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ROOTED PLANAR EULERIAN ORIENTATIONS

Each vertex has equally many incoming as outgoing edges.
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ONE EDGE ROOTED PLANAR EULERIAN ORIENTATIONS

There is 1 planar rooted Eulerian orientations with one edge.
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TWO EDGE ROOTED PLANAR EULERIAN ORIENTATIONS

There are 5 planar rooted Eulerian orientations with two edges.
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COUNTING ROOTED PLANAR EULERIAN ORIENTATIONS

Let gn be the number of rooted planar Eulerian orientations with
n edges.

g1 = 1.

g2 = 5.

Aim: Find a formula for gn.
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BACKGROUND ON THE PROBLEM

In 2016, Bonichon, Bousquet-Mélou, Dorbec and Pennarun
posed the problem of enumerating planar rooted Eulerian
orientations with a given number of edges.

They computed the number gn of these orientations for n ≤ 15.

They also proved that the growth rate

µ = lim
n→∞

n
√

gn

exists and lies in the interval (11.56, 13.005)
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QUARTIC PLANAR ROOTED EULERIAN ORIENTATIONS

quartic: Each vertex has degree 4.

Let qn be the number of quartic rooted planar Eulerian
orientations with n vertices.

Bonichon et al. also posed the problem of enumerating these.

In physics, this is equivalent to the ice type model on a random
lattice studied by Zinn-Justin and Kostov.

Also, 6qn is the number of properly three coloured
quadrangulations with n faces.
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BIJECTION TO LABELLED MAPS
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LABELLED MAPS

Labelled maps are rooted planar maps with labelled vertices such that:

The root edge is labelled from 0 to 1.

Adjacent labels differ by 1.

By the bijection, gn is the number of labelled maps with n edges.
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LABELLED QUADRANGULATIONS

By our bijection, qn (the number of quartic eulerian orientations with
n vertices) is the number of labelled quadrangulations with n faces.
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COUNTING LABELLED QUADRANGULATIONS

By generalising the problem, we deduce a system of functional
equations which defines qn:

qn = [ytn]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).

I will show one element of the proof.

Exact Enumeration of Planar Eulerian Orientations Andrew Elvey Price



COUNTING LABELLED QUADRANGULATIONS

By generalising the problem, we deduce a system of functional
equations which defines qn:

qn = [ytn]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).

I will show one element of the proof.

Exact Enumeration of Planar Eulerian Orientations Andrew Elvey Price



COUNTING LABELLED QUADRANGULATIONS

By generalising the problem, we deduce a system of functional
equations which defines qn:

qn = [ytn]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).

I will show one element of the proof.

Exact Enumeration of Planar Eulerian Orientations Andrew Elvey Price



D-PATCHES

D-patch: Digons are allowed next to the root vertex and the outer face
may have any degree.
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DECOMPOSITION OF D-PATCHES

Colour the vertex two places clockwise from the root vertex around
the outer face.
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DECOMPOSITION OF D-PATCHES

Highlight the maximal connected subgraph of nonpositive labels,
containing the coloured vertex.
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DECOMPOSITION OF D-PATCHES

Add to the subgraph all vertices and edges contained in its inner
face(s).
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DECOMPOSITION OF D-PATCHES

Record the subgraph with inverted labels.

This extracted map is a
patch!
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex.

The new map is now a
D-patch
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EQUATIONS FOR LABELLED QUADRANGULATIONS

qn = [ytn]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).
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SOLVING THE EQUATIONS

At this point we just needed to guess the values of the series P, C
and D and verify that the guesses satisfy the equations.

Bref, we did.

hello

whatever

whatever

whatever
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SOLUTION FOR LABELLED QUADRANGULATIONS

tP(t, ty) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)(
3n− j

n

)
yjRn+1,

C(t, x, ty) = 1−exp

−∑
n≥0

n∑
j=0

2n−j∑
i=0

1
n + 1

(
2n− j

n

)(
3n− i− j

n

)
xi+1yj+1Rn+1

 ,

D(t, x, ty) = exp

∑
n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n− j

n

)(
3n + i− j + 1

2n− j

)
xiyj+1Rn+1

 ,

where R(t) satisfies

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1 :
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SOLUTION FOR LABELLED QUADRANGULATIONS

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1.

