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Let S be a finite subset of Z? (set of steps).
We look at walks starting at (0,0) and formed of steps of S.

Example. S = {10,10,11,11}
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What is the number g(n) of n-step walks contained in N2?

For (i,j) € N2, what is the number q(i,j; n) of such walks that end
at (1,J)?
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Let S be a finite subset of Z? (set of steps).
We look at walks starting at (0,0) and formed of steps of S.

What is the number g(n) of n-step walks contained in N2?

For (i,j) € N2, what is the number q(i,j; n) of such walks that end

at (i, j)?

The associated generating function:
Q(x,y;t ZZ q(i,j; n)x'y/t"
n>0 (i,j)eN?

What is the nature of this series?



A hierarchy of formal power series

o Rational series "
P(t
A =20

e Algebraic series
Pol(t, A(t)) =0

o Differentially finite series (D-finite)

d
> Pi()AD(t) =0
i=0

e D-algebraic series
Pol(t, A(t), A'(t),...,Al(t)) =0




A hierarchy of formal power series

o Rational series
P(t)

A =20

e Algebraic series
Pol(t, A(t)) =0

o Differentially finite series (D-finite)

d
> Pi()AD(t) =0
i=0

e D-algebraic series
Pol(t, A(t), A'(t),...,Al(t)) =0

Multi-variate series: one DE per variable




Classification of quadrant walks with small steps %
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@ G the group of the model
@ OS the orbit sum

[mbm-Mishna 10] [Bostan-Kauers 10] [Mishna-Rechnitzer 07]
[Melczer-Mishna 13] [Kurkova-Raschel 12] [Bostan-Raschel-Salvy 14]
[Bernardi-mbm-Raschel 17(a)] [Dreyfus-Hardouin-Roques-Singer 17(a)]



@ A mathematical challenge: the small step condition seems crucial in
all approaches (apart from computer algebra)
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Quadrant walks with arbitrary steps

@ A mathematical challenge: the small step condition seems crucial in
all approaches (apart from computer algebra)

o Large steps occur in “real life": simple walk models, queing theory,
bipolar orientations ([Kenyon et al. 15(a)])
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which solves some cases.

quadrant models with small steps: 79
!

{
|G|<oo: 23
|

D-finite

\
|G|=00: 56
|

Not D-finite
|

| \
decoupled: 9 not decoupled: 47

\ |
D-alg. not D-alg.

0S=0: 4

algebraic

0S#0: 19
l

DF transc

“The simple branch”
[mbm-Mishna 10]



A four step approach

1. Write a functional equation for the tri-variate series Q(x, y; t).
It involves bi-variate series Q(x, 0; t), Q(0,y; t),... (called sections)

2. Compute the “orbit" of (x,y)

3. Combine the main equation and the orbit to find a functional
equation free from sections

4. Extract from it Q(x,y;t)



Example: & = {01,10,11} (bipolar triangulations)
Q(Xay; t) = Q(Xa y) = 1+t(y +Xx+ XY)Q(Xay)_t)_(Q(()?y)_thQ(X? 0)
with x=1/xand y =1/y.




Example: & = {01,10,11} (bipolar triangulations)
Qlx,y;it) = Qlx,y) = 1+t(y + X+ xy)Q(x, y) = txQ(0, y) — txy Q(x, 0)

(1 —tly+x+ X}7))Q(x,y) =1-txQ(0,y) — txyQ(x,0)

e The polynomial 1 — t(y + X + xy) is the kernel of this equation



Example: & = {01,10,11} (bipolar triangulations)
Qlx,y;it) = Qlx,y) = 1+t(y + X+ xy)Q(x, y) = txQ(0, y) — txy Q(x, 0)
or

(1 —tly+x+ X}7))Q(x,y) =1-txQ(0,y) — txyQ(x,0)

e The polynomial 1 — t(y + X + x¥) is the kernel of this equation
e The series Q(0, y) and Q(x,0) are the sections.



