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Part 1

Coalescents and Nested Coalescents.



Kingman coalescent

» Markov process valued in Py.

» Pairs of blocks coalesce at rate 1.
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Kingman coalescent

» Coming down from oco:
Ve >0, K.<oo as.

where K; is the block counting process at time t (Kp = o0).

» Speed of coming down from oco:
1
(nKt/,,; t> O) = (x¢; t > 0)

where (x¢; t > 0) is solution of the ODE

. 1 :
X = —§x2, with xp = o0

so that x; = %



Lambda coalescent (Pitman, Sagitov)

» Let A be a finite measure on [0, 1].

» If n blocks present at time t, each k-uplet of blocks (k > 2)
coagulate at rate

/ xK72(1 — x)"kA(dx).
[0,1]

» A =g is the Kingman coalescent.
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» Define A(d
P(x) = / (eT™ =1+ rx) (zr)
J[0,1] r

which is the Laplace exponent of a critical and spectrally
positive Lévy process.

» Under Grey's condition

/Ool/w(u)su < 00

the A-coalescent comes down from infinity.

| 2
Vt>0, Kt/n/Xt/n — 1

where (x¢; t > 0) is solution of the ODE
x = —1(x), with xp =00

(Beresticky's, Limic, Schweinsberg)



Nested coalescents

» Two levels of coalescence: species and gene trees
» Gene lineages can only coalesce if they belong to the same
species
» For simplicity, we will consider the case where
(i) The species tree is a Kingman coalescent

(i) The gene lineages coalesce a la A (taking into account the
species constraint).

species tree

gene tree
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Nested coalescents

» Special case A = §p: nested Kingman coalescent. Recently
considered (with very different methods) by Benitez, Rogers,
Schweinsberg, Siri Jégousse.

» General exchangeable nested coalescents considered by
Benitez, Lambert, Duschamps, Siri Jégousse.

species tree

gene tree



Coming down from oo

» Let p; be the number of gene lineages at time t.
> Let s; be the number of species at time t.
» We say that the nested coalescent c.d.i. iff

1. So = O

2. at least one gene lineage per species.

3. For every € > 0,

pPe < 00, whereas pg = 0.

Lemma
The nested coalescent c.d.i. iff the underlying A coalescent c.d.i.



Coming down from oo

» Different ways of coming down from infinity.

» Question 1: Entrance law at oo 7

» Question 2 : Different speeds of coming down from oo 7
» This talk will address the second question for nested

coalescents c.d.i.

1. For simple coalescents: speed is determined by a simple ODE
with oo- initial condition.

2. For nested coalescents: speed is determined by a degenerate
PDE, raising non-trivial unicity and existence problems.



Part Il

Convergence results (nested Kingman coalescent and more)



Empirical measures

» Sequence of nested Kingman indexed by n.
» For i <s[, M7(i) = # gene lineages in species i.

» [17 will be called the genetic composition vector.

> gl = ?lg thzl dnn(j) the empirical measure associated to the

number of gene lineages.

species tree
gene tree &
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R1: finite but large populations (O(n) species, O(n)
genes/species)

» (Renormalization) g/ := St"l/n Z,si/{ 5%”%(")
Theorem
Assume that that there exist r € (0,00) and v € My(R™)
deterministic such that

1. s§/n—r e (0,00) in L2F¢

2. 8§ — v (weak cv)
Then (g/; t > 0) converges in D([0, T], (Mg(RT), w)) to
(d(t,x)dx; t > 0) where d is the weak solution of the PDE

1
atd(t,X) = (9X(§X2d)(t,X) + t—|—5

(dxd(t,x) — d(t,x)) t,x>0,

with initial condition d(0,x)dx = v/(dx) and § = 2 (inverse
population size).



R2: infinite populations

Theorem
1. Nested Kingman c.d.i., i.e., s§ = oc.
2. Only constraint Vi € N lMg(/) > 1.

Then (g];t > 0) converges (in D([r, T],(Mg(R™), w)) for every
0<7<T)to (d(t,x)dx;t > 0) where d is the unique proper
weak solution of the PDE

Ded(t,x) = 8X(%x2d)(t,x)—|—%(d*d(t,x) ~d(tx) x>0,

» Degenerate at t = 0.

» No prescription of the initial condition ! (only require the solution to be

proper, i.e. limy_yo d(t, x)dx # 50.)



