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Model and definitions 1: Multigraphs

Multigraphs MG :

loops or multiple edges allowed
labeled AND oriented edges, 1 2

3 4

5
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2 3

4
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6
7

8
9

Number of (n,m)-multigraphs, with n vertices, m edges:

Exponential generating series:

MG(z, w) =
∑
n,m

MGn,m
zn

n!
wm

2mm! =
∑
n≥0

en
2w/2 zn

n!

labeled vertices,

MGn,m = n2m



Model and definitions 2: Weighted multigraphs

Multigraphs MG∆ :

loops or multiple edges allowed
labeled AND oriented edges, 1 2

3 4

5
1

2 3

4
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6
7

8
9

Weight of (∆, n,m)-multigraphs, with n vertices, m edges:

labeled vertices,

MG∆,n,m =
∑

G∈MG∆,n,m

ω(G) =
∑

G∈MG∆,n,m

∏
v∈G δdeg v

+ weights δd on vertices of degree d

Exponential GS for a single vertex with pendant half-edges

∆(x) =
∑
d≥0

δd
xd

d! , x marks half-edges
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Exponential GS: MG∆(z, x) = ez∆(x)

⇒MG∆,n,m = (2m)![x2m]∆(x)n



Model and definitions 2: Weighted multigraphs

Multigraphs MG∆ :

loops or multiple edges allowed
labeled AND oriented edges, 1 2

3 4

5
labeled vertices,

+ weights δd on vertices of degree d

Exponential GS for a single vertex with pendant half-edges

∆(x) =
∑
d≥0

δd
xd

d! , x marks half-edges

1
2

3

4

j

2j − 1 2j

Examples:

• d-regular graphs: ∆(x) = xd

d!

• Eulerian graphs: ∆(x) = cosh(x)

• For any nonnegative integer set D, D-graphs: δd = 1d∈D
• Any degree allowed, but different distribution: power law graphs

P(deg(v) = d) ∝ d−β , i.e. δd = d−β · d! and ∆ evaluated at x = 1



Model and definitions 3: Patterns

Pattern:

• Given a multigraph F , which may appear
as a subgraph after relabeling

1 2

3 4

5

Given a multigraph G:

How to count occurrences of the pattern?

11

3

17

2

15

18

4

5
1 6

8

1912

9

10

13

1417
7

G[F ] = number of occurrences
of F in G

ex: here G[F ] = 5

F :

G:

MGF∆(z, w, u) =
∑

G∈MG∆

uG[F ]ω(G) z
n(G)

n(G)!
wm(G)

2m(G)m(G)!

Question: Estimate [znwmut]MGF∆(z, w, u) when n,m→∞



Marking one occurrence of the pattern

MG(F )
∆ := Multigraphs with exactly one distinguished F -subgraph

Theorem [CdPGGV’18]:

MG
(F )
∆,n,m = n!2mm![znwm]

∑
j≥0

(2j)![x2j ]F (z, w, ∂̄∆(x))ez∆(x) wj

2jj!

Let F (z, w, y) be the EGF of the pattern (yd marks vertices of degree d),

where ∂̄∆(x) := (∆(x),∆′(x),∆′′(x), . . .).



Marking one occurrence of the pattern

Proof (exact):

Construct an element of MG(F )
∆
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Marking one occurrence of the pattern

Proof (exact):

Construct an element of MG(F )
∆

• One copy of F + extra vertices

F (z, w, y)ez∆(x)
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where ∂̄∆(x) := (∆(x),∆′(x),∆′′(x), . . .).

• Extra half-edges on F : DANGER
yd → ∆(d)(x)



Marking one occurrence of the pattern

Proof (exact):

Construct an element of MG(F )
∆

• One copy of F + extra vertices

F (z, w, y)ez∆(x)

MG(F )
∆ := Multigraphs with exactly one distinguished F -subgraph

Theorem [CdPGGV’18]:

MG
(F )
∆,n,m = n!2mm![znwm]

∑
j≥0

(2j)![x2j ]F (z, w, ∂̄∆(x))ez∆(x) wj

2jj!

Let F (z, w, y) be the EGF of the pattern (yd marks vertices of degree d),

where ∂̄∆(x) := (∆(x),∆′(x),∆′′(x), . . .).

• Extra half-edges on F : DANGER
yd → ∆(d)(x)

• Connect half-edges 2j − 1 to 2j to form edge j



Marking one occurrence of the pattern

MG(F )
∆ := Multigraphs with exactly one distinguished F -subgraph

Theorem [CdPGGV’18]:

Under some regularity conditions on ∆ and F , when 2m
n →n→∞ `:

(asymptotics) MG
(F )
∆,n,m ∼n→∞ F

(
n, 1

2m ,
(
χd∆(d)(χ)

∆(χ)

)
d≥0

)
·MG∆,n,m

Proof (asymptotics): Laplace method and saddle-point techniques,

Corollary:

For G a random multigraph in MG∆,n,m, with P[G] = ω(G)
MG∆,n,m

,

E[G[F ]] ∼n→∞ F

(
n, 1

2m ,
(
χd∆(d)(χ)

∆(χ)

)
d≥0

)

where χ := χn solution of: χ∆′(χ)
∆(χ) = 2m

n .

with moving saddle-points.