Step 1: Write a functional equation ~\

Example: S = {01,10, 11} (bipolar triangulations)
Qlx,yit) = Qx,y) = 1+t(y + X + x7)Q(x, y) = txQ(0, y) — txy Q(x, 0)

(1 - t(Y+)_(+X)7))Q(XaY) =1- t)?Q(OJ/)_ tX)_/Q(X,O)

Example: Bipolar quadrangulations

(1 -ty + 2 + 3y +y%))Qx,y) = 1 - txy Q(x, 0)
—t52 (Qo(y) + xQu(y)) — tyQo().

where Q;(y) counts quadrant walks ending at abscissa /.

= More sections, kernel of higher degree



e The step polynomial:
S(x,y)=X+y+xy



e The step polynomial:
S(xy)=X+y+xy
Observation: S(x,y) is unchanged by the rational transformations

o (x,y)— (xy,y) and V:(x,y)— (x,x¥).



Step 2: the group of the model (and its orbit) -\

e The step polynomial:
S(x,y)=X+y+xy
Observation: S(x, y) is unchanged by the rational transformations
o (x,y)— (xy,y) and WV :(x,y)+— (x,xy).

e ® and V are involutions
e They generate a (dihedral) group

]
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e The step polynomial:
S(x,y)=X+y+xy
Observation: S(x, y) is unchanged by the rational transformations
o (x,y)— (xy,y) and WV :(x,y)+— (x,xy).

e The pairs (xy, y) and (x,xy) are “adjacent” to (x, y):
— they have one coordinate in common
— they give the same value to the step polynomial S



Step 2: the group of the model (and its orbit) -\

e The step polynomial:
S(x,y)=X+y+xy
Observation: S(x, y) is unchanged by the rational transformations
o (x,y)— (xy,y) and WV :(x,y)+— (x,xy).

e The pairs (xy, y) and (x,xy) are “adjacent” to (x, y):
— they have one coordinate in common
— they give the same value to the step polynomial S

e Let ~ be the transitive closure of the adjacency relation. The orbit of
(x,y) is its equivalence class.

~
~

= Gy — ) —=

(x,y) (¥, %)
STy —— X))



Example: Bipolar quadrangulations
S(x.y) =X+ Ry +y* +x7
The equation (in x') S(x,y) = S(x, y), has 3 solutions, namely x and

Py £y (Y3 +4x3 +2xy2 1 y)
X1,2 = 232 .




Example: Bipolar quadrangulations
S(x.y) =X+ Ry +y* +x7
The equation (in x') S(x,y) = S(x, y), has 3 solutions, namely x and
2 +y £ Vy (3 +4x3 +2x2 +y)
X1,2 = 232 .

@ the pairs (x1,y) and (x2,y) are adjacent to (x,y)




Step 2: the orbit of the model
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Step 2: the orbit of the model

Example: Bipolar quadrangulations
S(x,y) =%+ xy +y> +xy
The equation (in x') S(x,y) = S(x’,y), has 3 solutions, namely x and
Cxy ety Vy (Ry3+4x3 +2xy2 +y)
X1,2 - 2X2
@ the pairs (x1,y) and (xz,y) are adjacent to (x,y)
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e which pairs (x1,y’) are adjacent to (x1,y)?




Step 2: the orbit of the model

Example: Bipolar quadrangulations
S(x,y) =%+ xy +y> +xy

The equation (in x') S(x,y) = S(x’,y), has 3 solutions, namely x and

s — xy? +y £y (3 +4x3+2xy2 +y)

’ 2x2

@ the pairs (x1,y) and (xz,y) are adjacent to (x,y)

e there are also two pairs (x, y’) that are adjacent to (x, y), which
happen to be (x, x1) and (x, X2)

e which pairs (x1,y’) are adjacent to (x1,y)?

@ and so on.




Example: Bipolar quadrangulations
S(x,y) =X +xy +y* +xy

The equation (in x') S(x,y) = S(x, y), has 3 solutions, namely x and

Py £y (Y3 +4x3 +2xy2 1 y)
X1,2 = 232 .

o Orbit )(///'K\




e The equation reads (with K(x,y) =1 — tS(x,y)):
K(x.y)xvQ(x,y) = xv — tx*Q(x,0) — tyQ(0, y)
e The orbit of (x,y) is

(xy) = (xy,y) = (xy, %) = (7, %) = (7, x7) = (X, x¥)



