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Patterns in combinatorial structures

Enumerative and asymptotic aspects:

patterns in permutations (links with sorting algorithms: Knuth)

patterns in graphs, trees, maps (links with logics: Noy)

patterns in words (generated by an automata / Markov Chain)

patterns in integer compositions, partitions (links with number theory:
Ramanujan)

patterns in lattice paths (links with bioinformatics)

Typical questions :

* What is number of structures of size n with k occurrences of the pattern?

* Is there a nice formula for the generating function?

* Asymptotic behaviour, limit laws?

* Generation of these objects?
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Patterns in words and combinatorial structures

Theorem (Chomsky-Schützenberger 1963)

Context free grammars (and pushdown automata) have algebraic generating
functions: F (z) =

∑
fnz

n ∈ Alg.

Now consider a language L, in which we remove all words containing pattern p:

L\(Σ∗.p.Σ∗) (therefore ∈ Alg ∩ Rat = Alg, whenever L is algebraic).

⇒ Good news: algebraic functions are well studied, lot of tools to deal with
them (Gröbner bases, Newton polygon, singularity analysis).

⇒ Bad news: even simple problem can lead to algebraic equation of degree
more than the number of particules in the universe.

So what to do? Can we hope for ”compact” formulas?

Yes, thanks to the vectorial kernel method and analytic combinatorics.
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Patterns in lattice paths: applications
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Patterns in lattice paths have
applications to the study of
secondary structure of RNA
[see Yann Ponty’s talk]

Some models of self-avoiding walks are encoded by partially directed lattice paths
avoiding a pattern (see [Bacher–Bousquet-Melou 2011]).
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Patterns in lattice paths: vivid topics
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many articles on peaks/valleys/humps in Motzkin paths (jumps= {+1, 0,−1}) :

[Krattenthaler 2000, 2015] Surveys on Lattice path enumeration. Handbook of
enumerative combinatorics (links with continued fractions, trees, permutations,
determinants, ...)

[Niederhausen; Eu; Yeh; Parvanien; Elizalde, Rubey; Park; Deutsch, Shapiro,
Sulanke, Woan; Brennan, Prodinger; Ferrari, Rinaldi, Pergola, Pinzani; Bacher,
Bousquet-Mélou; Ponty; Mansour, Shattuck; Sapounakis, Tasoulas, Tsiroukas;
. . . ]

Is it possible to get a more unified point of view?

Yes, thanks to the vectorial kernel method and analytic combinatorics ;-)
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Basic definitions

Definitions

Set of steps (S): a finite subset of Z

Lattice path with steps from S :
A word w = [v1, v2, . . . , vn] with vi ’s ∈ S .
Visualized as the polygonal line obtained
by appending vectors (1, v1), (1, v2), . . . , (1, vn),
starting at the origin.

Length: |w |= n,
Final altitude: h(w) = v1 + v2 + · · ·+ vn.
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Notations: the kernel and its small roots

F (t, u) =
∑
n≥0

(∑
k

fn,ku
k

)
tn

t is the variable for the length,
u is the variable for the final altitude.

P(u) is the steps polynomial of S :

P(u) :=
∑
s∈S

us = u−c + . . .+ ud .

K (t, u) := 1− tP(u) is the kernel.

The kernel equation K (t, u) = 0, as an equation for u, has

c many small roots (limt→0 u(t) = 0),

and d many large roots (limt→0|u(t)|=∞).

The small roots are denoted by u1(t), . . . , uc(t).
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Enumeration and asymptotics of directed lattice paths

[Banderier and Flajolet 2002]

walks

W (t, u) =
1

1− tP(u)

meanders

M(t, u) =
1

uc(1− tP(u))

c∏
i=1

(u − ui (t))

bridges

B(t) = t
c∑

i=1

u′i (t)

ui (t)

excursions

E (t) =
(−1)c+1

t

c∏
i=1

ui (t)
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Folklore example: Dyck paths S = {−1, 1}

jumps P(u) = u−1 + u

the kernel is K (t, u) = 1− t(u−1 + u)

the small root is u1(t) =
1−
√

1− 4t2

2t

W (t, u) =
1

1− tP(u)
W (t, u) =

1

1− 2t

B(t) = t
c∑

i=1

u′i (t)

ui (t)
B(t) =

1√
1− 4t2

E (t) =
(−1)c+1

t

c∏
i=1

ui (t) E (t) =
1−
√

1− 4t2

2t2
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Our work: Lattice paths with forbidden patterns

We fix a pattern – a word p = [a1, . . . , a`],
and we want to enumerate lattice paths that avoid p,
that is, do not contain p as a substring.

