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Motivation (1)

Horizontal transfer (HT) is recognized as a major process in the
evolution and adaptation of populations, especially for micro-organisms
(e.g. E. coli).

» A main role in the evolution, maintenance, and transmission of
virulence.

» The primary reason for bacterial antibiotic resistance.

» Transfer of CRISPR-Cas9 for fighting against virulent or antibiotic

resistant bacteria (Duportet, El Karoui)

Plasmid transfer. Having a plasmid is costly.

Purpose here: describe the joint evolution of trait distribution and
population size.
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Motivation (2): Case of study
% Conjugation

(x,y) = (x,x)

% Frequency dependent rate
T
N(t)

Prop: Consider a population with 2 traits x and y. For a constant
competition kernel and a frequency dependent conjugation rate, there is
invasion implies fixation. O

N, (t)N,(t).

dn
dt

P p 1= p) ()~ ) 7).

=n(pr(y)+(1—p)r(x)— Cn)

1. Billiard et al., JEMS, 2018.



Motivation (3): Simulations
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Importance of the small fluctuations?

Mutations are not rare.
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1. Simulations by L. Fontaine and S. Krystal, 2016.

2. Billiard et al., JEMS, 2018.
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Toy model

Y Initial population size proportional to K. We denote by N; the size of the
population at time t.

Population structured by a trait
4

x = k& €[0,4], ke{o,...LSJ}.

We denote by N, (t) the size of the population with trait x.
Births: rate b(x) = 4 — x.
» With probability K~ “: mutant with trait x + ¢.
> With probability 1 — K~<: clone.

Deatbhs:
N;
dx)=1+C—
(x) =1+ C
Horizontal transfers: unilateral conjugation, frequency-dependent transfer
rate: (x,y) — (x, x) with rate
-

T(x,y,N) = N1X>y

Initial population sizes:
3K

No = | =2

I, KV, KL, 0.



Simulations of the toy model - IBM (1)
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Simulations of the toy model - IBM (2)
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Simulations of the toy model - IBM (3)
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First properties of the toy model

Letting K — +00, we obtain in the limit a population with only trait
0, whose size is governed by:

A(t) = n(t)(3 — Cn(t)).

% In absence of mutation, a population of only trait x with initial

condition K has a size that converges, when K — 400, to the solution of:

n(t) = n(t)(3 — x — Cn(t)),

whose unique positive stable equilibrium is

3—x

A(x) = .

The invasion fitness of a mutant y in the population with trait x at
equilibrium is:

3—-x)K C
5(y;X) :(4_}/)_ (14_%?) +7—1X<y_7—1y<x

=x — y + 7sign(y — x).
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Exponents in birth-death processes

+* Need to follow small populations, of size K”. On timescales log K. This
explains possible resurgences.

Rk if N~ CK®,  then g~ 80N
log K
A small population with trait y in a resident population of trait x (say
y < x) behaves as a branching process with rates:

(@-y). (- Ty .

Lemma: Consider a birth-death process (Z;):>o with rates b and d, starting
from an initial condition of size K” (with 3 < 1).

Then,

(lOg(l + ZsKIog K)

log K 7520) —Kotoo ((B+s(b—d))VO0,s>0),

uniformly on any [0, T] and in probability.

1. Durrett and Mayberry, AAP, 2011.
2. Bovier, Coquille, Smadi, 2018.



Exponents in birth-death processes with immigration

“ A small population with trait y in a resident population of trait x,
with y > x, behaves as a branching process with rates:

(1 B CNx(t)).

(4_y)+7—7 K

But y may also receive a contribution from x due to mutations:
Ny (t)K~o0=x),

% Lemma: we consider the assumptions of the previous lemma + add
immigration at rate K<e?, for a,c € R.

Then,

(IOg(l + ZsKIog K)

log K ,s>0) —Krtoo (B+5s(b—d))V(c+as),s >0),

uniformly on any [0, T] and in probability.
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Case of three traits (1)
Three traits: 0, §, 26. Assume that

0<T<20<3<4<36.

Also, assume that 0 < o < 1.

At time tg = 0:
» Trait 0:

> Bo(0) =1

> S0(0) =0, No(0) = 3¢
» Trait §:

» f1(0)=1—-«

> 51(0):7'75>0
Pi(t) = (1 — )+ (r =)t (>1-aq)

» Trait 26:
> ﬂz(O) =1-2«
» 5(0)=7-20<0 — Bat) =(1—-2a)+ (7 —20)t
» But there are mutations from trait ¢:

Pot) =(1-2a) +(7=0)t  (21-a) 13



Bela
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Case of three traits (2)

At time f; = 5
» Trait 0:

> Bo(t1) =1

> So(t1)) =60 —7 <0,

Bo(t) =14 (6 —7)(t — t1)

» Trait §:

> fi(t) =1

> Si(t1) =0, Ni(t1) = (375)’(
» Trait 26:

> Bo(t))=1-a
» S(t)=7-0>0 —= B(t)>l-a

Pa(t) = (1 —a) + (1 = 6)(t — 1)
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Case of three traits (3)

At time fp = %5 + o
» Trait 0:

> fo(t) =1-«a
> So(tg) =20—7 >0,

Bo(t) = (1 — ) + (20 — 7)(t — t2)
» Trait §:
> fi(t) =1
> 51(t2)=(5—7‘<0,
Bi(t) =max|1 4+ (6 — 7)(t — 1) , (1 —2a) + (26 — 7)(t — tz)}

» Trait 26:

> Ba(2) =1
> 52(1.‘2) =0



Bela
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Case of three traits (4)

 Assumethat 0 <7 —0 <26 — 7.

At time 3 =
» Trait 0:

> fo(ts)
> So(ts)

Jr

«
+ 26—

”70 70

» Trait §:

>,B1(t3):1+(5—7')ﬁ >1—%
> 51(t3)=7'—(5>0,

Bi(t) =1+ 2557 at (r—6)(t—ts)
» Trait 26:
> fa(tz) =1
> S(t3)=7—-25<0
Ba(t) :max[l +(r—20)(t—t3), 1— 256_% +(r—90)(t— t3)}
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Case of three traits (5)

Attimet4:ﬁ+%+ a4 _«o

26—T1 %7

» Trait 0:

> ﬂo(t4) =1

> 50(0):(57T<0,
» Trait §:

> Bu(ta) =1

> 51(t4) =0
» Trait 26:

> Bo(ta) =1-a
> S(ta)=7—0>0

Same situation as in t7.
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Representation of the Toy model (1)

Beta
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Representation of the Toy model (2)
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Representation of the Toy model (3)
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Main result

s Assume that the trait x = £*¢ is the resident with 3,(0) = 1 (for sake of
simplicity of the presentation).

% Compute the fitnesses S(y; x) for all the traits y = £4.
Be(t) = Ta(t),
where Y9(t) = 0 if Bo(t) = 0 and Be—1(t) < @, and else:
(t) = max{S((f )G ()0);0 < i< £st V1< j < i, Bos(t) = Bg(t)—&—j&}

% deduce the time breakpoints:

B . 1— Be(tr) « 0
tkel = tk + (mf {Wé # U st Xp(te) > 0}
Ainf { fééikti);e s.t. Bo(te) > 0 and T(t,) < o}

Be(t) — Be—1(tx) +
0 1 (t) — S(£6,€;0)1 5,10

/\inf{ 0 0 st Bo(t) > Beoa(ti) —

and 91 (t) — S(£6,6;6) 15,650 > o}) .
26



