study here the first properties of this new graph
invariant. Due to the + rule, LexCycle(G) ≥ 2.

I At first glance we know that LexCycle(G) ≤ |V (G)|!, more
precisely LexCycle(G) is bounded by the number of LBFS
orderings of G .

I But there is no evidence for another general bound such as for
example |V (G)|2.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

I We will study here the first properties of this new graph
invariant. Due to the + rule, LexCycle(G) ≥ 2.

I At first glance we know that LexCycle(G) ≤ |V (G)|!, more
precisely LexCycle(G) is bounded by the number of LBFS
orderings of G .

I But there is no evidence for another general bound such as for
example |V (G)|2.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

I We will study here the first properties of this new graph
invariant. Due to the + rule, LexCycle(G) ≥ 2.

I At first glance we know that LexCycle(G) ≤ |V (G)|!, more
precisely LexCycle(G) is bounded by the number of LBFS
orderings of G .

I But there is no evidence for another general bound such as for
example |V (G)|2.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Asteroidal number

A set A ⊆ V of G forms an asteroidal set if for each vertex a ∈ A,
the set A\{a} is contained in one connected component of
G [V \N[a]]. The maximum cardinality of an asteroidal set of G ,
denoted an(G), is called the asteroidal number of G . A graph is
AT-free if it does not contain an asteroidal triple.

Conjecture Juraj Stacho (2015)

LexCycle(G) ≤ an(G)

But unfortunately we will now construct a counterexample. Let us
consider first some interesting examples with high values of
LexCycle.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Asteroidal number

A set A ⊆ V of G forms an asteroidal set if for each vertex a ∈ A,
the set A\{a} is contained in one connected component of
G [V \N[a]]. The maximum cardinality of an asteroidal set of G ,
denoted an(G), is called the asteroidal number of G . A graph is
AT-free if it does not contain an asteroidal triple.

Conjecture Juraj Stacho (2015)

LexCycle(G) ≤ an(G)

But unfortunately we will now construct a counterexample. Let us
consider first some interesting examples with high values of
LexCycle.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Asteroidal number

A set A ⊆ V of G forms an asteroidal set if for each vertex a ∈ A,
the set A\{a} is contained in one connected component of
G [V \N[a]]. The maximum cardinality of an asteroidal set of G ,
denoted an(G), is called the asteroidal number of G . A graph is
AT-free if it does not contain an asteroidal triple.

Conjecture Juraj Stacho (2015)

LexCycle(G) ≤ an(G)

But unfortunately we will now construct a counterexample. Let us
consider first some interesting examples with high values of
LexCycle.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

f y

x a e
b c d

z

σ = LBFS(G3) = x , b, a, c, e, f , d , z , y

τ = LBFS+(G3, σ) = y , f , e, a, c , d , b, x , z

θ = LBFS+(G3, τ) = z , d , c , e, a, b, f , y , x

σ = LBFS+(G3, θ) = x , b, a, c , e, f , d , z , y

Figure – G3 with an asteroidal triple (x , y , z), and 3-cycle
C3 = [σ, τ, θ, σ].

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

z1 x1
x4

y1 y2

y4
y3

z2

x2

x3

z3

z4

σ = LBFS(G4) = x4, z4, y1, y3, y4, y2, z2, z1, z3, x2, x3, x1

τ = LBFS+(G4, σ) = x1, z1, y2, y4, y1, y3, z3, z2, z4, x3, x4, x2

θ = LBFS+(G4, τ) = x2, z2, y3, y1, y2, y4, z4, z3, z1, x4, x1, x3

ε = LBFS+(G4, θ) = x3, z3, y4, y2, y3, y1, z1, z4, z2, x1, x2, x4

σ = LBFS+(G4, ε) = x4, z4, y1, y3, y4, y2, z2, z1, z3, x2, x3, x1

C4 = [σ, τ, θ, ε, σ]

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starjoin

For a family of graphs {Gi}1≤i≤k , we define
H = Starjoin(G1, . . .Gk) as follows : For i ∈ [k], add a universal
vertex gi to Gi , then add a root vertex r adjacent to all gi ’s.