To each proper prefix of p we assign a state:
Xi = [a1, . . . , ai ], where 0 ≤ i ≤ `− 1. We say that a path p is in the state Xi

after a certain step if by this point it “accumulated” [a1, . . . , ai ] as its suffix:

pattern
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Associated Automaton

This gives raise to a finite automaton. Example: p = [1, 2, 1, 2, 1, 1, 2]

1 12 121 1212 12121 121211ε
1 2 1 1 12

2

1

2

To keep track of altitude, for each jump s, one multiplies the corresponding
transitions by us (it mimicks an additional stack, like a pushdown automata).
This gives an adjacency matrix A(u).
To each state Xi is associated a generating function Wi (t, u) of walks that
terminate in this state.
Thus, the generating function of walks avoiding the pattern p is

W (t, u) = W1(t, u) + W2(t, u) + · · ·+ W`(t, u)

Challenge: can we give a more explicit expression for W? How this approach can
work if one needs to encode non-negativity constraints (e.g. for excursions E (t)
and meanders M(t, u))?
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Automaton to count occurrences of the pattern

Pushdown automaton for the set of jumps S = {−1, 1, 2} and the pattern
p = [1, 2,−1, 1, 2]. In dashed red we marked the arrow from the last state (X`−1)
labeled by the last letter of the pattern (a`). Marking this transition with v leads
to formulas involving the kernel K (t, u, v) = det(I − tA), where A is the adjacency
matrix of this automaton.
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Autocorrelation polynomial

[Guibas–Odlyzko 1980]

A presuffix of a word p is a non-empty string that appears in p both as a prefix
and as a suffix. The autocorrelation polynomial of the word p is

R(t, u) :=
∑
q∈Q

t |q̄|uh(q̄),

where Q is the set of all the presuffixes of p (and bar denotes complement to p).

Example: For p = [1, 1, 0, 1, 1, 0, 1, 1], presuffix(p)= {1, 11, 11011,p } so we
have R(t, u) = 1 + t3u2 + t6u4 + t7u5.

If p has no proper presuffixes, then we have R(t, u) = 1 (trivial autocorrelation).
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The kernel theorem

Theorem
Let A be the transfer matrix of the automaton that was described above.
Then we have:

1 K (t, u) := |I − tA|= (1− tP(u))R(t, u) + t |p|uh(p).

2 ~10 adj(I − tA) 1 = R(t, u),

where ~10 =
(
1 0 · · · 0

)
and 1 =

(
1 1 · · · 1

)>
.

In particular, in the case of trivial autocorrelation we have
K (t, u) = |I − tA|= 1− tP(u) + t |p|uh(p) and ~10 adj(I − tA) 1 = 1.
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Summary of results (BF vs. ABBG)

[Ban-Fla 2002] [Asi-Bac-Ban-Git 2018]

W (t, u)
1

K (t, u)

R(t, u)

K (t, u)

B(t) t
c∑

i=1

u′i (t)

ui (t)
−t

e∑
i=1

u′i (t)

ui (t)

R(t, ui )

Kt(t, ui )

M(t, u)
1

ucK (t, u)

c∏
i=1

(u − ui (t))
R(t, u)

ucK (t, u)

c∏
i=1

(u − ui (t)) (∗)

E (t)
(−1)c+1

t

c∏
i=1

ui (t)
(−1)c+1

t

c∏
i=1

ui (t) (∗)
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Generating function of meanders (proof, part 1/2)

We have

(M1 · · · M`) = J + t (M1 · · · M`)A− t [u<0] ((M1 · · · M`)A),

(M1 · · · M`) = ~10 + t (M1 · · · M`)A− t
uc F (t, u)~10

(M1 · · · M`)(I − tA) =

(
1− t

uc
F (t, u)

)
J

(M1 · · · M`) =

(
1− t

uc
F (t, u)

)
J
adj(I − tA)

|I − tA|

M(t, u) =

(
1− t

uc
F (t, u)

)
R(t, u)

K (t, u)
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Generating function of meanders (proof, part 1/2)

(M1 · · · M`)(I − tA) =

(
1− t

uc
F (t, u)

)
J (∗)

The kernel, K (t, u) = |I − tA|= (1− t(u−c + · · ·+ ud))R(t, u) + t`uh,
has c small roots: u1(t), . . . , uc(t) (because −c < 0 ≤ h).