Step 3: Find a functional equation free from sections ~\

e The equation reads (with K(x,y) =1 — tS(x,y)):
K(x,y)xyQ(x,y) = xy — tx*Q(x,0) — tyQ(0, y)
o The orbit of (x,y) is
(x,y) = (xy,y) = (xy,X) = (7, %) = (¥, x7) = (x, x7)

e The value of S(x, y) (and K(x,y)) is the same over the orbit. Hence

K(X7y) XyQ( ) = Xy - tX2Q(X7 O) - tyQ(O*y)
K(x,y) xy?Q(xy,y) = xy* — t2y?Q(xy,0) — tyQ(0,y)
K(x,y) R2yQ(xy,%) = %%y — tx?y?Q(xy,0) — txQ(0,X)

K(x,y) *7Q(x,xy) = x*y — t*Q(x,0) — txyQ(0,xy).



= Form the alternating sum of the equation over all elements of the orbit:
K(x9) (30Q(x, ) = 32 Q(Ry, ) + F2Q(Ry, %)
— X7Q(7 %) + x5 Q(7, x7) — X7 Q(x, x7) ) =
Xy — >'<y2 + >'<2y — Xy +X_)72 — x2)7
(the orbit sum).



= Form the alternating sum of the equation over all elements of the orbit:

xyQ(x,y) — Xy’ Q(Xy,y) + X°yQ(xy, %)
—x7Q(7, %) + x7* Q¥ xy) = X*yQ(x,xy) =
Xy — >'<y2 +>'<2y — Xy +X_)72 — x2)7
1—t(y + % +x7)




= Form the alternating sum of the equation over all elements of the orbit:

xyQ(x,y) = xy?Q(xy, y) + X*yQ(Ry, %)
— X7Q(7,%) + x7*Q(¥, x7) — x*y Q(x,x7) =
Xy — >'<y2 +>'<2y — Xy +X_)72 — x2)7
1—t(y +X+x7)
e Both sides are power series in t, with coefficients in Q[x, X, y, ¥].




Step 4: Extract Q(x,y) \

= Form the alternating sum of the equation over all elements of the orbit:

xyQ(x,y) — Xy*Q(Ry,y) + FyQ(Xy, %)
—x7Q(7,%) + x7°Q(7,x7) — X’y Q(x, x7) =
xy = Xy? + X%y — Xy + x7° = X°y
1—t(y +x+xy)
e Both sides are power series in t, with coefficients in Q[x, X, y, ¥].

e Extract the part with positive powers of x and y:

=2, =2 == =2 2-
— Xy? + Xy — Xy + xy° — x°y
xvQ(x. v) = [x>0y>0 Xy — Xy
yQ(x,y) =[xy~ Tty 1% 1)
is a D-finite series.
[Lipshitz 88]
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1. Functional equation: OK

2. The “orbit” may be infinite

3. There may be several section-free equations (or none?) [NEW]|
4. The extraction may be tricky [NEW], or impossible



o Hadamard walks:

S(x,y) = U(x) + V(x)T(y)
(Small steps: 16 out of the 19 “simple” models)

e Bipolar maps [mbm, Fusy, Raschel 18]

Sp ={(—p,0),(—p+1,1),...,(0,p),(1,-1)}

In all those cases, the orbit is finite and the series D-finite, expressed as
the non-negative part of an algebraic series.



e In all cases, a unique section-free equation

quadrant models: 13 110*
\

[
@< oo: 227413
l

|
0S+£ 0: 227 + 4

|
|orbit| = co: 12 870

e 227 Hadamard models

(*) Models with at least one occurrence of —2



e Non-Hadamard, solvable via our approach (and D-finite):

A T A e

e Non-Hadamard, orbit sum zero: let's guess!

