Coagulation-transport PDE and nested coalescents

Emmanuel Schertzer. Joint work with Amaury Lambert.

June 26, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coalescents and Nested Coalescents.

Kingman coalescent

- Markov process valued in $\mathcal{P}_{\mathbb{N}}$.
- Pairs of blocks coalesce at rate 1.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kingman coalescent

• Coming down from ∞ :

$$\forall \epsilon > 0, \quad K_{\epsilon} < \infty \quad \text{a.s.}$$

where K_t is the block counting process at time t ($K_0 = \infty$). Speed of coming down from ∞ :

$$\left(\frac{1}{n}K_{t/n};t>0\right)\implies (x_t;t>0)$$

where $(x_t; t > 0)$ is solution of the ODE

$$\dot{x}=-rac{1}{2}x^2,$$
 with $x_0=\infty$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

so that
$$x_t = \frac{2}{t}$$
.

Lambda coalescent (Pitman, Sagitov)

- Let Λ be a finite measure on [0, 1].
- ► If n blocks present at time t, each k-uplet of blocks (k ≥ 2) coagulate at rate

$$\int_{[0,1]} x^{k-2} (1-x)^{n-k} \Lambda(dx).$$

• $\Lambda = \delta_0$ is the Kingman coalescent.

イロト 不得 トイヨト イヨト

3

$$\psi(x) = \int_{[0,1]} (e^{-rx} - 1 + rx) \frac{\Lambda(dr)}{r^2}$$

which is the Laplace exponent of a critical and spectrally positive Lévy process.

Under Grey's condition

$$\int^\infty 1/\psi(u)$$
su < ∞

the Λ -coalescent comes down from infinity.

$$\forall t > 0, \ K_{t/n}/x_{t/n} \implies 1$$

where $(x_t; t \ge 0)$ is solution of the ODE

$$\dot{x}=-\psi(x),$$
 with $x_0=\infty$

(Beresticky's, Limic, Schweinsberg)

Nested coalescents

- Two levels of coalescence: species and gene trees
- Gene lineages can only coalesce if they belong to the same species
- ► For simplicity, we will consider the case where
 - (i) The species tree is a Kingman coalescent
 - (ii) The gene lineages coalesce $\dot{a} \ la \ \Lambda$ (taking into account the species constraint).

Nested coalescents

- Special case Λ = δ₀: nested Kingman coalescent. Recently considered (with very different methods) by Benitez, Rogers, Schweinsberg, Siri Jégousse.
- General exchangeable nested coalescents considered by Benitez, Lambert, Duschamps, Siri Jégousse.

Coming down from ∞

- Let ρ_t be the number of gene lineages at time t.
- Let s_t be the number of species at time t.
- We say that the nested coalescent c.d.i. iff
 - 1. $s_0 = \infty$
 - 2. at least one gene lineage per species.
 - 3. For every $\epsilon > 0$,

 $\rho_{\epsilon} < \infty, \text{ whereas } \rho_{0} = \infty.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

The nested coalescent c.d.i. iff the underlying Λ coalescent c.d.i.

Coming down from ∞

- Different ways of coming down from infinity.
- Question 1: Entrance law at ∞ ?
- Question 2 : Different speeds of coming down from ∞ ?
- This talk will address the second question for nested coalescents c.d.i.
 - 1. For simple coalescents: speed is determined by a simple ODE with $\infty\text{-}$ initial condition.
 - 2. For nested coalescents: speed is determined by a degenerate PDE, raising non-trivial unicity and existence problems.

Convergence results (nested Kingman coalescent and more)

Empirical measures

- Sequence of nested Kingman indexed by *n*.
- For $i \leq s_t^n$, $\Pi_t^n(i) = \#$ gene lineages in species *i*.
- Π_t^n will be called the genetic composition vector.
- $g_t^n := \frac{1}{s_t^n} \sum_{i=1}^{s_t^n} \delta_{\prod_t^n(i)}$ the empirical measure associated to the number of gene lineages.

R1: finite but large populations (O(n) species, O(n) genes/species)

• (Renormalization)
$$\tilde{g}_t^n := \frac{1}{s_{t/n}^n} \sum_{i=1}^{s_{t/n}^n} \delta_{\frac{1}{n} \prod_{t/n}^n(i)}$$

Theorem

Assume that there exist $r \in (0,\infty)$ and $\nu \in M_p(\mathbb{R}^+)$ deterministic such that

1.
$$s_0^n/n \to r \in (0,\infty)$$
 in $L^{2+\epsilon}$
2. $\tilde{g}_0^n \to \nu$ (weak cv)

Then $(\tilde{g}_t^n; t \ge 0)$ converges in $D([0, T], (M_F(\mathbb{R}^+), w))$ to $(d(t, x)dx; t \ge 0)$ where d is the weak solution of the PDE

$$\partial_t d(t,x) = \partial_x (\frac{1}{2}x^2 d)(t,x) + \frac{1}{t+\delta} (d \star d(t,x) - d(t,x)) \quad t,x \ge 0,$$

with initial condition $d(0,x)dx = \nu(dx)$ and $\delta = \frac{2}{r}$ (inverse population size).

