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Results on fully dynamic matching models

FCFS
R. Caldentey, E. Kaplan, G. Weiss. FCFS infinite bipartite matching of servers
and customers. Adv. Appl. Probab., 2009.
I. Adan and G. Weiss. Exact FCFS matching rates for two infinite multitype
sequences. Operations Research, 2012.
I. Adan, A. Bušić, J. Mairesse and G. Weiss. Reversibility and further
properties of FCFS infinite bipartite matching. ArXiv, 2015.

Stability
A. Bušić, V. Gupta, and J. Mairesse. Stability of the bipartite matching model.
Adv. in Appl. Probab., 2013.
J. Mairesse and P. Moyal. Stability of the stochastic matching model. J. Appl.
Probab.,2016.

Optimization
A. Bušić and S. Meyn. Approximate optimality with bounded regret in dynamic
matching models. ArXiv, 2016.
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U N I T E D  N E T W O R K  F O R  O R G A N  S H A R I N G

TA L K I N G  A B O U T  T R A N S P L A N TAT I O N

I. Ashlagi, P. Jaillet, and V. H. Manshadi.
Kidney exchange in dynamic sparse heterogenous pools. ACM EC, 2013.
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The case N
A matching graph with two types of buyers and two types of sellers.

s1 s2

b1 b2

β 1− β

α 1− α

`1
`3

`2

Stability condition: β<α
The vector of the queue length of all the nodes (at time t):
Q(t) = (qk(t))k∈{b1,b2,s1,s2}. 8 / 24
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Markov Decision Process

The matchings are carried out after the arrivals at time t:

X (t) = Q(t) + A(t)
Q(t + 1) = X (t)− U(X (t))

Dynamics of the system: X (t + 1) = X (t)− U(X (t)) + A(t + 1)
Markov Decision Process:

Transitions: Pu(x , x ′) =
∑

a 1x−u+a=x ′P(A = a)
Costs: Cu(x , x ′) =

∑
k∈{b1,b2,s1,s2} ckx ′k

Policy: π = (ut)t≥0
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Goal

v∗(x0) = inf
π

lim
N→∞

N−1∑
t=0

θtEπx0 [c(X (t))]

where θ ∈ (0, 1) is a discount factor.

v∗(x0) = inf
π

∞∑
t=0

θtEπx0 [c(X (t))]

= inf
u0
{c(x0) + θ

∑
x1

inf
π
{
∞∑

t=1
θt−1Eπx1 [c(X (t))]}Pu0(x0, x1)}

= inf
u0
{c(x0) + θ

∑
x1

v∗(x1)Pu0(x0, x1)}}
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Operators: Luv(x) = c(x) + θ
∑
x ′

v(x ′)Pu(x , x ′)

Lv(x) = min
u

Luv(x)

Bellman equation

v∗ = Lv∗

How to solve this equation ?
Value iteration

vn+1 = Lvn with v0 ≡ 0
L is a contraction mapping (‖Lv − Lw‖ ≤ θ ‖v − w‖) and using
the Banach Fixed-Point Theorem, vn will converge towards v∗
when n tends to infinity.
See chapter 6 from M.L. Puterman. Markov decision processes: discrete
stochastic dynamic programming. Wiley, 2005.
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Theorem (Puterman 2005)
Assumptions to handle the unbounded costs. Let V σ (the set of
structured value functions) and Dσ (the set of structured
decisions) be such that
(a) v ∈ V σ implies that Lv ∈ V σ;
(b) v ∈ V σ implies that there exists a decision u′ ∈ Dσ such that

u′ ∈ arg minu Luv;
(c) V σ is a closed subset of the set of value functions by simple

convergence.
Then, there exists an optimal stationary policy that belongs to Πσ

(the set of structured policies).
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e`j is the vector with 1 on both nodes of the edge j and 0
elsewhere.

Definition (Increasing)
We say that a function v is increasing in `1 or v ∈ I`1 if

v(x + e`1) ≥ v(x) ∀x ∈ X .

Likewise, v is increasing in `2 or or v ∈ I`2 if

v(x + e`2) ≥ v(x) ∀x ∈ X .