Let i ∈ {1, 2, . . . , c}. Substitute u = ui (t) into (∗). The matrix (I − tA)|u=ui (t) is
singular. Let v be the eigenvector of this matrix with λ = 0 (its first component
can be assumed to be 1). We multiply (∗) with u = ui (t) by v from the right and
obtain 0 = uci (t)− tF (t, ui (t)).

Thus, u1(t), u2(t), . . . , uc(t) are roots of uc − tF (t, u) = 0, a polynomial
equation (in u) of degree c . Therefore, we have

uc − tF (t, u) = (u − u1(t))(u − u2(t)) . . . (u − uc(t)).

We obtain the meanders generating function

M(t, u) =
R(t, u)

uc K (t, u)

c∏
i=1

(u − ui (t)).
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Example 1: Humps in Motzkin paths

S = {−1, 0, 1}, p = [1, 0, 0, . . . , 0,−1].

K (t, u) = 1− t(u−1 + 1 + u) + t`,

u1(t) =
1− t + t` −

√
(1 + t + t`)(1− 3t + t`)

2t

B(t) =
1√

(1 + t + t`)(1− 3t + t`)

` = 2: OEIS A051286. “Whitney number of level n of the lattice of the ideals of
the fence of order 2n. Apparently the number of peakless grand Motzkin paths of
length n.”
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Example 2: no zigzag Dyck paths

S = {−1, 1}, p = [1,−1, 1,−1, . . . , 1].

K (t, u) = 1− t(u−1 + u)
1− t`+1

1− t2
+ t`u,

u1(t) =
1− t`+1 −

√
(1− t`+1)(1− 4t2 + 3t`+1)

2t(1− t`−1)

` = 3: E (t) =
1 + t2 −

√
1− 2t2 − 3t4

2t2

= 1 + t2 + t4 + 2 t6 + 4 t8 + 9 t10 + 21 t12 + 51 t14 + . . .

Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger Patterns in lattice paths 19 / 22



Flajolet & Sedgewick ”Borges’s theorem”

Jorge Luis Borges (1899-1986)
The library of Babel (1941).

The novel describes a library so huge as to contain:

“Everything: the minutely detailed history of the future, the archangels’
autobiographies, the faithful catalogues of the Library, thousands and thousands

of false catalogues, the demonstration of the fallacy of those catalogues, the
demonstration of the fallacy of the true catalogue, the Gnostic gospel of Basilides,

the commentary on that gospel, the commentary on the commentary on that
gospel, the true story of your death, the translation of every book in all languages,

the interpolations of every book in all books.”
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Flajolet & Sedgewick ”Borges’s theorem”

Jorge Luis Borges (1899-1986)
The library of Babel (1941).

“In any combinatorial structure, any pattern not forbidden by design, will appear
linear number of time, with a Gaussian limit law.”

Many examples:

[Flajolet, Drmota, Soria, Hwang, Bender, Canfield 1993++] : OK if 1
algebraic equation, or 1 linear system

[Gao–Wormald 2004] patterns in maps

[Flajolet–Salvy–Nicodème 2002]: patterns in rational languages

[Asinowski–Bacher–Banderier–Gittenberger 2018]: patterns in algebraic
languages
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Conclusion

unified approach for counting lattice paths with a forbidden pattern

unified approach for counting # occurrences of a pattern in lattice paths

explicit expressions in terms of the autocorrelation polynomial

extension of the kernel method to systems of equations

can be applied to any pushdown automaton

can be applied to intersection of context-free grammar and automaton

analytic combinatorics approach: universality for the asymptotics, Borges’s
theorem: Gaussian limit law
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