R2: infinite populations

Theorem

- 1. Nested Kingman c.d.i., i.e., $s_0^n = \infty$.
- 2. Only constraint $\forall i \in \mathbb{N} \ \Pi_0(i) \geq 1$.

Then $(\tilde{g}_t^n; t \ge 0)$ converges (in $D([\tau, T], (M_F(\mathbb{R}^+), w))$ for every $0 < \tau < T$) to $(d(t, x)dx; t \ge 0)$ where *d* is the unique proper weak solution of the PDE

$$\partial_t d(t,x) = \partial_x (\frac{1}{2}x^2 d)(t,x) + \frac{1}{t} (d \star d(t,x) - d(t,x)) \quad t,x \ge 0,$$

- Degenerate at t = 0.
- ► No prescription of the initial condition ! (only require the solution to be proper, i.e. $\lim_{t\to 0} d(t, x) dx \neq \delta_0$.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

- 1. Nested Kingman c.d.i., i.e., $s_0^n = \infty$.
- 2. Only constraint $\forall i \in \mathbb{N} \ \Pi_0(i) \geq 1$.

Let ρ_t be the number of gene lineages at time t. Then

$$\frac{1}{n^2}\rho_{t/n} \Longrightarrow \frac{2}{t} \int_0^\infty x d(t,x) dx =_{\text{scaling}} \frac{2}{t^2} \int_0^\infty x d(1,x) dx < \infty$$

where d is the proper solution of the previous slide.

Benitez, Rogers, Schweinsberg, Siri Jégousse (18) characterizes the same limit in terms of a fixed point problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General coalescent. PDE problem

Recall that for Λ coalescent, the speed of c.d.i. is related to the ODE

$$\dot{x} = -\psi(x)$$
, (for Kingman, $\psi(x) = \frac{1}{2}x^2$)

where

$$\psi(x) = \int_{[0,1]} (e^{-rx} - 1 + rx) \frac{\Lambda(dr)}{r^2}$$

For general nested coalescents, the speed of c.d.i should be related to the PDE

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + rac{1}{t+\delta} (d \star d(t,x) - d(t,x))$$

with $\delta > 0$ (finite population) and $\delta = 0$ (infinite population).

For general nested coalescents, the speed of c.d.i should be related to the PDE

$$\partial_t d(t,x) = \partial_x (\psi(x)d)(t,x) + \frac{1}{t+\delta} (d \star d(t,x) - d(t,x))$$

General strategy (Méléard, Fournier, Tran)
 Step 1 Tightness of (gⁿ_t, t > 0), and show that any sub-sequential limit solves the PDE.

Step 2 Show that the PDE has a unique solution.

Question: Existence and uniqueness of the (possibly) degenerate PDE when ψ is the Laplace exponent of a spectrally positive critical Lévy process.

Part III

PDE problem

Finite initial population

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + \frac{1}{t+\delta}(d\star d(t,x) - d(t,x))$$

Test functions: $f \in C_b^1(\mathbb{R}^+)$ and $f\psi'$ bounded.

Definition

Let $\delta > 0$ and ν a probability measure on \mathbb{R}^+ . We say that a probability-valued process $(\mu_t; t \ge 0)$ is a weak solution with initial condition ν if for every test-function f and every $t \ge 0$:

$$\langle \mu_t, f \rangle = \langle \nu, f \rangle - \int_0^t \left\langle \mu_s, \psi f' \right\rangle \, ds + \int_0^t \left(\frac{1}{s+\delta} \left\langle \mu_s \star \mu_s, f \right\rangle - \left\langle \mu_s, f \right\rangle \right) \, ds$$

Idea: multiply both sides of the original PDE by f, then IPP to transfer the derivatives on the test function, and set $d(t, x)dx = \mu_t(dx)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Infinite initial population

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + \frac{1}{t}(d \star d(t,x) - d(t,x))$$

Test functions: $f \in C_b^1(\mathbb{R}^+)$ and $f\psi'$ bounded.

