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Part 1

Coalescents and Nested Coalescents.



Kingman coalescent

I Markov process valued in PN.

I Pairs of blocks coalesce at rate 1.



Kingman coalescent

I Coming down from ∞:

∀ε > 0, Kε <∞ a.s.

where Kt is the block counting process at time t (K0 =∞).

I Speed of coming down from ∞:(
1

n
Kt/n; t > 0

)
=⇒ (xt ; t > 0)

where (xt ; t > 0) is solution of the ODE

ẋ = −1

2
x2, with x0 =∞

so that xt = 2
t .



Lambda coalescent (Pitman, Sagitov)

I Let Λ be a finite measure on [0, 1].

I If n blocks present at time t, each k-uplet of blocks (k ≥ 2)
coagulate at rate∫

[0,1]
xk−2(1− x)n−kΛ(dx).

I Λ = δ0 is the Kingman coalescent.



I Define

ψ(x) =

∫
[0,1]

(e−rx − 1 + rx)
Λ(dr)

r2

which is the Laplace exponent of a critical and spectrally
positive Lévy process.

I Under Grey’s condition∫ ∞
1/ψ(u)su < ∞

the Λ-coalescent comes down from infinity.

I
∀t > 0, Kt/n/xt/n =⇒ 1

where (xt ; t ≥ 0) is solution of the ODE

ẋ = −ψ(x), with x0 =∞

(Beresticky’s, Limic, Schweinsberg)



Nested coalescents

I Two levels of coalescence: species and gene trees

I Gene lineages can only coalesce if they belong to the same
species

I For simplicity, we will consider the case where
(i) The species tree is a Kingman coalescent
(ii) The gene lineages coalesce à la Λ (taking into account the

species constraint).



Nested coalescents

I Special case Λ = δ0: nested Kingman coalescent. Recently
considered (with very different methods) by Benitez, Rogers,
Schweinsberg, Siri Jégousse.

I General exchangeable nested coalescents considered by
Benitez, Lambert, Duschamps, Siri Jégousse.



Coming down from ∞

I Let ρt be the number of gene lineages at time t.

I Let st be the number of species at time t.
I We say that the nested coalescent c.d.i. iff

1. s0 =∞
2. at least one gene lineage per species.
3. For every ε > 0,

ρε <∞, whereas ρ0 =∞.

Lemma
The nested coalescent c.d.i. iff the underlying Λ coalescent c.d.i.



Coming down from ∞

I Different ways of coming down from infinity.

I Question 1: Entrance law at ∞ ?

I Question 2 : Different speeds of coming down from ∞ ?
I This talk will address the second question for nested

coalescents c.d.i.

1. For simple coalescents: speed is determined by a simple ODE
with ∞- initial condition.

2. For nested coalescents: speed is determined by a degenerate
PDE, raising non-trivial unicity and existence problems.



Part II

Convergence results (nested Kingman coalescent and more)



Empirical measures

I Sequence of nested Kingman indexed by n.

I For i ≤ snt , Πn
t (i) = # gene lineages in species i .

I Πn
t will be called the genetic composition vector.

I gn
t := 1

snt

∑snt
i=1 δΠn

t (i) the empirical measure associated to the
number of gene lineages.



R1: finite but large populations (O(n) species, O(n)
genes/species)

I (Renormalization) g̃n
t := 1

sn
t/n

∑sn
t/n

i=1 δ 1
n

Πn
t/n

(i)

Theorem
Assume that that there exist r ∈ (0,∞) and ν ∈ Mp(R+)
deterministic such that

1. sn0/n→ r ∈ (0,∞) in L2+ε

2. g̃n
0 → ν (weak cv)

Then (g̃n
t ; t ≥ 0) converges in D([0,T ], (MF (R+),w)) to

(d(t, x)dx ; t ≥ 0) where d is the weak solution of the PDE

∂td(t, x) = ∂x(
1

2
x2d)(t, x) +

1

t + δ
(d ? d(t, x) − d(t, x)) t, x ≥ 0,

with initial condition d(0, x)dx = ν(dx) and δ = 2
r (inverse

population size).



R2: infinite populations

Theorem

1. Nested Kingman c.d.i., i.e., sn0 =∞.

2. Only constraint ∀i ∈ N Π0(i) ≥ 1.

Then (g̃n
t ; t ≥ 0) converges (in D([τ,T ], (MF (R+),w)) for every

0 < τ < T ) to (d(t, x)dx ; t ≥ 0) where d is the unique proper
weak solution of the PDE

∂td(t, x) = ∂x(
1

2
x2d)(t, x) +

1

t
(d ? d(t, x) − d(t, x)) t, x ≥ 0,

I Degenerate at t = 0.

I No prescription of the initial condition ! (only require the solution to be

proper, i.e. limt→0 d(t, x)dx 6= δ0.)



