Walks with large steps in the quadrant

Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux

Alin Bostan, INRIA

Steve Melczer, U. Pennsylvania

ArXiv: soon!
Counting quadrant walks

Let S be a finite subset of \mathbb{Z}^2 (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of S.

Example. $S = \{10, \bar{1}0, 1\bar{1}, \bar{1}1\}$
Counting quadrant walks

Let S be a finite subset of \mathbb{Z}^2 (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of S.

- What is the number $q(n)$ of n-step walks contained in \mathbb{N}^2?
- For $(i,j) \in \mathbb{N}^2$, what is the number $q(i,j; n)$ of such walks that end at (i,j)?

Example. $S = \{10, \bar{1}0, 1\bar{1}, \bar{1}1\}$
Let S be a finite subset of \mathbb{Z}^2 (set of steps).
We look at walks starting at $(0, 0)$ and formed of steps of S.

What is the number $q(n)$ of n-step walks contained in \mathbb{N}^2?
For $(i, j) \in \mathbb{N}^2$, what is the number $q(i, j; n)$ of such walks that end at (i, j)?

The associated generating function:

$$Q(x, y; t) = \sum_{n \geq 0} \sum_{(i, j) \in \mathbb{N}^2} q(i, j; n) x^i y^j t^n$$

What is the nature of this series?
A hierarchy of formal power series

- **Rational series**
 \[A(t) = \frac{P(t)}{Q(t)} \]

- **Algebraic series**
 \[\text{Pol}(t, A(t)) = 0 \]

- **Differentially finite series (D-finite)**
 \[\sum_{i=0}^{d} P_i(t) A^{(i)}(t) = 0 \]

- **D-algebraic series**
 \[\text{Pol}(t, A(t), A'(t), \ldots, A^{(d)}(t)) = 0 \]
A hierarchy of formal power series

- Rational series
 \[A(t) = \frac{P(t)}{Q(t)} \]

- Algebraic series
 \[\text{Pol}(t, A(t)) = 0 \]

- Differentially finite series (D-finite)
 \[\sum_{i=0}^{d} P_i(t) A^{(i)}(t) = 0 \]

- D-algebraic series
 \[\text{Pol}(t, A(t), A'(t), \ldots, A^{(d)}(t)) = 0 \]

Multi-variate series: one DE per variable
Classification of quadrant walks with small steps

quadrant models with small steps: 79

$|G|<\infty$: 23

D-finite

OS=0: 4 OS\neq0: 19

algebraic DF transc.

$G|\infty$: 56

Not D-finite

decoupled: 9 not decoupled: 47

D-alg. not D-alg. (in x)

- G the group of the model
- OS the orbit sum

[mbm-Mishna 10] [Bostan-Kauers 10] [Mishna-Rechnitzer 07]
 Mellczer-Mishna 13] [Kurkova-Raschel 12] [Bostan-Raschel-Salvy 14]
 [Bernardi-mbm-Raschel 17(a)] [Dreyfus-Hardouin-Roques-Singer 17(a)]
Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in “real life”: simple walk models,
Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in “real life”: simple walk models,
Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in “real life”: simple walk models, queuing theory,
Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in “real life”: simple walk models, queuing theory, bipolar orientations ([Kenyon et al. 15(a)])
A general approach for quadrant walks...

which solves some cases.

quadrant models with small steps: 79

$|G|<\infty$: 23

D-finite

OS=0: 4

algebraic

DF transc.

$|G|\geq\infty$: 56

Not D-finite

decoupled: 9

D-alg.

not D-alg.

not decoupled: 47

“The simple branch”

[mbm-Mishna 10]
A four step approach

1. Write a functional equation for the tri-variate series \(Q(x, y; t) \). It involves bi-variate series \(Q(x, 0; t), Q(0, y; t), \ldots \) (called sections)

2. Compute the “orbit” of \((x, y)\)

3. Combine the main equation and the orbit to find a functional equation \textit{free from sections}

4. Extract from it \(Q(x, y; t) \)
Step 1: Write a functional equation

Example: \(S = \{01, \bar{1}0, 1\bar{1}\} \) (bipolar triangulations)

\[
Q(x, y; t) \equiv Q(x, y) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)
\]

with \(\bar{x} = 1/x \) and \(\bar{y} = 1/y \).
Step 1: Write a functional equation