Property

If H = Starjoin(G1, . . .Gk) then
an(H) = max{k,max1≤i≤k{an(Gi)}} and
LexCycle(H) ≥ lcm1≤i≤k{|Ci |} where lcm stands for least common
multiple, and Ci is a cycle in a sequence of LBFS+ orderings of Gi .

Counterexample

If H = Starjoin(G3,G4), then an(H) = 5 and LexCycle(H) ≥ 12.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starjoin

For a family of graphs {Gi}1≤i≤k , we define
H = Starjoin(G1, . . .Gk) as follows : For i ∈ [k], add a universal
vertex gi to Gi , then add a root vertex r adjacent to all gi ’s.

Property

If H = Starjoin(G1, . . .Gk) then
an(H) = max{k,max1≤i≤k{an(Gi)}} and
LexCycle(H) ≥ lcm1≤i≤k{|Ci |} where lcm stands for least common
multiple, and Ci is a cycle in a sequence of LBFS+ orderings of Gi .

Counterexample

If H = Starjoin(G3,G4), then an(H) = 5 and LexCycle(H) ≥ 12.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Starjoin

For a family of graphs {Gi}1≤i≤k , we define
H = Starjoin(G1, . . .Gk) as follows : For i ∈ [k], add a universal
vertex gi to Gi , then add a root vertex r adjacent to all gi ’s.

Property

If H = Starjoin(G1, . . .Gk) then
an(H) = max{k,max1≤i≤k{an(Gi)}} and
LexCycle(H) ≥ lcm1≤i≤k{|Ci |} where lcm stands for least common
multiple, and Ci is a cycle in a sequence of LBFS+ orderings of Gi .

Counterexample

If H = Starjoin(G3,G4), then an(H) = 5 and LexCycle(H) ≥ 12.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

REPEATED LBFS+

Algorithm 4: LBFS+ multi-sweep

Require: G = (V ,E)
Ensure: an ordering σ
σ ← LBFS(G)
for i = 2 to |V | do
σ ← LBFS+(G,σ)

end for

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Conjecture J. Dusart, M. Habib 2013

LexCycle(G)=2 for cocomparability graphs a.

a. Could be extended to AT-free graphs

Experimental results

Of course before asking this question we check on millions of
cocomparability graphs (easy to generate).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Conjecture J. Dusart, M. Habib 2013

LexCycle(G)=2 for cocomparability graphs a.

a. Could be extended to AT-free graphs

Experimental results

Of course before asking this question we check on millions of
cocomparability graphs (easy to generate).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Comparability graphs

Comparability graph

A graph G = (V ,E) is a comparability graph if and only if G can
be transitively oriented.

Figure – A comparability graph G and a transitive orientation of G .

Cocomparability graph

A graph G = (V ,E) is a cococomparability graph if and only if G
is a comparability graph.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Comparability graphs

Comparability graph

A graph G = (V ,E) is a comparability graph if and only if G can
be transitively oriented.

Figure – A comparability graph G and a transitive orientation of G .

Cocomparability graph

A graph G = (V ,E) is a cococomparability graph if and only if G
is a comparability graph.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Cocomparability graphs

Definition :

For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that : a <τ b <τ c and ac ∈ E and
ab, bc /∈ E .
A co-comparability (co-comp for short) ordering is an umbrella-free
total ordering of the vertices of G .

a, b, c, an umbrella

Remarks :

A cocomp ordering corresponds to a linear extension of a transitive
orientation of the complement.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Cocomparability graphs

Definition :

For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that : a <τ b <τ c and ac ∈ E and
ab, bc /∈ E .
A co-comparability (co-comp for short) ordering is an umbrella-free
total ordering of the vertices of G .

a, b, c, an umbrella

Remarks :

A cocomp ordering corresponds to a linear extension of a transitive
orientation of the complement.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Vertex orderings

Vertex orderings are very useful for recognition algorithms, when a
graph class can be defined by the existence of an ordering avoiding
some patterns.