Corollary

1. Nested Kingman c.d.i., i.e., sn0 =∞.

2. Only constraint ∀i ∈ N Π0(i) ≥ 1.

Let ρt be the number of gene lineages at time t. Then

1

n2
ρt/n =⇒ 2

t

∫ ∞
0

xd(t, x)dx =scaling
2

t2

∫ ∞
0

xd(1, x)dx <∞

where d is the proper solution of the previous slide.

Benitez, Rogers, Schweinsberg, Siri Jégousse (18) characterizes the
same limit in terms of a fixed point problem.



General coalescent. PDE problem

I Recall that for Λ coalescent, the speed of c.d.i. is related to
the ODE

ẋ = −ψ(x), (for Kingman, ψ(x) = 1
2x

2)

where

ψ(x) =

∫
[0,1]

(e−rx − 1 + rx)
Λ(dr)

r2

I For general nested coalescents, the speed of c.d.i should be
related to the PDE

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t + δ
(d ? d(t, x) − d(t, x))

with δ > 0 (finite population) and δ = 0 (infinite population).



I For general nested coalescents, the speed of c.d.i should be
related to the PDE

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t + δ
(d ? d(t, x) − d(t, x))

I General strategy (Méléard, Fournier, Tran ....)

Step 1 Tightness of (g̃n
t , t > 0), and show that any sub-sequential

limit solves the PDE.
Step 2 Show that the PDE has a unique solution.

I Question: Existence and uniqueness of the (possibly)
degenerate PDE when ψ is the Laplace exponent of a
spectrally positive critical Lévy process.



Part III

PDE problem



Finite initial population

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t + δ
(d ? d(t, x) − d(t, x))

Test functions: f ∈ C 1
b (R+) and f ψ′ bounded.

Definition
Let δ > 0 and ν a probability measure on R+. We say that a
probability-valued process (µt ; t ≥ 0) is a weak solution with initial
condition ν if for every test-function f and every t ≥ 0:

〈µt , f 〉 = 〈ν, f 〉−
∫ t

0

〈
µs , ψf

′〉 ds+

∫ t

0
(

1

s + δ
〈µs ? µs , f 〉−〈µs , f 〉) ds

Idea: multiply both sides of the original PDE by f , then IPP to transfer the derivatives on the test function, and

set d(t, x)dx = µt (dx)



Infinite initial population

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t
(d ? d(t, x) − d(t, x))

Test functions: f ∈ C 1
b (R+) and f ψ′ bounded.

Definition
Let δ = 0. We say that a probability-valued process (µt ; t > 0) is a
weak solution if for every test-function f and every s, t > 0:

〈µt , f 〉 = 〈µs , f 〉−
∫ t

s

〈
µu, ψf

′〉 du +

∫ t

s

1

u
(〈µu ? µu, f 〉−〈µu, f 〉) du,

I We say that the solution is a dust solution iff µt →t↓0 δ0 (in
the weak topology).

I We say that the solution is proper otherwise. (as in the previous

convergence result)



Consider the PDE

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t + δ
(d ? d(t, x) − d(t, x))

where ψ is the Laplace exponent of a critical spectrally ≥ 0 Lévy
process.

Theorem

I ∃! weak solution to the PDE problem with inverse pop. δ > 0
and initial condition ν.

I ∃! weak proper solution to the PDE problem when δ = 0.

I ∃ infinitely many dust solutions to the PDE problem when
δ = 0.

(Reminiscent of Boltzmann equation)



Part IV

Construction of a solution. McKean–Vlasov approach



I Let δ > 0 qnd ν ∈ MP(R+) and initial condition, and

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t + δ
(d ? d(t, x) − d(t, x))

where ψ is the Laplace exponent of a critical spectrally ≥ 0
Lévy process.

I
dxt = −ψ(xt)dt + ∆Jδvt , L(x0) = ν.

where Jδ is a Poisson process with (inhomogeneous) rate
1/(t + δ) and (vt)t≥0 is a family of independent rv’s with
L(vt) = L(xt).

Lemma
If xt is solution of the MK-V equation then µt := L(xt) is
solution of the corresponding coagulation-transport equation.

Proof: By Itô, for every test function

df (xt) = −f ′(xt)ψ(xt)dt + ∆Jδ (f (xt + vt)− f (xt))

and the result follows by taking the expectation on both sides and
integrating with respect to time.



Brownian Coalescent Point Process(Popovic)
I Poisson Point Process on R+

∗ × R+
∗ with intensity measure

dl × dt

t2
.

I Let T be the random ultrametric tree generated by the PPP.
(infinite branch at {l = 0}, leaves at {t = 0})

(0,1)

(0)

(0,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

l

t



Marking of the tree T above time horizon δ with initial measure ν.

I Mark each point at level δ with i.i.d. random variables with
law ν

I Marks evolve according to the ODE ẋ = −ψ(x) along each
branch

I When two branches merge, add up the marks.

Define (m0(t); t ≥ δ) be the marking on the branch {l = 0}.