Example: \(S = \{01, \overline{1}0, 1\overline{1}\} \) (bipolar triangulations)

\[Q(x, y; t) \equiv Q(x, y) = 1 + t(y + \overline{x} + x\overline{y})Q(x, y) - t\overline{x}Q(0, y) - tx\overline{y}Q(x, 0) \]

or

\[(1 - t(y + \overline{x} + x\overline{y}))Q(x, y) = 1 - t\overline{x}Q(0, y) - tx\overline{y}Q(x, 0) \]

- The polynomial \(1 - t(y + \overline{x} + x\overline{y}) \) is the kernel of this equation
Step 1: Write a functional equation

Example: \(S = \{01, \bar{0}0, 1\bar{1}\} \) (bipolar triangulations)

\[
Q(x, y; t) \equiv Q(x, y) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)
\]

or

\[
(1 - t(y + \bar{x} + x\bar{y})) Q(x, y) = 1 - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)
\]

- The polynomial \(1 - t(y + \bar{x} + x\bar{y}) \) is the kernel of this equation
- The series \(Q(0, y) \) and \(Q(x, 0) \) are the sections.
Step 1: Write a functional equation

Example: $S = \{01, \bar{1}0, 1\bar{1}\}$ (bipolar triangulations)

$Q(x, y; t) \equiv Q(x, y) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)$

or

$$(1 - t(y + \bar{x} + x\bar{y}))Q(x, y) = 1 - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)$$

Example: Bipolar quadrangulations

$$(1 - t(x\bar{y} + \bar{x}^2 + \bar{x}y + y^2))Q(x, y) = 1 - tx\bar{y}Q(x, 0)$$

$$-t\bar{x}^2 (Q_0(y) + xQ_1(y)) - t\bar{x}yQ_0(y),$$

where $Q_i(y)$ counts quadrant walks ending at abscissa i.

\Rightarrow More sections, kernel of higher degree
Step 2: the group of the model (and its orbit)

- The step polynomial:

\[S(x, y) = \bar{x} + y + x\bar{y} \]
Step 2: the group of the model (and its orbit)

- The step polynomial:

\[S(x, y) = \bar{x} + y + x\bar{y} \]

Observation: \(S(x, y) \) is unchanged by the rational transformations

\[\Phi: (x, y) \mapsto (\bar{x}y, y) \quad \text{and} \quad \Psi: (x, y) \mapsto (x, x\bar{y}). \]
Step 2: the group of the model (and its orbit)

- The step polynomial:

\[S(x, y) = \bar{x} + y + x\bar{y} \]

Observation: \(S(x, y) \) is unchanged by the rational transformations \(\Phi : (x, y) \mapsto (\bar{y}x, y) \) and \(\Psi : (x, y) \mapsto (x, x\bar{y}) \).

- \(\Phi \) and \(\Psi \) are involutions
- They generate a (dihedral) group
Step 2: the group of the model (and its orbit)

- The step polynomial:

\[S(x, y) = \bar{x} + y + x\bar{y} \]

Observation: \(S(x, y) \) is unchanged by the rational transformations

\[\Phi : (x, y) \mapsto (\bar{x}y, y) \quad \text{and} \quad \Psi : (x, y) \mapsto (x, x\bar{y}). \]

- The pairs \((\bar{x}y, y)\) and \((x, x\bar{y})\) are “adjacent” to \((x, y)\):
 - they have one coordinate in common
 - they give the same value to the step polynomial \(S \)
Step 2: the group of the model (and its orbit)

• The step polynomial:

\[S(x, y) = \bar{x} + y + x\bar{y} \]

Observation: \(S(x, y) \) is unchanged by the rational transformations

\[\Phi : (x, y) \mapsto (\bar{x}y, y) \quad \text{and} \quad \Psi : (x, y) \mapsto (x, x\bar{y}) \].

