Optimal control of the N bipartite matching model

<u>Arnaud Cadas</u>^{1,2} Josu Doncel^{2,3} Ana Bušić^{1,2} ¹Département d'informatique de l'École normale supérieure, CNRS, PSL Research University, Paris, France ²Inria, Paris, France, ³Université du Pays Basque, Bilbao, Espagne

12 march 2018

Introduction Some literature Description of the mode

What is a matching model ?

Introduction Some literature Description of the mode

What is a matching model ?

Introduction

ome literature Description of the model

Hard constraints

Introduction Some literature Description of the model

Different types of matching models

- Stable marriage
- Online stochastic matching
- Fully dynamic matching model

Introduction Some literature Description of the model

Results on fully dynamic matching models

FCFS

R. Caldentey, E. Kaplan, G. Weiss. FCFS infinite bipartite matching of servers and customers. *Adv. Appl. Probab.*, 2009.

I. Adan and G. Weiss. Exact FCFS matching rates for two infinite multitype sequences. *Operations Research*, 2012.

I. Adan, A. Bušić, J. Mairesse and G. Weiss. Reversibility and further properties of FCFS infinite bipartite matching. *ArXiv*, 2015.

Stability

A. Bušić, V. Gupta, and J. Mairesse. Stability of the bipartite matching model. *Adv. in Appl. Probab.*, 2013.

J. Mairesse and P. Moyal. Stability of the stochastic matching model. *J. Appl. Probab.*,2016.

Optimization

A. Bušić and S. Meyn. Approximate optimality with bounded regret in dynamic matching models. *ArXiv*, 2016.

Introduction Some literature Description of the model

TALKING ABOUT TRANSPLANTATION

OPTN Kidney Paired Donation Pilot Program

A transplant option for patients with an incompatible living donor

I. Ashlagi, P. Jaillet, and V. H. Manshadi.

Kidney exchange in dynamic sparse heterogenous pools. ACM EC, 2013.

Introduction Some literature Description of the model

The case N

A matching graph with two types of buyers and two types of sellers.

Stability condition: $\beta < \alpha$ The vector of the queue length of all the nodes (at time *t*): $Q(t) = (q_k(t))_{k \in \{b_1, b_2, s_1, s_2\}}.$

Markov Decision Process Bellman Equation Structured policies

Markov Decision Process

The matchings are carried out after the arrivals at time *t*:

$$egin{aligned} X(t) &= Q(t) + A(t) \ Q(t+1) &= X(t) - U(X(t)) \end{aligned}$$

Dynamics of the system: X(t+1) = X(t) - U(X(t)) + A(t+1)Markov Decision Process:

- Transitions: $P_u(x, x') = \sum_a \mathbb{1}_{x-u+a=x'} \mathbb{P}(A = a)$
- Costs: $C_u(x, x') = \sum_{k \in \{b_1, b_2, s_1, s_2\}} c_k x'_k$

• Policy:
$$\pi = (u_t)_{t \ge 0}$$

 Matching models
 Markov Decision Process

 Dynamic Programming Results
 Bellman Equation Structured policies

Goal

$$v^*(x_0) = \inf_{\pi} \lim_{N \to \infty} \sum_{t=0}^{N-1} \theta^t \mathbb{E}_{x_0}^{\pi}[c(X(t))]$$

where $\theta \in (0, 1)$ is a discount factor.

$$\begin{aligned} v^*(x_0) &= \inf_{\pi} \sum_{t=0}^{\infty} \theta^t \mathbb{E}_{x_0}^{\pi} [c(X(t))] \\ &= \inf_{u_0} \{ c(x_0) + \theta \sum_{x_1} \inf_{\pi} \{ \sum_{t=1}^{\infty} \theta^{t-1} \mathbb{E}_{x_1}^{\pi} [c(X(t))] \} P_{u_0}(x_0, x_1) \} \\ &= \inf_{u_0} \{ c(x_0) + \theta \sum_{x_1} v^*(x_1) P_{u_0}(x_0, x_1) \} \} \end{aligned}$$

Markov Decision Process Bellman Equation Structured policies

Operators:
$$L_u v(x) = c(x) + \theta \sum_{x'} v(x') P_u(x, x')$$

 $Lv(x) = \min_u L_u v(x)$

Bellman equation

$$v^* = Lv^*$$

How to solve this equation ?