I A graph is a co-comparability graph iff it admits a cocomp
ordering

I A graph is an interval graph iff it admits an interval ordering

a b c

I A graph is a proper interval graph iff it admits a proper

interval ordering and

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

I Roughly speaking REPEATED LBFS+ provides such an
ordering for interval (resp. proper interval, cocomparability)
graphs.

I Which can be used as a certificate in the positive case.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

I Roughly speaking REPEATED LBFS+ provides such an
ordering for interval (resp. proper interval, cocomparability)
graphs.

I Which can be used as a certificate in the positive case.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

A very useful lemma (Corneil, Dusart, Habib, Kőhler 2011)

The flipping lemma

if σ is a cocomp ordering and τ = LBFS+(G , σ), then for every
non edge xy /∈ E (G)
x <σ y iff y <τ x
In other words σ and τd are two linear extensions of the same
transitive orientation of G .

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

The particular case of interval graphs

Theorem (Corneil 2004) (Hell, Huang 2004)

For a proper interval graph, a series of 3 LBFS+ produces a proper
interval ordering.

Theorem (Corneil, Olariu and Stewart 2010)

For an interval graph, a series of 5+1 special consecutive LBFS+

produces an interval ordering.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

The particular case of interval graphs

Theorem (Corneil 2004) (Hell, Huang 2004)

For a proper interval graph, a series of 3 LBFS+ produces a proper
interval ordering.

Theorem (Corneil, Olariu and Stewart 2010)

For an interval graph, a series of 5+1 special consecutive LBFS+

produces an interval ordering.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Theorem (Dusart, Habib 2013)

If G = (V ,E) is a cocomparability graph REPEATED LBFS+

always finds a cocomp ordering (so in less than |V | LBFS+).

Best possible

Using a Ma’s family of interval graphs (2000), this result is best
possible, i.e., a constant number of LBFS would not be enough for
all graphs.

Alea typical question

What is the average convergence of REPEATED LBFS+ ?

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Theorem (Dusart, Habib 2013)

If G = (V ,E) is a cocomparability graph REPEATED LBFS+

always finds a cocomp ordering (so in less than |V | LBFS+).

Best possible

Using a Ma’s family of interval graphs (2000), this result is best
possible, i.e., a constant number of LBFS would not be enough for
all graphs.

Alea typical question

What is the average convergence of REPEATED LBFS+ ?

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Theorem (Dusart, Habib 2013)

If G = (V ,E) is a cocomparability graph REPEATED LBFS+

always finds a cocomp ordering (so in less than |V | LBFS+).

Best possible

Using a Ma’s family of interval graphs (2000), this result is best
possible, i.e., a constant number of LBFS would not be enough for
all graphs.

Alea typical question

What is the average convergence of REPEATED LBFS+ ?

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

LBFS OrderingsLBFS Orderings
Cocomp ordersCocomp orders

Landscape for cocomparability graphs

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Consequences

Dusart, Habib 2013

It gives a very easy to program : REPEATED LBFS+ for
cocomparability graph recognition or transitive orientation of a
comparability graph with O(nm) worst-case complexity.

If the LexCycle conjecture is true

We could avoid some LBFS+ with the following algorithm.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Consequences

Dusart, Habib 2013

It gives a very easy to program : REPEATED LBFS+ for
cocomparability graph recognition or transitive orientation of a
comparability graph with O(nm) worst-case complexity.

If the LexCycle conjecture is true

We could avoid some LBFS+ with the following algorithm.

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Algorithm 5: Potential cocomp ordering or transitive orientation
algorithm

Input: G a connected graph

Output: a cocomp ordering of G iff G is a cocomparability graph

σ1 ← LBFS(G);
σ2 ← LBFS+(G , σ1);
σ3 ← LBFS+(G , σ2);
i ← 3;
while σi 6= σi−2 do

i ← i + 1 ;
σi ← LBFS+(G , σi−1);

end
Output σi ;

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Partial results

I LexCycle(T)=2 for every tree T (in fact a result on BFS).