(0,1)

(0)

(0,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

l

t



Theorem
(θδ ◦m0(t); t ≥ 0) is solution of MK-V

dxt = −ψ(xt)dt + ∆Jδvt , L(x0) = ν.

Proof.
By a simple time translation, enough to show that (m0(t); t ≥ δ) solves

∀t ≥ δ, dxt = −ψ(xt )dt + ∆J0vt , L(xδ) = ν.

(0,1)

(0)

(0,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

l

t



Finite population solution

I µt := L(xt) is solution of the PDE with inverse pop. δ and
initial measure ν.

I
µt = L(F (T(t+δ,δ), (Wi )))

where Wi are i.i.d. rv’s with law ν, and T(t+δ,δ) is the tree
originated from (0, t + δ) up to level δ.

I By a martingale arguments, we show that this solution is the
unique solution of the PDE. (Using another probabilistic
approach!)



Infinite population δ = 0

I Assume now that δ = 0.

I For every s > 0, on [s,∞), (µt ; t ≥ s) is the weak solution of
the PDE

∂td(t, x) = ∂x(ψ(x)d)(t, x) +
1

t
(d ? d(t, x) − d(t, x))

with initial condition d(s, x)dx = µs(dx).

I By the previous construction, (µt ; t ≥ s) can be obtained by
marking T at level s with initial marking µs , i.e.,

µt = L(F (T(t,s), (W i
s )))

where W i
s are i.i.d. rv’s with law µs , and T(t,s) is the tree

originated from (0, t) up to level s.



Infinite population δ = 0

Letting s → 0 and using the fact that the solution is proper, we
obtain the following result.

Theorem
Under Grey’s condition, there is a unique proper solution. Further

µt = L
(
MT(t,0)

(Mc)
)

where MT(t,0)
is the 0-entrance measure of a branching CSBP with

branching mechanism ψ and genealogy T(t,0).



Part V

A desintegration formula



Some facts about CSBP

I Let ψ be the Laplace exponent of a critical and spectrally
positive Lévy process.

I There exists a Markov process Zt such that

Ex (exp(−λZt)) = exp(−xut)

where u solves the ODE

u̇ = −ψ(u), u(0) = λ.

I Zt is the CSBP with branching mechanism ψ

I Branching property : Px+y = Px ? Py .



Entrance law of a CSBP

I Let Zt be a CSBP with branching mechanism ψ.

I Branching property : Px+y = Px ? Py .

I There exists a σ-finite measure N (on the space of càdlàg
paths starting from 0) such that under Px

Zt =
∑
i

z it

where the sum is taken over the atoms of a Poisson PP with
intensity xN

I N is called the 0-entrance law of the process. Further

uT = N(1− exp(−λZT ))

where u solves the ODE

u̇ = −ψ(u), u(0) = λ.



Branching CSBP

I Let t be an ultrametric tree with depth T .
I Define Zt be a branching CSBP with branching mechanism
ψ.

1. Each particle is an indepedent CSBP with branching
mechanism ψ.

2. Particles replicate upon branching.

I Let λ be a vector of dimension the number of leaves. Then

Ex(exp(−
〈
λ,Zt

T

〉
) = F (t, λ).

where F is obtained by marking the leaves with the λi ’s and
then by propagating the marks up to the root (as in the CPP).

I Define Mt the 0-entrance law of the branching CSBP.

F (t, λ) = Mt
(

1− exp(−
〈
Zt
T , λ

〉)



I When δ = 0,

µt = L(F (T(t,s),Ws)) = L
(
MT(t,s)

(1− exp(−〈Zt ,Ws〉)
)

with L(W i
s ) = µs .

I T(t,0) infinitely many leaves.

I If the solution is proper (µ0 non-degenerate), there exists
a > 0 such that infinitely many marks are > a.

I M = event of mass extinction.

I Under M : 1− exp(−〈Zt ,Ws〉),

I Under Mc : 1− exp(−〈Zt ,Ws〉)→ 1 as s → 0.

I Thus
µt = L

(
MT(t,0)

(Mc)
)
< δ∞

under Grey’s condition.



Conclusion

I We exposed a relation between the nested coalescent and a
degenerate coagulation-transport equation.

I Construction of a finite pop. solution (δ > 0) using the
Brownian CPP.

I Using a desintegration formula, under Grey’s condition, we
proved that there is a unique ∞. pop, solution, and that

µt = L
(
MT(t,0)

(Mc)
)
, M = mass extinction



Some open problems

I Convergence of nested Λ coalescents (not only nested
Kingman). Tightness results needed.

I Uniqueness of the entrance law at ∞.

I What if ψ is not the Laplace exponent of Lévy process ? e.g.,
ψ(x) = xγ with γ > 2 ? Stable case OK using the
McKean-Vlasov approach (but with no disintegration formula
available which induces non-trivial complications).

I Convergence to dust solutions.



Thank you !


