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Model and definitions 1: Multigraphs

Multigraphs MG
labeled vertices,
labeled AND oriented edges,

loops or multiple edges allowed

Number of (n, m)-multigraphs, with n vertices, m edges:
MG, m = n2m

Exponential generating series:

MG(z,w) = ZMGnmn, zmm'_ > e w/2,z
n,m n>0




Model and definitions 2: Weighted myltigraphs

Multigraphs MG
labeled vertices,
labeled AND oriented edges,

loops or multiple edges allowed
+ weights 04 on vertices of degree d

A(x) = dz>:o 5d%, x marks half-edges

Weight of (A, n, m)-multigraphs, with n vertices, m edges:

MGA,n,m — Z W(G) — Z vag 5degv
GEMGA n.m GEMGA n,m

Exponential GS for a single vertex with pendant half-edges *
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Model and definitions 2: Weighted multigraphs
Multigraphs MG QLl 2

labeled vertices, -— o o
labeled AND oriented edges, j

1 2

. 3% —\

loops or multiple edges allowed . o .
<

+ weights 04 on vertices of degree d 2j —1 2

Exponential GS for a single vertex with pendant half-edges
Alx) = 5d%, x marks half-edges 7%

d>0
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Exponential GS: MGa(z,x) = e#A®)

= MGA nm = 2m)![z*™]A(x)"



Model and definitions 2: Weighted multigraphs
Multigraphs MG QLl 2

labeled vertices,

-
Lo

J

labeled AND oriented edges,
loops or multiple edges allowed

1 2
3% _\

4 . .
+ weights 04 on vertices of degree d 3\<— %/4 2j—1 2j

Exponential GS for a single vertex with pendant half-edges 7%

A(x) = dz>:o 5d%, x marks half-edges

Examples:
led
d!

e Eulerian graphs: A(z) = cosh(x)

e d-regular graphs: A(x) =

e For any nonnegative integer set D, D-graphs: 04 = 14¢p
e Any degree allowed, but different distribution: power law graphs

P(deg(v) =d) ocd™”, ie. 6q=d " -d! and A evaluated at z =1



Model and definitions 3: Patterns

Pattern: I 1 :
e Given a multigraph F', which may appear
as a subgraph after relabeling
3 4
How to count occurrences of the pattern?
. . 17
Given a multigraph G: G: s
G[F] = number of occurrences . e
of F'in G
ex: here G[F] =9 12 19 3
h 18
.
n(G) m(G) A
MGZ(Z, w, u) — Z UG[F]M(G) Z(G)! Qm%UG)m(G)!
GeMGAa

Question: Estimate [z"w™u!|MG% (z,w,u) when n,m — oo



Marking one occurrence of the pattern

MQ(AF) := Multigraphs with exactly one distinguished F'-subgraph
Theorem [CdPGGV’18]:
Let F'(z,w,y) be the EGF of the pattern (y; marks vertices of degree d),

27 171
i>0 /

where dA(z) == (A(z), A (z), A" (z),...).
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Marking one occurrence of the pattern

MQ(AF) := Multigraphs with exactly one distinguished F'-subgraph

Theorem [CdPGGV’18]:

Let F'(z,w,y) be the EGF of the pattern (y; marks vertices of degree d),
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2731
7>0 I

where A (x) := (A(z), A'(z), A (z)
Proof (exact):

Construct an element of MQ(AF) )

e One copy of F' + extra vertices
F(z,w,y)e*>®)




Marking one occurrence of the pattern

MQ(AF) := Multigraphs with exactly one distinguished F'-subgraph
Theorem [CdPGGV’18]:
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Marking one occurrence of the pattern

MQ(AF) := Multigraphs with exactly one distinguished F'-subgraph

Theorem [CdPGGV’18]:
Let F'(z,w,y) be the EGF of the pattern (y; marks vertices of degree d),
MGY) . = nl2mml[zw™] 3 (2))1[2%]F (2, w, 9A(2))e* A 2
o j>0 |
where 0A(x) := (A(x), A'(x), A (x),...).
Proof (exact):

Construct an element of MQ(AF)

e One copy of F' + extra vertices
F(z,w,y)e*>®)
e Extra half-edges on F': DANGER

yq — A ()
e Connect half-edges 25 — 1 to 25 to form edge j




Marking one occurrence of the pattern
MQ(AF) := Multigraphs with exactly one distinguished F'-subgraph

Theorem [CdPGGV’18]:

Under some regularity conditions on A and F, when 22 oo L

d A (d)
(asymptotics) MGY ) . ~n oo F (”’ 2 (X A(X)(X)>d20> MCanm

o XA () _
where Yy := ¥,, solution of: ARG T n

Proof (asymptotics): Laplace method and saddle-point techniques,
with moving saddle-points.