Definition (Priority of `1 and `2 over `3)
A function v ∈ P1,2/3 if

v(x + e`1 + e`2 − e`3) ≥ v(x) ∀x ∈ X .
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Proposition
Let v ∈ I`1 ∩ I`2 ∩ P1,2/3. For any x ∈ X , there exists u∗ ∈ Ux
such that u∗ ∈ arg minu∈Ux Luv(x), (u∗)s1 = min(xb1 , xs1) and
(u∗)b2 = min(xb2 , xs2).

Lemma
If v ∈ I`1 ∩ I`2 ∩ P1,2/3, then Lv ∈ P1,2/3.

Lemma
If a function v ∈ I`1 ∩ I`2 ∩ P1,2/3, then Lv ∈ I`1 ∩ I`2 .
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Motivation for threshold policy

One realisation of X (t) for t = 1, · · · , 1000

A. Bušić and S. Meyn. Approximate optimality with bounded regret in dynamic
matching models. ArXiv, 2016.
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Threshold policy

Definition (Threshold-type matching policy)
A matching policy ux is said to be of threshold type in `3 with
priority to `1 and `2 if:

(ux )s1 = min(xb1 , xs1)
(ux )b2 = min(xb2 , xs2)
(ux )b1 = min(xb1 , xs1) + kt(x)
(ux )s2 = min(xb2 , xs2) + kt(x)

where kt(x) =
{

0 if xb1 − xs1 ≤ t
xb1 − xs1 − t else
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Convexity in `3

Definition (Convexity)
A function v is convex in `3 or v ∈ C`3 if v(x + e`3)− v(x) is
nondecreasing in `3. i.e.,
v(x + 2(e`3))− v(x + e`3) ≥ v(x + e`3)− v(x).

Let x ∈ X , m`1 = min(xs1 , xb1), m`2 = min(xs2 , xb2). We define:
ũx = (m`1 ,m`2 ,m`1 ,m`2)

Kx =
{
{0} if xb1 ≤ xs1

{0, · · · ,min(xb1 − xs1 , xs2 − xb2)} else
k∗(x) = max{k ′ ∈ arg mink∈Kx Lũx +ke`3 v(x)}
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Lemma
Let v be a function that is convex in `3. Let x ∈ X , x = x + e`3 .
Let k ∈ Kx such that k ≤ k∗(x). Then,

k∗(x) ≤ k∗(x) ≤ k∗(x) + 1

Moreover, if we suppose that k∗(x) > 0, we have:
k∗(x) = k∗(x) + 1.

Proposition
Let v ∈ I`1 ∩ I`2 ∩ P1,2/3 ∩ C`3 . There exists u∗ ∈ Ux such that u∗
is a matching policy of threshold type in `3 with priority to `1 and
`2 and u∗ ∈ arg minu∈Ux Luv(x).

Conjecture: the convexity property propagates, i.e if
v ∈ I`1 ∩ I`2 ∩ P1,2/3 ∩ C`3 , then Lv ∈ C`3
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Average cost problem

We also considered the average cost problem:

g∗(x0) = inf
π

lim
N→∞

1
N

N−1∑
t=0

Eπx0 [c(X (t))]

In this case, we use the structured policies method in the
discounted problem and make θ tends towards 1.
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Optimal threshold

Proposition

Let ρ = β(1−α)
α(1−β) ∈ (0, 1), R = cs1 +cb2

cb1 +cs2
and ΠT`3 be the set of

matching policy of threshold type in `3 with priority to `1 and `2.
Assume that the cost function is a linear function. The optimal
threshold t∗, which minimize the average cost on ΠT`3 , is

t∗ =
{
dke if f (dke) ≤ f (bkc)
bkc else

where k =
log ρ−1

(R+1) log ρ
log ρ − 1 and

f (x) = (cb1 + cs2 )x + (cb1 + cb2 + cs1 + cs2 ) ρ
x+1

1−ρ − (cb1 + cs2 ) ρ
1−ρ +

((cb1 + cs1 )αβ + (cb2 + cs2 )(1 − α)(1 − β) + (cb2 + cs1 )(1 − α)β + (cb1 + cs2 )α(1 − β)) .
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Future work

The case W:
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General bipartite graph.
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