% 1 %} 1 Ef a la Kreweras
DF DF DF DF DF

FORl AR (hl =

DF Alg Alg DF

a la Gessel



Some interesting models

e Non-Hadamard, solvable via our approach (and D-finite):

AT A S

e Non-Hadamard, orbit sum zero: let's guess! ? )

%—} I % 1 Ef a la Kreweras
DF DF DF DF DF

S =

DF Alg Alg DF

a la Gessel



Final comments

Still a lot to be done...
@ Is there a unique section free equation when there are no large
forward steps?
@ Closer study for tricky examples (the 9 analogues of Kreweras' and
Gessel's algebraic models)
@ Nature of models where « is rational but the orbit infinite

quadrant models: 13 110*
\

\
lorbit| = co: 12 870
\

l \ |
0S=0:9 « rational: 16 « irrat.; 12 854

| |

not DF 7 not DF
[Bostan-Raschel-Salvy 14]

\
lorbit| < co: 227+13




Example: Bipolar quadrangulations
S(x,y) =X +xy +y* +xy

The equation (in x') S(x,y) = S(x, y), has 3 solutions, namely x and

Py £y (Y3 +4x3 +2xy2 1 y)
X1,2 = 232 .

o Orbit )(///'K\




Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations

S(x,y) =X* + Xy +y* +xy

Two section-free linear combinations (+ linear combinations):

X%y (x = x2) Qx.y) | 2 (x = x0) Qx.%)

XyQ(Xv)/)_)_(lXQ(Xv)_(l)_

x (x1 — x2) (x1 — x2) x?
N X%y (x = x1) Qlx,y)  (xiy — 1) %% (x = x) Qx, X)
x (x1 — x2) x2(x1 —x2) (x2y — 1)
L by = 1) x?Q0e,%1) | (x = x) Q(7,%)  (x —x) Q(7,x1)
xix(xy —1) yley-1)x*  yax(xey-1)
_ y=x)ly -1y — 2y — 2%°)
K(x,y) ’

and the same equation with x; and x, exchanged.



Example: Bipolar quadrangulations
S(x,y) =X+ %y +y* +x7
e A section-free equation:

x12y (x = x2) Q(x1, )

xyQ(x,y) — x1xQ(x,%1) — o —x2) +...
_ y=x)xy — 1)y — 2y —2%%)
K(x.y)

e Then

(v — =)y — 1 — 2y — 25°)
K(x,y) ’

provided the RHS is expanded first in t, then in y, and finally in x.

xyQ(x,y) = [x"%y”°]



Some interesting models

e Non-Hadamard, solvable via our approach (and D-finite):

AT A S

For the first model,

(X3—2y2—x) (y2 —x) (X2y2—y2 —2X)

(420,20
Q(va) - [X y ] X5y4(17 t(y+X_)_/+)_(_)7+)_(2_)/))

The coefficients are nice: for n = 2i + j + 4m,
(i+ 1)+ 1)(i +j + 2)n}(n + 2)!

Wi m) = o Em  2r ) + 2)2m 1 7+ DI@m + 757 5 2)1



Let S C Z with minS = —m.

[[;L (1 — %)

1—tS(x)
where the x; are the roots of S5(x;) = S(x) whose expansion in X involves
no positive power of x.

Qx) = [x*°]




Let S C Z with minS = —m.

Hjm:1(1 — Xx;)

1—tS(x)
where the x; are the roots of S5(x;) = S(x) whose expansion in X involves
no positive power of x.

Qx) = [x*°]

12, (1 = XxX))
1—tS(x)

Qx) =

where the X; = Xj(t) are the roots of 1 — t5(x) whose expansion in t
involves no negative power of t. The series Q(x) is algebraic.

These solutions are (of course) equivalent.



Assume

S(x,y) = U(x) + V(x)T(y)

The series Q(x, y) is D-finite, and reads

/

T2, (1 =% () ITL (1 — 7y))

Q(x,y) = [x"y7]

1 - tS(X./ y) .

where
the x;(y) are the roots of S(x,y) = S(x’, y) (solved for x"), whose
expansion in X involves no positive power of x,

the y; are the roots of S(x,y) = S(x,y’), or T(y) = T(y’) (solved
for y") whose expansion in y involve no positive powers of y.




The generating function of bipolar maps with faces of degree p +2 is

(y =%1) (1 = xy) Sx(x, ¥)

Qx,y) = [x7y7] 1 —tS(x,y) ’

where S(x, y) is the step polynomial:

S(Xv)/):X)7+)_<p+)_<p_1y+...+)—<yp—1+yp.

and x is the only root of S(x,y) = S(x’,y) (solved for x’) whose
expansion in ¥ involves a positive power of y.
It is D-finite.