Value iteration

$$v^{n+1} = Lv^n$$
 with $v^0 \equiv 0$

L is a contraction mapping $(||Lv - Lw|| \le \theta ||v - w||)$ and using the Banach Fixed-Point Theorem, v^n will converge towards v^* when *n* tends to infinity.

See chapter 6 from M.L. Puterman. *Markov decision processes: discrete stochastic dynamic programming.* Wiley, 2005.

Matching models Markov Decision Process
Dynamic Programming
Results Structured policies

Theorem (Puterman 2005)

Assumptions to handle the unbounded costs. Let V^{σ} (the set of structured value functions) and D^{σ} (the set of structured decisions) be such that

- (a) $v \in V^{\sigma}$ implies that $Lv \in V^{\sigma}$;
- (b) $v \in V^{\sigma}$ implies that there exists a decision $u' \in D^{\sigma}$ such that $u' \in \arg \min_{u} L_{u}v$;
- (c) V^{σ} is a closed subset of the set of value functions by simple convergence.

Then, there exists an optimal stationary policy that belongs to Π^{σ} (the set of structured policies).

Matching modelsPriority to the end nodesDynamic Programming
ResultsThreshold in ℓ_3 Future work

 e_{ℓ_j} is the vector with 1 on both nodes of the edge j and 0 elsewhere.

Definition (Increasing)

We say that a function v is increasing in ℓ_1 or $v \in \mathcal{I}_{\ell_1}$ if

$$v(x+e_{\ell_1}) \geq v(x) \quad \forall x \in \mathcal{X}.$$

Likewise, v is increasing in ℓ_2 or or $v \in \mathcal{I}_{\ell_2}$ if

$$v(x+e_{\ell_2}) \geq v(x) \quad \forall x \in \mathcal{X}.$$

Definition (Priority of ℓ_1 and ℓ_2 over ℓ_3)

A function $v \in \mathcal{P}_{1,2/3}$ if

$$v(x+e_{\ell_1}+e_{\ell_2}-e_{\ell_3})\geq v(x) \quad \forall x\in \mathcal{X}.$$

 Matching models
 Priority to the end nodes

 Dynamic Programming Results
 Threshold in ℓ₃

Matching modelsPriority to the end nodesDynamic ProgrammingThreshold in ℓ_3 ResultsFuture work

Proposition

Let $v \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2} \cap \mathcal{P}_{1,2/3}$. For any $x \in \mathcal{X}$, there exists $u^* \in U_x$ such that $u^* \in \arg\min_{u \in U_x} L_u v(x)$, $(u^*)_{s_1} = \min(x_{b_1}, x_{s_1})$ and $(u^*)_{b_2} = \min(x_{b_2}, x_{s_2})$.

Lemma

If
$$v \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2} \cap \mathcal{P}_{1,2/3}$$
, then $Lv \in \mathcal{P}_{1,2/3}$.

Lemma

If a function $v \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2} \cap \mathcal{P}_{1,2/3}$, then $Lv \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2}$.

 Matching models
 Priority to the end nodes

 Dynamic Programming Results
 Threshold in ℓ₃

Priority to the end nodes Threshold in ℓ_3 Future work

Motivation for threshold policy

One realisation of X(t) for $t = 1, \dots, 1000$

A. Bušić and S. Meyn. Approximate optimality with bounded regret in dynamic matching models. *ArXiv*, 2016.

Priority to the end nodes Threshold in ℓ_3 Future work

Threshold policy

Definition (Threshold-type matching policy)

A matching policy u_x is said to be of threshold type in ℓ_3 with priority to ℓ_1 and ℓ_2 if:

•
$$(u_x)_{s_1} = \min(x_{b_1}, x_{s_1})$$

• $(u_x)_{b_2} = \min(x_{b_2}, x_{s_2})$
• $(u_x)_{b_1} = \min(x_{b_1}, x_{s_1}) + k_t(x)$
• $(u_x)_{s_2} = \min(x_{b_2}, x_{s_2}) + k_t(x)$
where $k_t(x) = \begin{cases} 0 & \text{if } x_{b_1} - x_{s_1} \leq t \\ x_{b_1} - x_{s_1} - t & \text{else} \end{cases}$

Priority to the end nodes Threshold in ℓ_3 Future work

Convexity in ℓ_3

Definition (Convexity)