The number of labelled quadrangulations with n faces is then

qn = −1
3
[tn+2]R(t).

Asymptotically this behaves as

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
This asymptotic form verifies predictions of Kostov, Zinn-Justin and
Guttmann. This appears to be the first exactly solved map problem
with this universality class.
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GENERAL ROOTED PLANAR EULERIAN ORIENTATIONS
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ENUMERATING GENERAL ROOTED PLANAR EULERIAN

ORIENTATIONS

Rooted planar Eulerian are in bijection with labelled maps (both
counted by edges).

I will now describe a bijection to labelled quadrangulations
(counted by faces) in which each face has three distinct labels.

This bijection is based on the mobile construction of Bouttier, Di
Francesco and Guitter.
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Start with a quadrangulation in which each face has three labels.

The
new map is now a D-patch
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Add a black vertex in each face.

The new map is now a D-patch
woooooooooooooooooP D-patch
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Around each face, put a cross at each corner whose label is greater
than the next label clockwise.

The new map is now a D-patch

1

2

1

3

2

1

1

0

1

0

2

Exact Enumeration of Planar Eulerian Orientations Andrew Elvey Price



BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Draw an edge from each black vertex to each surrounding corner with
a cross.

The new map is now a D-patch
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Remove all of the original edges.

This invisible bit needs to be long
enough to get to the next line.
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.

1

2

1

3

2

1

1

1

2

Exact Enumeration of Planar Eulerian Orientations Andrew Elvey Price



BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

So far this is identical to the mobile bijection of Bouttier et al. (apart
from the initial labelled map)
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

Remove the black vertices.

This invisible bit needs to be long enough
to get to the next line.
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO

LABELLED MAPS.

This map will either be a labelled map, or will become one when each
label ` is changed to 2− `.
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BIJECTION FROM RESTRICTED QUADRANGULATIONS TO
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ENUMERATING GENERAL ROOTED PLANAR EULERIAN

ORIENTATIONS

So, 2gn is the number of labelled quadrangulations with n faces
in which each face has three distinct labels.

We solve this problem in a similar way to how we enumerated
labelled quadrangulations.
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ENUMERATING ROOTED PLANAR EULERIAN

ORIENTATIONS

The number of rooted planar Eulerian orientations with n edges is
then

gn = −1
4
[tn+2]S(t),

where S(t) is the unique series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

S(t)n+1.

Asymptotically this behaves as

gn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/16 and µ = 4π.
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FURTHER QUESTIONS

Is there a more direct, less algebraic proof of our formulas for qn

and gn?

Can we generalise these results by counting labelled
quadrangulations with a weight ω per face with only two distinct
labels? In physics, this corresponds to the six vertex model on a
random lattice.

What about other weights?
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THANK YOU

Thank you!
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BONUS SLIDE: GUESSING THE SOLUTIONS

Using an earlier system of equations, Tony Guttmann and I
computed the first 100 values of qn.

By analysing the series, Tony guessed the exact asymptotic form
of the series, including the growth rate 4

√
3π.

Mireille noticed that this growth rate had appeared before, in
enumerating quadrangulations decorated by a spanning forest.

So, we searched for an algebraic relationship between the
problems, and we found one!
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BONUS SLIDE: GUESSING THE SOLUTIONS

We then transformed the series by writing P(t, y) = tP(t, ty),
C(t, x, y) = C(t, x, ty) and D(t, x, y) = D(t, x, ty) to remove t
from the equations.

Next, we wrote P(t, y), C(t, x, y) and D(t, x, y) as series in R, x
and y.

We noticed that P(t, y) is a simple hypergeometric function of R
and y.

After looking up some specialisations of D(t, x, y) in oeis, we
guessed that it was an exponential of something simpler.

Indeed, log(D(t, x, y)) is a simple hypergeometric function of R,
x and y!
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