I For a given class of graphs C, if for all prime graphs H
LexCycle(H) = 2, then for every graph G ∈ C
LexCycle(G) = 2. So the result holds for cographs.

I If G is a proper interval then Algorithm 3 stops with σ5 = σ3
and σ4 = σd3 .

I LexCycle(G) = 2 for interval graphs and cobipartite graphs
and domino-free cocomparability graphs. But also splits
graphs (not always cocomparability graphs).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Partial results

I LexCycle(T)=2 for every tree T (in fact a result on BFS).

I For a given class of graphs C, if for all prime graphs H
LexCycle(H) = 2, then for every graph G ∈ C
LexCycle(G) = 2. So the result holds for cographs.

I If G is a proper interval then Algorithm 3 stops with σ5 = σ3
and σ4 = σd3 .

I LexCycle(G) = 2 for interval graphs and cobipartite graphs
and domino-free cocomparability graphs. But also splits
graphs (not always cocomparability graphs).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Partial results

I LexCycle(T)=2 for every tree T (in fact a result on BFS).

I For a given class of graphs C, if for all prime graphs H
LexCycle(H) = 2, then for every graph G ∈ C
LexCycle(G) = 2. So the result holds for cographs.

I If G is a proper interval then Algorithm 3 stops with σ5 = σ3
and σ4 = σd3 .

I LexCycle(G) = 2 for interval graphs and cobipartite graphs
and domino-free cocomparability graphs. But also splits
graphs (not always cocomparability graphs).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Partial results

I LexCycle(T)=2 for every tree T (in fact a result on BFS).

I For a given class of graphs C, if for all prime graphs H
LexCycle(H) = 2, then for every graph G ∈ C
LexCycle(G) = 2. So the result holds for cographs.

I If G is a proper interval then Algorithm 3 stops with σ5 = σ3
and σ4 = σd3 .

I LexCycle(G) = 2 for interval graphs and cobipartite graphs
and domino-free cocomparability graphs. But also splits
graphs (not always cocomparability graphs).

New perspectives of graph searches on structured families of graphs

A cycling problem with LexBFS

Alea typical question

What is the average number of steps of LBFS+ to reach a cycle ?

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover for cocomp graphs with LDFS

I To find a Minimum Path Cover is NP-hard for arbitrary
graphs (cf. Sophie Laplante’s lecture)

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Ugly polynomial algorithm MH, Möhring, Steiner 1988)

I Another equivalent formulation as the 2-machine scheduling
problem
(Another polynomial algorithm Gabow, Tarjan 1985)

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover for cocomp graphs with LDFS

I To find a Minimum Path Cover is NP-hard for arbitrary
graphs (cf. Sophie Laplante’s lecture)

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Ugly polynomial algorithm MH, Möhring, Steiner 1988)

I Another equivalent formulation as the 2-machine scheduling
problem
(Another polynomial algorithm Gabow, Tarjan 1985)

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover for cocomp graphs with LDFS

I To find a Minimum Path Cover is NP-hard for arbitrary
graphs (cf. Sophie Laplante’s lecture)

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Ugly polynomial algorithm MH, Möhring, Steiner 1988)

I Another equivalent formulation as the 2-machine scheduling
problem
(Another polynomial algorithm Gabow, Tarjan 1985)

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Minimum Path Cover

1. Start with σ any co-comparability ordering of G

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Apply RightMostNeighbour(τ) which gives the path cover

4. Exhibit a certificate of minimality with a cut-set.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 2, 6, 0, 3, 4, 5, 1, 7, 8, 9 a co-comparability ordering

2. τ = LDFS+(G , σ) = 9, 8, 5, 7, 4, 1, 3, 2, 0, 6

3. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 2, 6, 0, 3, 4, 5, 1, 7, 8, 9 a co-comparability ordering

2. τ = LDFS+(G , σ) = 9, 8, 5, 7, 4, 1, 3, 2, 0, 6

3. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 2, 6, 0, 3, 4, 5, 1, 7, 8, 9 a co-comparability ordering

