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Motivation: Human CytoMegaloVirus (HCMV)

• an (old) herpesvirus

• widespread in the human population (50%-90% infected
worldwide)

• generally asymptomatic in the immunocompetent host

• dangerous for the immunocompromised hosts, like
transplantation patients and fetuses



Diversity in coding regions

Figure from Puchhammer-
Stöckl and Görzer (2011)

For many coding
regions (loci)
several types exist
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Fitness valley between genotypes

Figure from Mujtaba et al. (2016)

I Genotypes are phylogenetically distant

I e.g. UL 75 (also called gH) genotypes are distinguished by
1 deletion and 4 non-synonymous point mutations

I fitness landscape with a few, high peaks

I rare mutation between genotypes

How is this diversity maintained in the HCMV population?



Relevant characteristics of HCMV

• HCMV persists in its host lifelong
• a host can be reinfected by the virus

Figure downloaded from medigapcheap.com
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Host types

Table from Paradowska et al. (2014)

I there exist hosts infected with a single type only

I there exist hosts infected with both types



Role of persistence and reinfection on parasite survival

Assumption: Diversity of the parasite population within hosts is
advantageous for parasite survival

I De novo mutation? Too aggressive?!
I Persistence and reinfection?

I Introduce the diversity of the surrounding parasite population
into a single host step by step

I Less aggressive?!



Modeling the evolution of a parasite population
with persistence and reinfection

A parasite population is distributed over (infected) hosts.

Figure downloaded from pixabay.com and modified



Modeling the evolution of a parasite population
with persistence and reinfection

• M infected hosts

• within each (infected) host well-mixed (panmictic) parasite
populations of constant size N

• two parasite types A and B

Factors driving the evolution

• reinfection

• host replacement
(hosts die and new hosts are primary infected)

• balancing selection within hosts
(maintains diversity in a host)



Reproduction of parasites

• population of constant size N

• two types A and B

• XN
i - frequency of type A in host i

• Moran model: At reproduction a
parasite splits into two and a
randomly chosen parasite is
removed

• no mutation

A A B B B

tim
e

A B A A A



Balancing selection within hosts

• sN > 0 - selection strength

• η ∈ (0, 1) - quasi-equilibrium
frequency of type A

• parasites reproduce gN -times faster
than hosts

• in host i , parasites of type A
reproduce at rate

gN(1 + sN(η − XN
i ))

• in host i , parasites of type B
reproduce at rate

gN(1 + sN((1− η)− (1− XN
i )))

A A B B B

tim
e

A B A A A



Adding the dynamics of hosts

I Each host dies at rate 1
and is replaced by a so far
uninfected host which is
instantly primary infected
→ constant number M of
infected hosts

I at infection only a single
type is transmitted

I the type is chosen
randomly from the
infecting host

Figure downloaded from pixabay.com and modified
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Adding reinfection

I Reinfection happens at
rate rN per host

I At reinfection the
reinfecting host
transmits a single
parasite to the
reinfected host

the type of the
transmitted parasite is
chosen randomly from
the reinfecting host

in the reinfected host a
single parasite is
replaced by the
transmitted parasite

Figure downloaded from pixabay.com and modified
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The dynamics of the parasite frequencies in the hosts

XN,M = (XM
1 , ...,XM

M ) - frequencies of type A in hosts 1, ...,M

XN,M = (XM
1 , ...,XM

M ) is a Markovian jump process with jumps
from

x = (x1, ..., xi , ..., xM) to

(x1, ..., xi + 1
N , ..., xM) at rate gN(1 + sN(η − xi ))Nxi (1− xi )

hal +rN
1
M

∑M
j=1 xj(1− xi )

i(x1, ..., xi − 1
N , ..., xM) at rate gN(1 + sN(xi − η))Nxi (1− xi )

hal +rN
1
M

∑M
j=1(1− xj)xi

i(x1, ..., 1, ..., xM) at rate x̄ = 1
M

∑M
j=1 xj

i(x1, ..., 0, ..., xM) at rate 1− x̄



Asymptotic behaviour as N →∞ ?