Definition

Let $\delta = 0$. We say that a probability-valued process (μ_t ; t > 0) is a weak solution if for every test-function f and every s, t > 0:

$$\langle \mu_t, f \rangle = \langle \mu_s, f \rangle - \int_s^t \langle \mu_u, \psi f' \rangle \, du + \int_s^t \frac{1}{u} (\langle \mu_u \star \mu_u, f \rangle - \langle \mu_u, f \rangle) \, du,$$

We say that the solution is a dust solution iff µ_t →_{t↓0} δ₀ (in the weak topology).

(日)((1))

We say that the solution is proper otherwise. (as in the previous convergence result)

Consider the PDE

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + \frac{1}{t+\delta}(d\star d(t,x) - d(t,x))$$

where ψ is the Laplace exponent of a critical spectrally \geq 0 Lévy process.

Theorem

- ▶ \exists ! weak solution to the PDE problem with inverse pop. $\delta > 0$ and initial condition ν .
- ▶ \exists ! weak proper solution to the PDE problem when $\delta = 0$.
- ► ∃ infinitely many dust solutions to the PDE problem when $\delta = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Reminiscent of Boltzmann equation)

Construction of a solution. McKean-Vlasov approach

・ロト・日本・ヨト・ヨー うへの

• Let $\delta > 0$ qnd $\nu \in M_P(\mathbb{R}^+)$ and initial condition, and

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + \frac{1}{t+\delta}(d \star d(t,x) - d(t,x))$$

where ψ is the Laplace exponent of a critical spectrally \geq 0 Lévy process.

$$dx_t = -\psi(x_t)dt + \Delta J^{\delta}v_t, \quad \mathcal{L}(x_0) = \nu.$$

where J^{δ} is a Poisson process with (inhomogeneous) rate $1/(t+\delta)$ and $(v_t)_{t\geq 0}$ is a family of independent rv's with $\mathcal{L}(v_t) = \mathcal{L}(x_t)$.

Lemma

If x_t is solution of the MK-V equation then $\mu_t := \mathcal{L}(x_t)$ is solution of the corresponding coagulation-transport equation. <u>Proof</u>: By Itô, for every test function

$$df(x_t) = -f'(x_t)\psi(x_t)dt + \Delta J^{\delta}(f(x_t+v_t)-f(x_t))$$

Brownian Coalescent Point Process(Popovic)

▶ Poisson Point Process on $\mathbb{R}^+_* \times \mathbb{R}^+_*$ with intensity measure

 $dl imes rac{dt}{t^2}.$

Let T be the random ultrametric tree generated by the PPP. (infinite branch at {l = 0}, leaves at {t = 0})

Marking of the tree \mathcal{T} above time horizon δ with initial measure ν .

- \blacktriangleright Mark each point at level δ with i.i.d. random variables with law ν
- Marks evolve according to the ODE $\dot{x} = -\psi(x)$ along each branch

When two branches merge, add up the marks.

Define $(m_0(t); t \ge \delta)$ be the marking on the branch $\{I = 0\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem $(\theta_{\delta} \circ m_0(t); t \ge 0)$ is solution of MK-V $dx_t = -\psi(x_t)dt + \Delta J^{\delta}v_t, \quad \mathcal{L}(x_0) = \nu.$

Proof.

By a simple time translation, enough to show that $(m_0(t); t \ge \delta)$ solves

$$\forall t \geq \delta, \ dx_t = -\psi(x_t)dt + \Delta J^0 v_t, \ \mathcal{L}(x_\delta) = \nu.$$

<0、<0、<0、<0、<0、<0、<0、<0、<0、<0、<0、<0、<0、<0、<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,<0,

Finite population solution

• $\mu_t := \mathcal{L}(x_t)$ is solution of the PDE with inverse pop. δ and initial measure ν .

$$\mu_t = \mathcal{L}(F(\mathbb{T}^{(t+\delta,\delta)},(W_i)))$$

where W_i are i.i.d. rv's with law ν , and $\mathbb{T}^{(t+\delta,\delta)}$ is the tree originated from $(0, t+\delta)$ up to level δ .

By a martingale arguments, we show that this solution is the unique solution of the PDE. (Using another probabilistic approach!)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Infinite population $\delta = 0$

• Assume now that $\delta = 0$.

For every s > 0, on [s,∞), (µ_t; t ≥ s) is the weak solution of the PDE

$$\partial_t d(t,x) = \partial_x(\psi(x)d)(t,x) + \frac{1}{t}(d \star d(t,x) - d(t,x))$$

with initial condition $d(s, x)dx = \mu_s(dx)$.

By the previous construction, (µ_t; t ≥ s) can be obtained by marking T at level s with initial marking µ_s, i.e.,

$$\mu_t = \mathcal{L}(F(\mathbb{T}^{(t,s)}, (W_s^i)))$$

where W_s^i are i.i.d. rv's with law μ_s , and $\mathbb{T}^{(t,s)}$ is the tree originated from (0, t) up to level s.