• The pairs \((\bar{x}y, y)\) and \((x, x\bar{y})\) are “adjacent” to \((x, y)\):
 – they have one coordinate in common
 – they give the same value to the step polynomial \(S \)

• Let \(\sim \) be the transitive closure of the adjacency relation. The orbit of \((x, y)\) is its equivalence class.

\[
\begin{array}{c}
\sim \quad (\bar{x}y, y) \quad \sim \quad (\bar{x}y, \bar{x}) \quad \sim \\
\sim \quad (x, y) \quad \sim \quad (x, x\bar{y}) \quad \sim \\
\sim \quad (\bar{y}, \bar{x}) \quad \sim \quad (\bar{y}, x\bar{y}) \quad \sim \\
\end{array}
\]
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

The equation (in \(x' \)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x \) and \(x_{1,2} = \frac{xy^2 + y \pm \sqrt{y (x^2 y^3 + 4x^3 + 2xy^2 + y)}}{2x^2} \).
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

The equation (in \(x' \)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x \) and

\[x_{1,2} = \frac{xy^2 + y \pm \sqrt{y \left(x^2y^3 + 4x^3 + 2xy^2 + y \right)}}{2x^2} \]

- the pairs \((x_1, y)\) and \((x_2, y)\) are adjacent to \((x, y)\)
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + xy \]

The equation (in \(x')\) \(S(x, y) = S(x', y)\), has 3 solutions, namely \(x\) and

\[x_{1,2} = \frac{xy^2 + y \pm \sqrt{y (x^2 y^3 + 4 x^3 + 2 xy^2 + y)}}{2x^2} \]

- the pairs \((x_1, y)\) and \((x_2, y)\) are adjacent to \((x, y)\)
- there are also two pairs \((x, y')\) that are adjacent to \((x, y)\), which happen to be \((x, \bar{x}_1)\) and \((x, \bar{x}_2)\)
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \tilde{x}^2 + \tilde{x}y + y^2 + x\tilde{y} \]

The equation (in \(x' \)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x \) and

\[x_{1,2} = \frac{xy^2 + y \pm \sqrt{y \left(x^2 y^3 + 4x^3 + 2xy^2 + y\right)}}{2x^2}. \]

- the pairs \((x_1, y)\) and \((x_2, y)\) are adjacent to \((x, y)\)
- there are also two pairs \((x, y')\) that are adjacent to \((x, y)\), which happen to be \((x, \tilde{x}_1)\) and \((x, \tilde{x}_2)\)
- which pairs \((x_1, y')\) are adjacent to \((x_1, y)\)?
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

The equation (in \(x'\)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x\) and

\[x_{1,2} = \frac{xy^2 + y \pm \sqrt{y \left(x^2y^3 + 4x^3 + 2xy^2 + y \right)}}{2x^2} \]

- the pairs \((x_1, y)\) and \((x_2, y)\) are adjacent to \((x, y)\)
- there are also two pairs \((x, y')\) that are adjacent to \((x, y)\), which happen to be \((x, \bar{x}_1)\) and \((x, \bar{x}_2)\)
- which pairs \((x_1, y')\) are adjacent to \((x_1, y)\)?
- and so on.
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

The equation (in \(x' \)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x \) and

\[x_{1,2} = \frac{xy^2 + y \pm \sqrt{y \left(x^2y^3 + 4x^3 + 2xy^2 + y \right)}}{2x^2} \]

- Orbit
Step 3: Find a functional equation free from sections

- The equation reads (with $K(x, y) = 1 - tS(x, y)$):

 $$K(x, y)xyQ(x, y) = xy - tx^2 Q(x, 0) - tyQ(0, y)$$

- The orbit of (x, y) is

 $$(x, y) \approx (\bar{x}y, y) \approx (\bar{x}y, \bar{x}) \approx (\bar{y}, \bar{x}) \approx (\bar{y}, x\bar{y}) \approx (x, x\bar{y})$$
Step 3: Find a functional equation free from sections

- The equation reads (with $K(x, y) = 1 - tS(x, y)$):

$$K(x, y)xyQ(x, y) = xy - tx^2Q(x, 0) - tyQ(0, y)$$

- The orbit of (x, y) is

$$(x, y) \approx (\bar{x}y, y) \approx (\bar{x}y, \bar{x}) \approx (\bar{y}, \bar{x}) \approx (\bar{y}, x\bar{y}) \approx (x, x\bar{y})$$