Marking one occurrence of the pattern

Corollary [Erdős-Rényi’60]:

P(G[F ] > 0)→ 0 when n→∞ and m = o(n2−n(F )/m(F ))

Given a pattern F , and G a uniform random multigraph from MGn,m

Proof:

E(G[F ]) =
MG(F )

n,m

MGn,m
∼ F (n, 1

2m ,
(
( 2m
n )d

)
d≥0

) = nn(F )

n(F )!
(2m)m(F )

n2m(F )2m(F )m(F )!

= o(nn(F )−2m(F )+m(F )(2−n(F )/m(F )))

Threshold phenomenon:

•m = o(n2−n(F )/m(F )): no occurrence of F a.s.

•m� n2−n(F )/m(F ): many occurrences of F a.s.

•m = cn2−n(F )/m(F ): G[F ] follows a Poisson law, for special F

Uniform from MGn,m ⇒ ∆(x) = ex ⇒ χ = 2m
n



Patchworks

Problem: we can only access expectancy!

Solution: patchworks!

PWF := Set of gluings of copies of the pattern

F : PWF :

Idea: replace F (z, w,y) by PWF
u (z, w,y) in previous equations

⇒ distinguish a subset of copies of F , u marks the number of copies

inclusion-exclusion principle: u→ u+ 1

MGF∆(z, w, u+ 1) =
∑
j≥0

(2j)![x2j ]PWF
u (z, w, ∂̄∆(x))ez∆(x) wj

2jj!
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Patchworks

Problem: we can only access expectancy!

Solution: patchworks!

PWF := Set of gluings of copies of the pattern

F : PWF :

Idea: replace F (z, w,y) by PWF
u (z, w,y) in previous equations

⇒ distinguish a subset of copies of F , u marks the number of copies

inclusion-exclusion principle: u→ u+ 1

MGF∆(z, w,u) =
∑
j≥0

(2j)![x2j ]PWF
u-1(z, w, ∂̄∆(x))ez∆(x) wj

2jj!



Strictly balanced patterns

Problem (again): patchworks are messy (in general)!

Solution: strictly balanced graphs!

F strictly balanced iff ∀H ⊂ F,H 6= F, d(H) < d(F )

Idea: replace PWF
u (z, w,y) by set of disjoint copies of F → euF (z,w,y).

Property: Any connected patchwork of a strictly balanced graph

with at least two copies is strictly denser than the graph itself.

Theorem [CdPGGV’18]:

Under some regularity conditions on ∆ and F , when m = Θ(n2−1/d(F )):

if F is strictly balanced then G[F ] follows a Poisson law

where χ := χn solution of: χ∆′(χ)
∆(χ) = 2m

n .

of parameter lim
n→∞

F

(
n, 1

2m ,
(
χd∆(d)(χ)

∆(χ)

)
d≥0

)



Applications

Corollary [Cycles]:

Let m = cn (c > 0), if λ := lim
n→∞

nk

2mk

(
χ2∆′′(χ)

∆(χ)

)k
> 0

The number of cycles of length k in a random (n,m,∆)-multigraph

follows a Poisson law of parameter λ.

Corollary [Complex patterns]:

Any connected graph that is neither a tree nor a unicycle is

asymptotically almost surely not a subgraph of G, when m = cn (c > 0).



Beyond

• Many results transfer to simple graphs.
• Main theorem can be extended to special cases:

counting trees → m = o(n)

periodic sets D

power law profile → ∆(x) has finite radius of convergence

Further research:

• Obtain laws for non-strictly balanced patterns

• Behaviour around the threshold m = cn2−n(F )/m(F )

Extensions:

E[G[C`]] ∼n→∞ κβ,`n
` 3−β
β−1

Expected number of cycles of length `, when δd = d−βd!, 2 < β < 3

Theorem [CdPGGV’18]:

where κβ,` computable constant.



Thank you



Master Theorem Hypothesis

Let χ be the unique positive solution of χ∆′(χ)
∆(χ) = 2m

n

Assume:

(L1) 2m/n→n→∞ c > 0,

(L2)
F

(
nz

∆(xχ)
,
(xχ)2

2mt2
,(∂̄∆)(xχ)

)
F
(

n
∆(χ)

, χ
2

2m ,(∂̄∆)(χ)
) (unif)→ L(z, x, t), analytic, as n→∞

for |z|, |x| = 1 and t in any compact sub-interval of [0,∞[.

(L3) ∀0 < ε < π
2 ,
∫ π
−π

∆(χeiθ)
n

e2niθ
dθ ∼

∫ ε
−ε

∆(χeiθ)
n

e2niθ
dθ, as n→∞.

Then, the total weight of (n,m,∆)-multigraphs is asymptotically

|MG
(F )
n,m,∆| ∼ |MGn,m,∆| · F

(
n

∆(χ) ,
χ2

2m , (∂̄∆)(χ)
)

where |MGn,m,∆| = (2m)![x2m]∆(x)n