Corollary:
For G a random multigraph in MGA . m, with P|G| = w(G)

MGA,n,m ’
dA(d)
E[G|F]] ~nsoo F (”v T (X A(><)(X))d>o>




Marking one occurrence of the pattern

Corollary [Erdos-Rényi’60]:
Given a pattern F', and G a uniform random multigraph from MG,, ,,

P(G[F] > 0) — 0 when n — oo and m = o(n?~"F)/m{F))
Proof:

Uniform from MG, ., = A(z) = e = y = 2=

n
MG EF) nn (F) (2m)m(F)

E(G[F]) = MGZ:: ~ F(n, ﬁ? ((QTm)d)dZo) — n(F)! n2mE) 2m(F)m(F)!

— O(nn(F)—2m(F)+m(F)(2—n(F)/m(F)))

Threshold phenomenon:

em = o(n . no occurrence of F' a.s.

om = cn? U)/mE) . GIF] follows a Poisson law, for special F

2—n(F)/m(F).

oMM >n . many occurrences of F' a.s.



Patchworks

Problem: we can only access expectancy!
Solution: patchworks!

PW?* := Set of gluings of copies of the pattern

F* PWE:

N

Idea: replace F'(z,w,y) by PWX (z,w,y) in previous equations
= distinguish a subset of copies of F', u marks the number of copies
Inclusion-exclusion principle: © — v+ 1

MGA(z,w,u+1)= > (2j)![$2j]PWf(z,w,5A(x))eZA<$)2"j—;!
720
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Problem: we can only access expectancy!
Solution: patchworks!

PW?* := Set of gluings of copies of the pattern

F* PWE:

N
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720



Strictly balanced patterns

Problem (again): patchworks are messy (in general)!
Solution: strictly balanced graphs!

F' strictly balanced iff VH C F, H # F,d(H) < d(F)
Property: Any connected patchwork of a strictly balanced graph

with at least two copies is strictly denser than the graph itself.

ldea: replace PW ! (z,w,y) by set of disjoint copies of F' — e*f'(zw:y),
Theorem [CdPGGV’18]:

Under some regularity conditions on A and F, when m = ©(n2~1/4(F)).

if I is strictly balanced then G|F] follows a Poisson law

of parameter lim F (n, Z}n’ (Xdﬁ((i)(X)>d> )
>0

n—oo

o : XA (x) _ 2m
where Yy := X, solution of: N



Applications

Corollary [Cycles]:

Let m=cn (c>0),if A= lim 2 (XQA"<X>)k>o
m=-cn (c , — nl_)ﬂ(’)lo 5T NEY

The number of cycles of length k in a random (n, m, A)-multigraph
follows a Poisson law of parameter \.

Corollary [Complex patterns]:

Any connected graph that is neither a tree nor a unicycle is
asymptotically almost surely not a subgraph of GG, when m =cn (¢ > 0).



Beyond

Extensions:

e Many results transfer to simple graphs.
e Main theorem can be extended to special cases:

counting trees — m = o(n)
periodic sets D
power law profile — A(x) has finite radius of convergence

Theorem [CdPGGV’18]:

Expected number of cycles of length ¢, when 6, = d7d!,2 < 3 < 3
34

E[G[C]] ~nsoo kg en 71

where kg ¢ computable constant.

Further research:
e Obtain laws for non-strictly balanced patterns

e Behaviour around the threshold m = cn2—n(F)/m(F)



Thank you



Master Theorem Hypothesis

(X) 2m

Let y be the unique positive solution of £ Ao) =

Assume:
(L1) 2m/n —p 00 ¢ >0,

P (585 25 0800
F(5t5.%5.(08)(0)

for |z],|z| =1 and t in any compact sub-interval of [0, oo].

L(z,x,t), analytic, as n — oo

10 \" 10\ M
(LY Vo<e<Z, [ Alxe”) do ~ [* Alxe) df, as n — oo.

e2nif —€ e2nif
Then, the total weight of (n, m, A)-multigraphs is asymptotically

|MG7(£;);1,A’ ™~ ‘MGn,m,A‘ - (A(X)’ om? (8A)( ))
where |MG,, Al = 2m)[z*™]A(z)"