Corollary

1. Nested Kingman c.d.i., i.e., s§ = oo.
2. Only constraint Vi € N IMg(i) > 1.

Let p; be the number of gene lineages at time t. Then

1 2 [ 2 [

—Pt/n = 7 xd(t, x)dx =scaling 73 xd(1,x)dx < oo
n t 0 t 0

where d is the proper solution of the previous slide.

Benitez, Rogers, Schweinsberg, Siri Jégousse (18) characterizes the
same limit in terms of a fixed point problem.



General coalescent. PDE problem

» Recall that for A coalescent, the speed of c.d.i. is related to
the ODE

x = —1(x), (for Kingman, ¢(x) = 3x?)

where A(dr)
i r
bx) = /[071](e ~14m)=

» For general nested coalescents, the speed of c.d.i should be
related to the PDE

Bed(t,x) = On(v(x)d)(t,x) + Hld(d*d(t,x) — d(t,x))

with § > 0 (finite population) and § = 0 (infinite population).



» For general nested coalescents, the speed of c.d.i should be
related to the PDE

1
atd(t’x) = ax(’(/J(X)d)(t,X) + m (d* d(t,X) - d(t,X))
» General strategy (Méléard, Fournier, Tran ....)
Step 1 Tightness of (g/,t > 0), and show that any sub-sequential
limit solves the PDE.
Step 2 Show that the PDE has a unique solution.
» Question: Existence and uniqueness of the (possibly)
degenerate PDE when 1) is the Laplace exponent of a
spectrally positive critical Lévy process.



Part Il

PDE problem



Finite initial population

Bed(t,x) = On(v(x)d)(t,x) + t+15(d*d(t,x) — d(t,x))

Test functions: f € C}(RT) and f¢)’ bounded.

Definition

Let § > 0 and v a probability measure on R™. We say that a
probability-valued process (u; t > 0) is a weak solution with initial
condition v if for every test-function f and every t > O:

t

i) = )= [ (s ) dst [ (g e )=l )

Idea: multiply both sides of the original PDE by f, then IPP to transfer the derivatives on the test function, and

set d(t, x)dx = p¢(dx)



Infinite initial population

Bed(t,x) = Oe(V(x)d)(t,x) + %(d*d(t,x) — d(t,x))

Test functions: f € C}(RT) and fy)' bounded.

Definition

Let § = 0. We say that a probability-valued process (u¢;t > 0) is a
weak solution if for every test-function f and every s, t > 0:

t
s

e 1) = e 1= [ (a0 it [ Qe s )G )

> We say that the solution is a dust solution iff jt; —¢j0 o (in
the weak topology).

> We Say that the SO|uti0n |S propel’ OtherWlse (as in the previous

convergence result)



Consider the PDE

Ord(t,x) = Ox(Y(x)d)(t,x) + t+15(d*d(t,x) — d(t,x))

where 1) is the Laplace exponent of a critical spectrally > 0 Lévy
process.

Theorem

» ! weak solution to the PDE problem with inverse pop. § > 0
and initial condition v.

» 3! weak proper solution to the PDE problem when § = 0.

» Finfinitely many dust solutions to the PDE problem when
0 =0.

(Reminiscent of Boltzmann equation)



Part IV

Construction of a solution. McKean—Vlasov approach



» Let 6 > 0 gnd v € Mp(R™) and initial condition, and
1
atd(t7x) = ax(w(x)d)(ﬁx) + m(d*d(t,X) - d(t,X))
where ¢ is the Laplace exponent of a critical spectrally > 0
Lévy process.

dx; = —(x)dt + ALve, L(x) =v.
where J? is a Poisson process with (inhomogeneous) rate
1/(t +9) and (v¢)e>0 is a family of independent rv's with
ﬁ(Vt) = E(Xt).

Lemma

If x¢ is solution of the MK-V equation then u; := L(x;) is
solution of the corresponding coagulation-transport equation.

Proof: By Itd, for every test function
df(x) = —F'(a)p(xe)dt + AL (F(xe + vi) — F(xt))

and the result follows by taking the expectation on both sides and
integrating with respect to time.



Brownian Coalescent Point Process(Popovic)
» Poisson Point Process on R]™ x R with intensity measure

dt
dl x 2

» Let 7 be the random ultrametric tree generated by the PPP.
(infinite branch at {/ = 0}, leaves at {t = 0})

,
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Marking of the tree T above time horizon § with initial measure v.