- The value of $S(x, y)$ (and $K(x, y)$) is the same over the orbit. Hence

$$K(x, y) \ xyQ(x, y) = xy - tx^2Q(x, 0) - tyQ(0, y)$$

$$K(x, y) \ \bar{x}y^2Q(\bar{x}y, y) = \bar{x}y^2 - t\bar{x}^2y^2Q(\bar{x}y, 0) - tyQ(0, y)$$

$$K(x, y) \ \bar{x}^2yQ(\bar{x}y, \bar{x}) = \bar{x}^2y - t\bar{x}^2y^2Q(\bar{x}y, 0) - t\bar{x}Q(0, \bar{x})$$

$$\ldots = \ldots$$

$$K(x, y) \ x^2\bar{y}Q(x, x\bar{y}) = x^2\bar{y} - tx^2Q(x, 0) - tx\bar{y}Q(0, x\bar{y}).$$
Step 3: Find a functional equation free from sections

⇒ Form the alternating sum of the equation over all elements of the orbit:

\[
K(x, y) \left(\sum \right) = xyQ(x, y) - \bar{x}y^2 Q(\bar{x}y, y) + \bar{x}^2 yQ(\bar{x}y, \bar{x}) - \bar{x}\bar{y} Q(\bar{y}, \bar{x}) + x\bar{y}^2 Q(x, \bar{y}) - x^2 \bar{y} Q(x, x\bar{y}) = xy - \bar{x}y^2 + \bar{x}^2 y - \bar{x}\bar{y} + x\bar{y}^2 - x^2 \bar{y}
\]

(the orbit sum).
Step 3: Find a functional equation free from sections

⇒ Form the alternating sum of the equation over all elements of the orbit:

\[xyQ(x, y) - \bar{x}y^2 Q(\bar{x}y, y) + \bar{x}^2 yQ(\bar{x}y, \bar{x}) \]
\[- \bar{x}\bar{y} Q(\bar{y}, \bar{x}) + x\bar{y}^2 Q(\bar{y}, x\bar{y}) - x^2 \bar{y} Q(x, x\bar{y}) = \]

\[\frac{xy - \bar{x}y^2 + \bar{x}^2 y - \bar{x}\bar{y} + x\bar{y}^2 - x^2 \bar{y}}{1 - t(y + \bar{x} + x\bar{y})} \]
Step 4: Extract $Q(x, y)$

⇒ Form the alternating sum of the equation over all elements of the orbit:

$$xyQ(x, y) - \bar{x}y^2Q(\bar{x}y, y) + \bar{x}^2yQ(\bar{x}y, \bar{x})$$

$$- \bar{x}\bar{y}Q(\bar{y}, \bar{x}) + x\bar{y}^2Q(\bar{y}, x\bar{y}) - x^2\bar{y}Q(x, x\bar{y}) =$$

$$\frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}$$

• Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.

[Lipshitz 88]
Step 4: Extract \(Q(x, y) \)

⇒ Form the alternating sum of the equation over all elements of the orbit:

\[
xyQ(x, y) - \bar{x}y^2Q(\bar{x}y, y) + \bar{x}^2yQ(\bar{x}y, \bar{x}) - \bar{x}\bar{y}Q(\bar{y}, \bar{x}) + x\bar{y}^2Q(\bar{y}, x\bar{y}) - x^2\bar{y}Q(x, x\bar{y}) = \frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}
\]

- Both sides are power series in \(t \), with coefficients in \(\mathbb{Q}[x, \bar{x}, y, \bar{y}] \).

- Extract the part with positive powers of \(x \) and \(y \):

\[
xyQ(x, y) = [x^0 y^0] \frac{xy - \bar{x}y^2 + \bar{x}^2y - \bar{x}\bar{y} + x\bar{y}^2 - x^2\bar{y}}{1 - t(y + \bar{x} + x\bar{y})}
\]

is a D-finite series.

[Lipshitz 88]
What can go wrong?

1. Functional equation: OK
2. The “orbit” may be infinite
3. There may be several section-free equations (or none?) [NEW]
4. The extraction may be tricky [NEW], or impossible
Some cases that work

- Hadamard walks:
 \[S(x, y) = U(x) + V(x) T(y) \]
 (Small steps: 16 out of the 19 “simple” models)

- Bipolar maps [mbm, Fusy, Raschel 18]

\[S_p = \{(-p, 0), (-p + 1, 1), \ldots, (0, p), (1, -1)\} \]

In all those cases, the orbit is finite and the series D-finite, expressed as the non-negative part of an algebraic series.
Quadrant walks with steps in \([-2, -1, 0, 1]\)^2

