

Stochastic dynamics of a population of microorganisms with competition and horizontal transfers

TRAN Viet Chi

Labo P. Painlevé, Université de Lille, France

Conference 'Probability and Biological Evolution' - CIRM

June 26, 2018

Motivation (1)

- ★ Horizontal transfer (HT) is recognized as a major process in the evolution and adaptation of populations, especially for micro-organisms (e.g. E. coli).
 - A main role in the evolution, maintenance, and transmission of virulence.
 - ▶ The primary reason for bacterial antibiotic resistance.
 - Transfer of CRISPR-Cas9 for fighting against virulent or antibiotic resistant bacteria (Duportet, El Karoui)
- ★ Plasmid transfer. Having a plasmid is costly.
- ★ Purpose here: describe the joint evolution of trait distribution and population size.

^{1.} Tenaillon et al., Nature Reviews, 2010.

^{2.} Novozhilov et al., Molecular Biol. and Evol., 2005.

^{3.} Tazzyman, Bonhoeffer, TPB, 2013.

^{4.} Baumdicker, Pfaffelhuber, EJP, 2014.

^{5.} Billiard et al., J. Theor. Biol., 2016.

Motivation (2): Case of study

★ Conjugation

$$(x,y) \rightarrow (x,x)$$

★ Frequency dependent rate

$$\frac{\tau}{N(t)}N_{x}(t)N_{y}(t).$$

Prop: Consider a population with 2 traits x and y. For a constant competition kernel and a frequency dependent conjugation rate, there is invasion implies fixation.

$$\frac{dn}{dt} = n \left(p \, r(y) + (1 - p) \, r(x) - Cn \right)$$

$$\frac{dp}{dt} = p \left(1 - p \right) \left(r(y) - r(x) + \tau \right).$$

Motivation (3): Simulations

Importance of the small fluctuations? Mutations are not rare.

^{1.} Simulations by L. Fontaine and S. Krystal, 2016.

^{2.} Billiard et al., JEMS, 2018.

Toy model

- \star Initial population size proportional to K. We denote by N_t the size of the population at time t.
- ★ Population structured by a trait

$$x = k\delta \in [0, 4], \qquad k \in \{0, \dots \lfloor \frac{4}{\delta} \rfloor \}.$$

We denote by $N_{\times}(t)$ the size of the population with trait x.

- **\star Births**: rate b(x) = 4 x.
 - ▶ With probability $K^{-\alpha}$: mutant with trait $x + \delta$.
 - ▶ With probability $1 K^{-\alpha}$: clone.
- ★ Deaths:

$$d(x) = 1 + C \frac{N_t}{K}$$

 \star Horizontal transfers: unilateral conjugation, frequency-dependent transfer rate: $(x,y) \to (x,x)$ with rate

$$\tau(x,y,N) = \frac{\tau}{N} \mathbf{1}_{x>y}$$

★ Initial population sizes:

$$N_0 = \lfloor \frac{3K}{C} \rfloor, \quad \lfloor K^{1-\alpha} \rfloor, \dots, \lfloor K^{1-\ell\alpha} \rfloor, \dots, 0, \dots 0.$$

V 90° E ← E → ← E → ← E →

Simulations of the toy model - IBM (1)

$$K = 10000$$
, $\delta = 0.1$, $\alpha = 0.5$, $\tau = 0.6$

Simulations of the toy model - IBM (2)

$$K=$$
 10000, $\delta=$ 0.1, $\alpha=$ 0.5, $au=$ 0.8

Simulations of the toy model - IBM (3)

$$K = 1000$$
, $\delta = 0.1$, $\alpha = 0.5$, $\tau = 0.1$

First properties of the toy model

 \star Letting $K \to +\infty$, we obtain in the limit a population with only trait 0, whose size is governed by:

$$\dot{n}(t) = n(t)(3 - Cn(t)).$$

 \star In absence of mutation, a population of only trait x with initial condition K has a size that converges, when $K \to +\infty$, to the solution of:

$$\dot{n}(t) = n(t)(3 - x - Cn(t)),$$

whose unique positive stable equilibrium is

$$\bar{n}(x) = \frac{3-x}{C}$$
.

The invasion fitness of a mutant y in the population with trait x at equilibrium is:

$$S(y;x) = (4-y) - \left(1 + \frac{(3-x)K}{C} \frac{C}{K}\right) + \tau \mathbf{1}_{x < y} - \tau \mathbf{1}_{y < x}$$
$$= x - y + \tau \operatorname{sign}(y - x).$$

Exponents in birth-death processes

 \star Need to follow small populations, of size K^{β} . On timescales log K. This explains possible resurgences.

Rk: if
$$N \sim CK^{\beta}$$
, then $\beta \approx \frac{\log(1+N)}{\log K}$.