» Mark each point at level § with i.i.d. random variables with
law v

» Marks evolve according to the ODE x = —1(x) along each
branch

» When two branches merge, add up the marks.
Define (mo(t); t > ¢) be the marking on the branch {/ = 0}.

!
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Theorem
(05 o mp(t); t > 0) is solution of MK-V

dx; = —p(x)dt + ALvi, L(x) = v.

Proof.

By a simple time translation, enough to show that (mg(t); t > &) solves

Yt > 68, dx = —ip(x)dt + ALvi, L(xs)=v.
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Finite population solution

» 1t = L(x¢) is solution of the PDE with inverse pop. § and
initial measure v.

pe = LFTED (W)

where W; are i.i.d. rv's with law v, and T(t+%9) js the tree
originated from (0, t + &) up to level 4.

» By a martingale arguments, we show that this solution is the

unique solution of the PDE. (Using another probabilistic
approach!)



Infinite population 6 =0

» Assume now that § = 0.

» For every s >0, on [s,00), (pe; t > s) is the weak solution of
the PDE

0ed(t,x) = Du(()d)(t,x) + %(d*d(t,x) — d(t,x))

with initial condition d(s, x)dx = pus(dx).
» By the previous construction, (u:; t > s) can be obtained by
marking 7 at level s with initial marking us, i.e.,

pe = LF(TE) (W)

S

where W/ are i.i.d. rv's with law ps, and T(55) is the tree
originated from (0, t) up to level s.



Infinite population 6 =0

Letting s — 0 and using the fact that the solution is proper, we
obtain the following result.

Theorem
Under Grey's condition, there is a unique proper solution. Further

pe= £ (M7 (Mm9))

where MT"? is the 0-entrance measure of a branching CSBP with
branching mechanism ¢ and genealogy T(t:0).



Part V

A desintegration formula



Some facts about CSBP

» Let ¢ be the Laplace exponent of a critical and spectrally
positive Lévy process.

» There exists a Markov process Z; such that
E (exp(—AZ:)) = exp(—xuy)
where u solves the ODE
u=—y(u), u(0)=A

» Z; is the CSBP with branching mechanism v
» Branching property : Py, = PyxP,.



Entrance law of a CSBP

» Let Z; be a CSBP with branching mechanism 1.
» Branching property : Py, = PyxP,.

» There exists a o-finite measure N (on the space of cadlag
paths starting from 0) such that under Py

Zt = ZZ{.

where the sum is taken over the atoms of a Poisson PP with
intensity xN

> N is called the O-entrance law of the process. Further
ur = N(1—exp(~\Z7))
where u solves the ODE

u=—y(u), u(0)=A



Branching CSBP

> Let t be an ultrametric tree with depth T.
» Define Z*' be a branching CSBP with branching mechanism

.
1. Each particle is an indepedent CSBP with branching
mechanism 1.
2. Particles replicate upon branching.

» Let )\ be a vector of dimension the number of leaves. Then
Ex(exp(~ (X 2%)) = F(t.2).

where F is obtained by marking the leaves with the A;'s and
then by propagating the marks up to the root (as in the CPP).

» Define M' the O-entrance law of the branching CSBP.

F(t,)\) = Mt (1 — exp(— <th,A>)



vy

vvyyypy

When § = 0,
pe= LFTE) W) = £ (MT“’” (1 — exp(— (Z,, Ws>))

with L(W)) = ps.
T(0) infinitely many leaves.

If the solution is proper (1o non-degenerate), there exists
a > 0 such that infinitely many marks are > a.

M = event of mass extinction.
Under M : 1 —exp(— (Z¢, Ws)),
Under M€ : 1 —exp(— (2, Ws)) - 1 as s — 0.
Thus
pe= £ (M7 (M) < o

under Grey's condition.



Conclusion

> We exposed a relation between the nested coalescent and a
degenerate coagulation-transport equation.

» Construction of a finite pop. solution (6 > 0) using the
Brownian CPP.

» Using a desintegration formula, under Grey's condition, we
proved that there is a unique oco. pop, solution, and that

pe = L (/\/IT(t’O) (MC)> , M = mass extinction



Some open problems

» Convergence of nested A coalescents (not only nested
Kingman). Tightness results needed.

» Uniqueness of the entrance law at co.

» What if ¢ is not the Laplace exponent of Lévy process ? e.g.,
(x) = x7 with v > 2 ? Stable case OK using the
McKean-Vlasov approach (but with no disintegration formula
available which induces non-trivial complications).

» Convergence to dust solutions.



Thank you !