2. τ = LDFS+(G , σ) = 9, 8, 5, 7, 4, 1, 3, 2, 0, 6

3. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Magic

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected
components.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Magic

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9
2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected

components.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Cutset

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9

2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected
components. These vertices can be obtained during the
rightmost neighbour procedure and correspond to backward
edges : 17, 74, 28, 85.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Cutset

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9
2. The cutset S = {1, 7, 2, 8} disconnects G into 6 connected

components. These vertices can be obtained during the
rightmost neighbour procedure and correspond to backward
edges : 17, 74, 28, 85.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Although the algorithm is quite simple,
the proof is not that simple !
Since we need to prove the certifying step by induction.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Maximum independent set for cocomparability graph with
LDFS

1. Start with σ any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Apply GreedyIndependentSet(τ) which gives the independent
set

4. Exhibit a certificate of minimality with a clique cover.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 a co-comparability ordering

2. τ = LDFS+(G , σ) = 0, 7, 9, 8, 6, 5, 3, 4, 2, 1
3. GreedyIndependentSet(τ) = {1, 4, 6, 9, 0}
4. Clique cover : {{0}, {7, 9}, {8, 6}, {5, 3, 4}, {2, 1}}

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 a co-comparability ordering
2. τ = LDFS+(G , σ) = 0, 7, 9, 8, 6, 5, 3, 4, 2, 1

3. GreedyIndependentSet(τ) = {1, 4, 6, 9, 0}
4. Clique cover : {{0}, {7, 9}, {8, 6}, {5, 3, 4}, {2, 1}}

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 a co-comparability ordering
2. τ = LDFS+(G , σ) = 0, 7, 9, 8, 6, 5, 3, 4, 2, 1
3. GreedyIndependentSet(τ) = {1, 4, 6, 9, 0}

4. Clique cover : {{0}, {7, 9}, {8, 6}, {5, 3, 4}, {2, 1}}

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Let us take an example

1. σ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 a co-comparability ordering
2. τ = LDFS+(G , σ) = 0, 7, 9, 8, 6, 5, 3, 4, 2, 1
3. GreedyIndependentSet(τ) = {1, 4, 6, 9, 0}
4. Clique cover : {{0}, {7, 9}, {8, 6}, {5, 3, 4}, {2, 1}}

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

Greedy algorithm skeleton

1. Start with σ any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS+(G , σ) to produce an ordering τ .

3. Find the rightmost structure (ex : rightmost path cover,
rightmost independent set . . .) with respect to τ

4. Exhibit a certificate of optimality.

New perspectives of graph searches on structured families of graphs

Greedy aspects of LDFS on cocomparability graphs

In other words

1. a preprocessing to obtain a cocomp ordering σ

2. LDFS+(G , σ) produces a layered cocomp ordering τ .

3. Following τ collect in a greedy way an optimum solution

4. Exhibit a certificate of optimality.

New perspectives of graph searches on structured families of graphs

Conclusions and perspectives

Motivation to the study of graph searches

Diameter computations with BFS

A cycling problem with LexBFS

Greedy aspects of LDFS on cocomparability graphs

Conclusions and perspectives

New perspectives of graph searches on structured families of graphs

Conclusions and perspectives

I Applying a series of graph searches can be done even on huge
graphs (cf. BFSs for diameter computations)

I Easy extensions : to weighted graphs by substituting Dijkstra’s
algorithm for BFS and to directed graphs

I How much can we learn about the structure of a graph with a
series of graph searches ?

I Other graph searches such as DFS, LDFS ... could also have
such cycling properties with the + rule.

I Understand the ”matroidal” aspects of LDFS. We have found
around 10 algorithms that can be put in this framework
(including the Kosaraju and Sharir’s algorithm for strongly
connected components), in which the lexicographic rightmost
object is the optimum.

New perspectives of graph searches on structured families of graphs

Conclusions and perspectives

Many thanks for your attention ! !

	Motivation to the study of graph searches
	Diameter computations with BFS
	A cycling problem with LexBFS
	Greedy aspects of LDFS on cocomparability graphs
	Conclusions and perspectives