- In all cases, a unique section-free equation

 quadrant models: 13 110*

 \[\text{orient} < \infty: \, 227 + 13 \quad \text{orient} = \infty: \, 12 \, 870\]

 \[\text{OS} = 0: \, 9 \quad \text{OS} \neq 0: \, 227 + 4\]

 DF

- 227 Hadamard models

(*) Models with at least one occurrence of \(-2\)
Some interesting models

• Non-Hadamard, solvable via our approach (and D-finite):

 \[
 \begin{array}{cccc}
 \text{DF} & \text{DF} & \text{DF} & \text{DF} \\
 \text{DF} & \text{DF} & \text{DF} & \text{DF} \\
 \text{DF} & \text{Alg} & \text{Alg} & \text{DF} \\
 \end{array}
 \]

• Non-Hadamard, orbit sum zero: let’s guess!

 \[
 \begin{array}{cccc}
 \text{DF} & \text{DF} & \text{DF} & \text{DF} \\
 \text{DF} & \text{DF} & \text{DF} & \text{DF} \\
 \text{DF} & \text{Alg} & \text{Alg} & \text{DF} \\
 \end{array}
 \]

à la Kreweras

à la Gessel
Some interesting models

• Non-Hadamard, solvable via our approach (and D-finite):

• Non-Hadamard, orbit sum zero: let’s guess!

à la Kreweras

DF DF DF DF DF

à la Gessel

DF Alg Alg DF
Final comments

Still a lot to be done...

- Is there a unique section free equation when there are no large forward steps?
- Closer study for tricky examples (the 9 analogues of Kreweras’ and Gessel’s algebraic models)
- Nature of models where α is rational but the orbit infinite

quadrant models: 13 110

$|\text{orbit}| < \infty$:
- OS = 0: 9
- OS \neq 0: 227 + 4

$|\text{orbit}| = \infty$:
- α rational: 16
- α irrat.: 12 854

DF $?$

DF

not DF $?$

not DF

[Bo\text{-}st\text{-}an-Raschel-Salvy 14]
Step 2: the orbit of the model

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

The equation (in \(x' \)) \(S(x, y) = S(x', y) \), has 3 solutions, namely \(x \) and \(x_{1,2} = \frac{xy^2 + y \pm \sqrt{y \left(x^2y^3 + 4x^3 + 2xy^2 + y\right)}}{2x^2} \).

- Orbit
Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations

\[S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y} \]

Two section-free linear combinations (+ linear combinations):

\[
xy Q(x, y) - \bar{x}_1 x Q(x, \bar{x}_1) - \frac{x_1^2 y (x - x_2)}{x (x_1 - x_2)} \frac{Q(x_1, y)}{x_1^2 (x - x_2)} + \frac{x_1^2 (x - x_2)}{(x_1 - x_2) x^2} \frac{Q(x_1, \bar{x})}{x_1^2 (x - x_2)}
\]
\[
+ \frac{x_2^2 y (x - x_1)}{x (x_1 - x_2)} \frac{Q(x_2, y)}{x_2^2 (x - x_2)} - \frac{(x_1 y - 1) x_2^2 (x - x_2)}{x_2 y - 1} \frac{Q(x_2, \bar{x})}{x_1^2 (x - x_2)}
\]
\[
+ \frac{(xy - 1) x_2^2 Q(x_2, \bar{x}_1)}{x_1 x (x_2 y - 1)} + \frac{(x - x_2) Q(\bar{y}, \bar{x})}{y (x_2 y - 1) x^2} - \frac{(x - x_2) Q(\bar{y}, \bar{x}_1)}{yx_1 x (x_2 y - 1)}
\]
\[
= \frac{(y - \bar{x}_1)(xy - 1)(\bar{y} - \bar{x}^2 y - 2\bar{x}^3)}{K(x, y)},
\]

and the same equation with \(x_1 \) and \(x_2 \) exchanged.
Step 4: Extract $Q(x, y)$