Infinite population $\delta = 0$

Letting $s \rightarrow 0$ and using the fact that the solution is proper, we obtain the following result.

Theorem

Under Grey's condition, there is a unique proper solution. Further

$$\mu_t = \mathcal{L}\left(M^{\mathbb{T}^{(t,0)}}\left(\mathcal{M}^{c}\right)\right)$$

where $M^{\mathbb{T}^{(t,0)}}$ is the 0-entrance measure of a branching CSBP with branching mechanism ψ and genealogy $\mathbb{T}^{(t,0)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A desintegration formula

Some facts about CSBP

- Let \u03c6 be the Laplace exponent of a critical and spectrally positive L\u00e9vy process.
- There exists a Markov process Z_t such that

$$E_x(\exp(-\lambda Z_t)) = \exp(-xu_t)$$

where u solves the ODE

$$\dot{u} = -\psi(u), \quad u(0) = \lambda.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Z_t is the CSBP with branching mechanism ψ
 Branching property : P_{x+y} = P_x * P_y.

Entrance law of a CSBP

- Let Z_t be a CSBP with branching mechanism ψ .
- Branching property : $P_{x+y} = P_x \star P_y$.
- There exists a σ-finite measure N (on the space of càdlàg paths starting from 0) such that under P_x

$$Z_t = \sum_i z_t^i$$

where the sum is taken over the atoms of a Poisson PP with intensity xN

N is called the 0-entrance law of the process. Further

$$u_T = N(1 - \exp(-\lambda Z_T))$$

where u solves the ODE

$$\dot{u} = -\psi(u), \quad u(0) = \lambda.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Branching CSBP

- Let \mathbb{E} be an ultrametric tree with depth T.
- Define Z^t be a branching CSBP with branching mechanism ψ.
 - 1. Each particle is an indepedent CSBP with branching mechanism ψ .
 - 2. Particles replicate upon branching.

• Let λ be a vector of dimension the number of leaves. Then

$$E_{x}(\exp(-\langle \lambda, \mathcal{Z}_{T}^{\mathbb{t}} \rangle) = F(\mathfrak{t}, \lambda).$$

where *F* is obtained by marking the leaves with the λ_i's and then by propagating the marks up to the root (as in the CPP).
▶ Define *M*^t the 0-entrance law of the branching CSBP.

$$F(\mathbb{t},\lambda) = M^{\mathbb{t}}\left(1 - \exp\left(-\left\langle \mathcal{Z}_{\mathcal{T}}^{\mathbb{t}},\lambda\right\rangle\right)\right)$$

• When $\delta = 0$,

$$\mu_t = \mathcal{L}(F(\mathbb{T}^{(t,s)}, W_s)) = \mathcal{L}\left(M^{\mathbb{T}^{(t,s)}}\left(1 - \exp(-\langle \mathcal{Z}_t, W_s \rangle)\right)\right)$$

with $\mathcal{L}(W_s^i) = \mu_s$.

- $\mathbb{T}^{(t,0)}$ infinitely many leaves.
- If the solution is proper (µ₀ non-degenerate), there exists a > 0 such that infinitely many marks are > a.
- $\mathcal{M} = \text{event of mass extinction.}$
- Under $\mathcal{M} : 1 \exp(-\langle \mathcal{Z}_t, W_s \rangle)$,
- ▶ Under \mathcal{M}^c : $1 \exp(-\langle \mathcal{Z}_t, W_s \rangle) \rightarrow 1$ as $s \rightarrow 0$.

Thus

$$\mu_t = \mathcal{L}\left(M^{\mathbb{T}^{(t,0)}}\left(\mathcal{M}^c\right)\right) < \delta_{\infty}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

under Grey's condition.

Conclusion

- We exposed a relation between the nested coalescent and a degenerate coagulation-transport equation.
- Construction of a finite pop. solution (δ > 0) using the Brownian CPP.
- \blacktriangleright Using a desintegration formula, under Grey's condition, we proved that there is a unique $\infty.$ pop, solution, and that

$$\mu_t = \mathcal{L}\left(M^{\mathbb{T}^{(t,0)}}\left(\mathcal{M}^c\right)\right), \quad \mathcal{M} = \text{mass extinction}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some open problems

- Convergence of nested Λ coalescents (not only nested Kingman). Tightness results needed.
- ► Uniqueness of the entrance law at ∞.
- What if ψ is not the Laplace exponent of Lévy process ? e.g., ψ(x) = x^γ with γ > 2 ? Stable case OK using the McKean-Vlasov approach (but with no disintegration formula available which induces non-trivial complications).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence to dust solutions.

Thank you !

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)