 \star A small population with trait y in a resident population of trait x (say y < x) behaves as a branching process with rates:

$$(4-y), \qquad \left(1-\frac{CN_x(t)}{K}\right)-\tau.$$

Lemma: Consider a birth-death process $(Z_t)_{t>0}$ with rates b and d, starting from an initial condition of size K^{β} (with $\beta \leq 1$).

Then,

$$\left(\frac{\log(1+Z^{\mathcal{K}}_{\mathfrak{s}\log\mathcal{K}})}{\log\mathcal{K}}, s\geq 0\right) \to_{\mathcal{K}\to +\infty} \big(\big(\beta+s(b-d)\big)\vee 0, s\geq 0\big),$$

uniformly on any [0, T] and in probability.

^{1.} Durrett and Mayberry, AAP, 2011.

Bovier, Coquille, Smadi, 2018.

Exponents in birth-death processes with immigration

 \star A small population with trait y in a resident population of trait x, with y > x, behaves as a branching process with rates:

$$(4-y)+\tau, \qquad \Big(1-\frac{CN_x(t)}{K}\Big).$$

But y may also receive a contribution from x due to mutations:

$$N_{x}(t)K^{-\alpha(y-x)}$$
.

Lemma: we consider the assumptions of the previous lemma + add immigration at rate $K^c e^{as}$, for $a, c \in \mathbb{R}$.

Then.

$$\left(\frac{\log(1+Z_{s\log K}^K)}{\log K}, s \geq 0\right) \to_{K \to +\infty} \left(\left(\beta + s(b-d)\right) \vee (c+as), s \geq 0\right),$$

uniformly on any [0, T] and in probability.

Case of three traits (1)

 \star Three traits: 0, δ , 2δ . Assume that

$$\delta < \tau < 2\delta < 3 < 4 < 3\delta$$
.

Also, assume that $0 < \alpha < 1$.

- \star At time $t_0 = 0$:
 - ► Trait 0:
 - $\beta_0(0) = 1$
 - $S_0(0) = 0$, $N_0(0) = \frac{3K}{C}$
 - ▶ Trait δ :
 - ▶ $\beta_1(0) = 1 \alpha$
 - $S_1(0) = \tau \delta > 0$

$$\beta_1(t) = (1 - \alpha) + (\tau - \delta)t \qquad (\geq 1 - \alpha)$$

- ► Trait 2δ:
 - ▶ $\beta_2(0) = 1 2\alpha$
 - $S_2(0) = \tau 2\delta < 0 \rightarrow \beta_2(t) = (1 2\alpha) + (\tau 2\delta)t$
 - **b** But there are mutations from trait δ :

$$\beta_2(t) = (1 - 2\alpha) + (\tau - \delta)t \qquad (\ge 1 - \alpha)$$

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

Case of three traits (2)

- \bigstar At time $t_1 = \frac{\alpha}{\tau \delta}$:
 - ► Trait 0:
 - $\beta_0(t_1) = 1$
 - $S_0(t_1) = \delta \tau < 0$,

$$\beta_0(t) = 1 + (\delta - \tau)(t - t_1)$$

- ▶ Trait δ :
 - $\beta_1(t_1) = 1$
 - $S_1(t_1) = 0$, $N_1(t_1) = \frac{(3-\delta)K}{C}$
- ▶ Trait 2δ :
 - $\beta_2(t_1) = 1 \alpha$
 - $S_2(t_1) = \tau \delta > 0 \rightarrow \beta_2(t) \ge 1 \alpha$

$$\beta_2(t) = (1 - \alpha) + (\tau - \delta)(t - t_1)$$

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

Case of three traits (3)

- \bigstar At time $t_2 = \frac{\alpha}{\tau \delta} + \frac{\alpha}{\tau \delta}$:
 - ► Trait 0:
 - $\beta_0(t_2) = 1 \alpha$
 - $S_0(t_2) = 2\delta \tau > 0$,

$$\beta_0(t) = (1-\alpha) + (2\delta - \tau)(t-t_2)$$

- ▶ Trait δ :
 - $\beta_1(t_1) = 1$
 - $S_1(t_2) = \delta \tau < 0$,

$$\beta_1(t) = \max \Big[1 + (\delta - \tau)(t - t_2) , (1 - 2\alpha) + (2\delta - \tau)(t - t_2) \Big]$$

- ▶ Trait 2δ :
 - $\beta_2(t_2) = 1$
 - $S_2(t_2) = 0$

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

 $\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$

Case of three traits (4)

 \star Assume that $0 < \tau - \delta < 2\delta - \tau$.