Example: Bipolar quadrangulations

$$S(x, y) = \bar{x}^2 + \bar{x}y + y^2 + x\bar{y}$$

- A section-free equation:

$$xyQ(x, y) - \bar{x}_1xQ(x, \bar{x}_1) - \frac{x_1^2y(x - x_2)Q(x_1, y)}{x(x_1 - x_2)} + \ldots$$

$$= \frac{(y - \bar{x}_1)(xy - 1)(\bar{y} - \bar{x}^2y - 2\bar{x}^3)}{K(x, y)}$$

- Then

$$xyQ(x, y) = [x>0, y>0] \frac{(y - \bar{x}_1)(xy - 1)(\bar{y} - \bar{x}^2y - 2\bar{x}^3)}{K(x, y)}$$

provided the RHS is expanded first in t, then in \bar{y}, and finally in x.
Some interesting models

- Non-Hadamard, solvable via our approach (and D-finite):

For the first model,

\[Q(x, y) = [x \geq 0 \; y \geq 0] \frac{(x^3 - 2y^2 - x) (y^2 - x) (x^2y^2 - y^2 - 2x)}{x^5y^4 (1 - t(y + x\bar{y} + x\bar{y} + \bar{x}^2y))}. \]

The coefficients are nice: for \(n = 2i + j + 4m \),

\[q(i, j; n) = \frac{(i + 1)(j + 1)(i + j + 2)n!(n + 2)!}{m!(3m + 2i + j + 2)!(2m + i + 1)!(2m + i + j + 2)!}. \]
Walks on a half-line ($d = 1$)

Let $S \subset \mathbb{Z}$ with $\min S = -m$.

Proposition [Bostan, mbm, Melczer 18]

$$Q(x) = [x^{\geq 0}] \frac{\prod_{j=1}^{m} (1 - \bar{x} x_j)}{1 - tS(x)},$$

where the x_j are the roots of $S(x_j) = S(x)$ whose expansion in \bar{x} involves no positive power of x.
Walks on a half-line \((d = 1)\)

Let \(S \subset \mathbb{Z}\) with \(\min S = -m\).

Proposition [Bostan, mbm, Melczer 18]

\[
Q(x) = [x \geq 0] \frac{\prod_{j=1}^{m} (1 - \bar{x}x_j)}{1 - tS(x)},
\]

where the \(x_j\) are the roots of \(S(x_j) = S(x)\) whose expansion in \(\bar{x}\) involves no positive power of \(x\).

Classical solution [Gessel 80, mbm-Petkovšek 00, Banderier-Flajolet 02...]

\[
Q(x) = \frac{\prod_{j=1}^{m} (1 - \bar{x}X_j)}{1 - tS(x)}
\]

where the \(X_j \equiv X_j(t)\) are the roots of \(1 - tS(x)\) whose expansion in \(t\) involves no negative power of \(t\). The series \(Q(x)\) is algebraic.

These solutions are (of course) equivalent.
Hadamard walks in 2D

Assume

\[S(x, y) = U(x) + V(x) T(y) \]

Proposition [Bostan, mbm, Melczer 18]

The series \(Q(x, y) \) is D-finite, and reads

\[
Q(x, y) = \left[x \geq y \geq \right] \frac{\prod_{i=1}^{m} (1 - \bar{x} x_i(y)) \prod_{j=1}^{m'} (1 - \bar{y} y_j)}{1 - tS(x, y)}
\]

where

- the \(x_i(y) \) are the roots of \(S(x, y) = S(x', y) \) (solved for \(x' \)), whose expansion in \(\bar{x} \) involves no positive power of \(x \),
- the \(y_j \) are the roots of \(S(x, y) = S(x, y') \), or \(T(y) = T(y') \) (solved for \(y' \)) whose expansion in \(\bar{y} \) involve no positive powers of \(y \).
Bipolar maps

Proposition [mbm, Fusy, Raschel 18]

The generating function of bipolar maps with faces of degree \(p + 2 \) is

\[
Q(x, y) = [x^\geq y^\geq] \frac{(y - \bar{x}_1)(1 - \bar{x}\bar{y}) S_x(x, y)}{1 - tS(x, y)},
\]

where \(S(x, y) \) is the step polynomial:

\[
S(x, y) = x\bar{y} + \bar{x}^p + \bar{x}^{p-1}y + \cdots + \bar{x}y^{p-1} + y^p.
\]

and \(x_1 \) is the only root of \(S(x, y) = S(x', y) \) (solved for \(x' \)) whose expansion in \(\bar{y} \) involves a positive power of \(y \).

It is D-finite.