A function v is convex in
$$\ell_3$$
 or $v \in C_{\ell_3}$ if $v(x + e_{\ell_3}) - v(x)$ is
nondecreasing in ℓ_3 . i.e.,
 $v(x + 2(e_{\ell_3})) - v(x + e_{\ell_3}) \ge v(x + e_{\ell_3}) - v(x)$.
Let $x \in \mathcal{X}$, $m_{\ell_1} = \min(x_{s_1}, x_{b_1})$, $m_{\ell_2} = \min(x_{s_2}, x_{b_2})$. We define:
• $\tilde{u}_x = (m_{\ell_1}, m_{\ell_2}, m_{\ell_1}, m_{\ell_2})$

•
$$K_x = \begin{cases} \{0\} & \text{if } x_{b_1} \le x_{s_1} \\ \{0, \cdots, \min(x_{b_1} - x_{s_1}, x_{s_2} - x_{b_2})\} & \text{else} \end{cases}$$

• $k^*(x) = \max\{k' \in \arg\min_{k \in K_x} L_{\tilde{u}_x + ke_{\ell_3}} v(x)\}$

 Matching models
 Priority to the end nodes

 Dynamic Programming
 Threshold in ℓ_3

 Results
 Future work

Lemma

Let v be a function that is convex in ℓ_3 . Let $\underline{x} \in \mathcal{X}$, $\overline{x} = \underline{x} + e_{\ell_3}$. Let $k \in K_{\underline{x}}$ such that $k \leq k^*(\underline{x})$. Then,

 $k^*(\underline{x}) \leq k^*(\overline{x}) \leq k^*(\underline{x}) + 1$

Moreover, if we suppose that $k^*(\underline{x}) > 0$, we have: $k^*(\overline{x}) = k^*(\underline{x}) + 1$.

Proposition

Let $v \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2} \cap \mathcal{P}_{1,2/3} \cap \mathcal{C}_{\ell_3}$. There exists $u^* \in U_x$ such that u^* is a matching policy of threshold type in ℓ_3 with priority to ℓ_1 and ℓ_2 and $u^* \in \arg \min_{u \in U_x} L_u v(x)$.

Conjecture: the convexity property propagates, i.e if $v \in \mathcal{I}_{\ell_1} \cap \mathcal{I}_{\ell_2} \cap \mathcal{P}_{1,2/3} \cap \mathcal{C}_{\ell_3}$, then $Lv \in \mathcal{C}_{\ell_3}$

Priority to the end nodes Threshold in ℓ_3 Future work

Average cost problem

We also considered the average cost problem:

$$g^{*}(x_{0}) = \inf_{\pi} \lim_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} \mathbb{E}_{x_{0}}^{\pi}[c(X(t))]$$

In this case, we use the structured policies method in the discounted problem and make θ tends towards 1.

Priority to the end nodes Threshold in ℓ_3 Future work

Optimal threshold

Proposition

Let $\rho = \frac{\beta(1-\alpha)}{\alpha(1-\beta)} \in (0,1)$, $R = \frac{c_{s_1}+c_{b_2}}{c_{b_1}+c_{s_2}}$ and $\Pi^{T_{\ell_3}}$ be the set of matching policy of threshold type in ℓ_3 with priority to ℓ_1 and ℓ_2 . Assume that the cost function is a linear function. The optimal threshold t^* , which minimize the average cost on $\Pi^{T_{\ell_3}}$, is

$$t^* = \left\{ egin{array}{cc} \lfloor k
ceil & ext{if } f(\lceil k
ceil) \leq f(\lfloor k
ceil) \ \lfloor k
ceil & ext{else} \end{array}
ight.$$

where $k = \frac{\log \frac{\rho - 1}{(R+1)\log \rho}}{\log \rho} - 1$ and $f(x) = (c_{b_1} + c_{s_2})x + (c_{b_1} + c_{b_2} + c_{s_1} + c_{s_2})\frac{\rho^{x+1}}{1-\rho} - (c_{b_1} + c_{s_2})\frac{\rho}{1-\rho} + ((c_{b_1} + c_{s_1})\alpha\beta + (c_{b_2} + c_{s_2})(1-\alpha)(1-\beta) + (c_{b_2} + c_{s_1})(1-\alpha)\beta + (c_{b_1} + c_{s_2})\alpha(1-\beta)$

Priority to the end nodes Threshold in ℓ_3 Future work

Future work

General bipartite graph.