$$\bigstar$$
 At time $t_3 = \frac{\alpha}{\tau - \delta} + \frac{\alpha}{\tau - \delta} + \frac{\alpha}{2\delta - \tau}$:

- ► Trait 0:
 - $\beta_0(t_3) = 1$
 - $S_0(t_3)=0.$
- ▶ Trait δ :
 - $\beta_1(t_3) = 1 + (\delta \tau) \frac{\alpha}{2\delta \tau} > 1 \frac{\alpha}{2}$
 - $S_1(t_3) = \tau \delta > 0$.

$$eta_1(t) = 1 + rac{\delta - au}{2\delta - au} lpha + (au - \delta)(t - t_3)$$

- ▶ Trait 2δ :
 - $\beta_2(t_3) = 1$
 - $S_2(t_3) = \tau 2\delta < 0$

$$\beta_2(t) = \max \left[1 + (\tau - 2\delta)(t - t_3) , 1 - \frac{\delta \alpha}{2\delta - t_{au}} + (\tau - \delta)(t - t_3) \right]$$

$$\delta=1.3$$
, $\alpha=\frac{1}{\pi}$, $\tau=1.5$.

 $\delta=1.3$, $\alpha=\frac{1}{\pi}$, $\tau=1.5$.

Case of three traits (5)

$$\star$$
 At time $t_4 = \frac{\alpha}{\tau - \delta} + \frac{\alpha}{\tau - \delta} + \frac{\alpha}{2\delta - \tau} + \frac{\alpha}{2\delta - \tau}$:

- ► Trait 0:
 - $\beta_0(t_4) = 1$
 - $S_0(0) = \delta \tau < 0$,
- ▶ Trait δ :
 - $\beta_1(t_4) = 1$
 - $S_1(t_4) = 0$
- ▶ Trait 2δ :
 - $\beta_2(t_4) = 1 \alpha$
 - $S_2(t_4) = \tau \delta > 0$

Same situation as in t_1 .

$$\delta=$$
 1.3, $\alpha=\frac{1}{\pi}$, $\tau=$ 1.5.

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

$$\delta = 1.3, \; \alpha = \frac{1}{\pi}, \; \tau = 1.5.$$

Representation of the Toy model (1)

$$\delta=$$
 0.3, $\alpha=\frac{1}{\pi}$, $\tau=$ 1.

Representation of the Toy model (2)

$$\delta=$$
 0.41, $\alpha=\frac{1}{\pi}$, $\tau=$ 4.

Representation of the Toy model (3)

$$\delta=$$
 1.1, $\alpha=\frac{1}{\pi}$, $\tau=$ 1.3.

Main result

- \star Assume that the trait $x = \ell^* \delta$ is the resident with $\beta_x(0) = 1$ (for sake of simplicity of the presentation).
- \star Compute the fitnesses S(y;x) for all the traits $y=\ell\delta$.

$$\dot{eta}_\ell(t) = \Sigma_\ell^0(t),$$

where $\Sigma_{\ell}^{0}(t)=0$ if $\beta_{\ell}(t)=0$ and $\beta_{\ell-1}(t)\leq \alpha$, and else:

$$\sum_{\ell=0}^{0} (t) = \max \left\{ S((\ell-i)\delta; \ell^*(t)\delta); 0 \le i \le \ell \text{ s.t. } \forall 1 \le j \le i, \ \beta_{\ell-j}(t) = \beta_{\ell}(t) + j\alpha \right\}$$

★ deduce the time breakpoints:

$$\begin{split} t_{k+1} &= t_k + \left(\inf\left\{\frac{1-\beta_\ell(t_k)}{\Sigma_\ell^0(t_k)}; \ell \neq \ell_k^* \text{ s.t. } \Sigma_\ell^0(t_k) > 0\right\} \\ &\wedge \inf\left\{\frac{\beta_\ell(t_k)}{-\Sigma_\ell^0(t_k)}; \ell \text{ s.t. } \beta_\ell(t_k) > 0 \text{ and } \Sigma_\ell^0(t_k) < 0\right\} \\ &\wedge \inf\left\{\frac{\beta_\ell(t_k)}{\Sigma_{\ell-1}^0(t_k) - \beta_{\ell-1}(t_k) + \alpha}{\sum_{\ell-1}^0(t_k) - S(\ell\delta, \ell_k^*\delta) \mathbf{1}_{\beta_\ell(t_k) > 0}}; \ell \neq \ell_k^* \text{ s.t. } \beta_\ell(t_k) > \beta_{\ell-1}(t_k) - \alpha \\ &\quad \text{and } \Sigma_{\ell-1}^0(t_k) - S(\ell\delta, \ell_k^*\delta) \mathbf{1}_{\beta_\ell(t_k) > 0} > 0\right\}\right). \end{split}$$