Aim:

Find a parameter regime

I with a long maintenance of both parasites types

I with hosts carrying a single parasite type as well as hosts
carrying both types (as observed in samples of HCMV hosts)

Ingredients

I Host replacement: Creates monomorphic hosts

I Reinfection: Creates polymorphic hosts

Choose parameters rN , sN , gN such that

I effective reinfection events and host replacements
appear on the same time scale



Conditions C

I (moderate selection)
sN = N−ε

for 0 < ε < 1
5 .

In particular, as N →∞

sN → 0,

but
NsN →∞.

I (frequent reinfection)

rNsN
N→∞−−−−→ r

for some r > 0.

I (fast viral reproduction)

N5ε � gN � exp(N1/5).



Theorem

Let M ∈ N. Assume Conditions C are valid and

XN,M(0)
weakly−−−−→ ρ0

as N →∞, for some distribution ρ0 concentrated on
({0} ∪ [δ, 1− δ] ∪ {1})M for some 0 < δ < 1.

Then XN,M converges on each time interval (0, t] in distribution (in
the Skorohod topology) to the process YM , with YM(0) being the
image of the ρ0 under the map 0 7→ 0, 1 7→ 1, [δ, 1− δ] 3 x 7→ η.

The process YM is of the following form:



The process YM = (YM
1 , ...,YM

M ) starting in y0 is a pure jump
process on {0, η, 1}M with

jumps from y = (y1, ..., 1, ..., yM) to
(y1, ..., 0, ..., yM) at rate 1− ȳ (host replacement)
(y1, ..., η, ..., yM) at rate 2r(1− η)(1− ȳ) (effective reinfection)

jumps from y = (y1, ..., 0, ..., yM) to

(y1, ..., 1, ..., yM) at rate ȳ (host replacement)
(y1, ..., η, ..., yM) at rate 2rηȳ (effective reinfection)

jumps from y = (y1, ..., η, ..., yM) to
(y1, ..., 1, ..., yM) at rate ȳ (host replacement)
(y1, ..., 0, ..., yM) at rate 1− ȳ (host replacement).



Sketch of the proof



XN
i , i = 1, ...,M, are concentrated on the states 0, 1 und

(η − sN , η + sN)

I A reinfection is effective if in the reinfected host
the neighbourhood (η − s

3/2
N , η + s

3/2
N ) of the frequency η

is reached.

I Parasite frequencies within hosts are only correlated by
reinfection and host replacement events



In a single host ...

without host replacement

I Ineffective excursions are short, i.e. � N2ε/gN
I Ineffective excursions are “rare” on the host time scale

(they do not overlap)

I Time to balance is short:
After an effective reinfection the neighbourhood

(η − s
3/2
N , η + s

3/2
N ) is reached after time � N4ε/gN

I Then the frequency remains within (η − sN , η + sN) for a long
time � exp(N3/10)/gN

Since gN � N5ε,

Ineffective excursions scale down to 0 as N →∞
Effective reinfection events result in a jump to frequency η as
N →∞
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In a single host ...

without host replacement

I Ineffective excursions are short, i.e. � N2ε/gN
I Ineffective excursions are “rare” on the host time scale

(they do not overlap)

I Time to balance is short:
After an effective reinfection the neighbourhood

(η − s
3/2
N , η + s

3/2
N ) is reached after time � N4ε/gN

I Then the frequency remains within (η − sN , η + sN) for a long
time � exp(N3/10)/gN

Since gN � exp(N1/5) as N →∞
I (η − sN , η + sN) is left only due to a host replacement event

and not due to random fluctuations



“Correct” rates

I Reinfections in single hosts do not overlap

I “Probability to balance”

2ηsN + o(sN),

if a pure B-type host was infected with type A, and

2(1− η)sN + o(sN),

if a pure A-type host with reinfected with type B.

⇒ Effective reinfection rate

2ηsN rN → 2ηr and 2(1− η)r
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jumps from y = (y1, ..., η, ..., yM) to
(y1, ..., 1, ..., yM) at rate ȳ (host replacement)
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Coupling

Define an approximation X̂N,M of XN,M .
X̂N,M has the same dynamics as XN,M , with modified reinfections:

I Ignore a reinfection event
if the hitted host is not in state 0 or 1.

I Otherwise, if the reinfected host is in state 0 (resp. 1) and the
transmitted type is 1 (resp. 0), toss a coin which shows up
head with probability 2sNη (resp. with prob. 2sN(1− η)).

I If the coin shows tail, ignore the reinfection.

I If the coin shows head, start a transition from 1/N (resp.

1− 1/N ) to η − s
3/2
N (resp. η + s

3/2
N ).



Coupling

Then

I the finite dimensional distributions (fdd) of X̂N,M converge to
those of YM

I X̂N,M and XN,M have the same limiting fdd

Hence, the convergence follows by showing that XN,M is tight.



Mean field limit for M →∞

Consider ZM = (Z 0
t ,Z

η
t ,Z

1
t )t≥0 with

Z `t :=
|{i ∈ {1, ...,M}|YM

i (t) = `}|
M

,

the frequency of type-` hosts in the population at time t, for
` ∈ {0, η, 1}.
Assume limM→∞ ZM

0 = v0 ∈ S3.
For M →∞ the process ZM converges to the deterministic
dynamical system v = (v0

t , v
η
t , v

1
t )t≥0 with

v̇0 = (1− η)vη − 2rηv0(v1 + ηvη)

v̇η = −vη + 2r(η2v0vη + (1− η)2v1vη + v0v1)

v̇1 = ηvη − 2r(1− η)v1(v0 + (1− η)vη).

started in v0.



Propagation of chaos: Typical host type frequency process

Let k ∈ N. Denote by Vi = limM→∞ YM
i for i ∈ {1, ..., k}. Then

Vi are independent copies of the jump process V which jumps at
time s from any state to state

0 at rate v0
s + (1− η)vηs

1 at rate v1
s + ηvηs ,

from state 0 to state η at rate 2rη(v1
s + ηvηs ), and

from state 1 to state η at rate 2r(1− η)(v0
s + (1− η)vηs ).

Remark:
Also in the case M = MN and MN

N→∞−−−−→∞ this propagation of
chaos holds.



Fixed points and stability of the dynamical system

The fixed points of the dynamical system v are

(1, 0, 0) ,(0, 0, 1),

and u = (u0, uη, u1) with

u0 =
2rη(1− η)2 − (2η − 1)

2rη2 + 4r2η3(1− η)
u1 =

2r(1− η)η2 + 2η − 1

2r(1− η)2 + 4r2η(1− η)3

uη =
4r2η3(1− η)3 − (2η − 1)2(2rη(1− η) + 1)

2rη2(1− η)2(1 + 2rη(1− η)
.

If r > max{ 2η−1
2η(1−η)2 ,

1−2η
2η2(1−η)

}, then

u ∈ intS3 and u is on S3\{(0, 0, 1), (1, 0, 0)} a globally stable
equilibrium; (0,0,1) and (1,0,0) are saddle points.



Maintenance of a polymorphic state

I For finite N and finite M = MN eventually one type gets lost
due to random fluctuations

I Add a (small) mutation rate µN at which parasites mutate
(on the host time scale, population wide mutation rate).
Eventually this turns a monomorphic parasite population to a
polymorphic one.

How long does it take until a polymorphic state is reached from a
monomorphic one and vice versa?



Switching between monomorphic and polymorphic states

I Let
Tmono = inf{t > 0|X̄N,M

(t) ∈ {0, 1}}

I For δ > 0 let

T δ
poly = inf{t > 0|X̄N,M

(t) > δ and 1− X̄
N,M

(t) > δ}

with X̄
N,M

(t) =
∑M

i=1 X
N
i (t)

M .



Switching between monomorphic and polymorphic states

Theorem

Assume Conditions (C), µN � rN and r > max{ η
2(1−η)2 ,

1−η
2η2 }.

Then for any γ > 0:

I If XN,M is started in a monomorphic state, for any δ > 0

T δ
poly = O(

1

µNsN
) + O(Mγ

N).

I If XN,M is started in a polymorphic state,

Tmono � exp(M1−γ
N )

If 1
exp(MN)sN

� `total
N � rN , then T δ

poly � Tmono. In this case both
types coexist most of the time in the parasite population.
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Perspective

Figure from Puchhammer-Stöckl and
Görzer (2011)

Persistence and reinfection
are effective mechanisms

I to introduce diversity
into parasite
populations of single
hosts

I maintain diversity in
the parasite population
also in the case of small
mutation rates



Thank you!
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