Maintenance of diversity in a parasite population capable of persistence and reinfection

joint work with Anton Wakolbinger

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation: Human CytoMegaloVirus (HCMV)

- an (old) herpesvirus
- widespread in the human population (50%-90% infected worldwide)
- generally asymptomatic in the immunocompetent host

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• dangerous for the immunocompromised hosts, like transplantation patients and fetuses

Diversity in coding regions

For many coding regions (loci) several types exist

Figure from Puchhammer-Stöckl and Görzer (2011)

э

Diversity in coding regions

Fitness valley between genotypes

Figure from Mujtaba et al. (2016)

- Genotypes are phylogenetically distant
- e.g. UL 75 (also called gH) genotypes are distinguished by 1 deletion and 4 non-synonymous point mutations
- fitness landscape with a few, high peaks
- rare mutation between genotypes

How is this diversity maintained in the HCMV population?

Relevant characteristics of HCMV

• HCMV persists in its host lifelong

Figure downloaded from medigapcheap.com

(日)

Relevant characteristics of HCMV

• HCMV persists in its host lifelong

Figure downloaded from medigapcheap.com

イロト イヨト イヨト

Relevant characteristics of HCMV

- HCMV persists in its host lifelong
- a host can be reinfected by the virus

Figure downloaded from medigapcheap.com

(日)

Host types

TABLE I. Distribution of CMV gH Genotypes in Different Patient Groups

Genotype		Prevalence of gH genotypes in patients, n (%)	
	Newborns	Infants	Adults
$_{ m gH1}^{ m gH1}$ gH2 gH1 + gH2 Total	$17 (40.5) \\ 19 (45.2) \\ 6 (14.3) \\ 42$	$\begin{array}{c} 31 \ (33.3) \\ 40 \ (43.0) \\ 22 \ (23.7) \\ 93 \end{array}$	$14 (25.4) \\ 21 (38.2) \\ 20 (36.4) \\ 55$

n, number of patients.

Table from Paradowska et al. (2014)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- there exist hosts infected with a single type only
- there exist hosts infected with both types

Role of persistence and reinfection on parasite survival

Assumption: Diversity of the parasite population within hosts is advantageous for parasite survival

- De novo mutation? Too aggressive?!
- Persistence and reinfection?
 - Introduce the diversity of the surrounding parasite population into a single host step by step

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Less aggressive?!

Modeling the evolution of a parasite population with persistence and reinfection

A parasite population is distributed over (infected) hosts.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Figure downloaded from pixabay.com and modified

Modeling the evolution of a parasite population with persistence and reinfection

- *M* infected hosts
- within each (infected) host well-mixed (panmictic) parasite populations of constant size N

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- two parasite types A and B
- Factors driving the evolution
 - reinfection
 - host replacement (hosts die and new hosts are primary infected)
 - balancing selection within hosts (maintains diversity in a host)

Reproduction of parasites

- population of constant size N
- two types A and B
- X_i^N frequency of type A in host i
- Moran model: At reproduction a parasite splits into two and a randomly chosen parasite is removed

イロト 不得 トイヨト イヨト

3

no mutation

Balancing selection within hosts

- $s_N > 0$ selection strength
- $\eta \in (0,1)$ quasi-equilibrium frequency of type A
- parasites reproduce g_N -times faster than hosts
- in host *i*, parasites of type *A* reproduce at rate

$$g_N(1+s_N(\eta-X_i^N))$$

• in host *i*, parasites of type *B* reproduce at rate

$$g_N(1 + s_N((1 - \eta) - (1 - X_i^N)))$$

Figure downloaded from pixabay.com and modified

- ► Each host dies at rate 1 and is replaced by a so far uninfected host which is instantly primary infected → constant number *M* of infected hosts
- at infection only a single type is transmitted

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure downloaded from pixabay.com and modified

- ► Each host dies at rate 1 and is replaced by a so far uninfected host which is instantly primary infected → constant number *M* of infected hosts
- at infection only a single type is transmitted

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure downloaded from pixabay.com and modified

- ► Each host dies at rate 1 and is replaced by a so far uninfected host which is instantly primary infected → constant number *M* of infected hosts
- at infection only a single type is transmitted

Figure downloaded from pixabay.com and modified

- ► Each host dies at rate 1 and is replaced by a so far uninfected host which is instantly primary infected → constant number *M* of infected hosts
- at infection only a single type is transmitted

 Reinfection happens at rate r_N per host

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 At reinfection the reinfecting host transmits a single parasite to the reinfected host

Figure downloaded from pixabay.com and modified

Figure downloaded from pixabay.com and modified

- Reinfection happens at rate r_N per host
- At reinfection the reinfecting host transmits a single parasite to the reinfected host
- the type of the transmitted parasite is chosen randomly from the reinfecting host
- in the reinfected host a single parasite is replaced by the transmitted parasite

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Figure downloaded from pixabay.com and modified

- Reinfection happens at rate r_N per host
- At reinfection the reinfecting host transmits a single parasite to the reinfected host
- the type of the transmitted parasite is chosen randomly from the reinfecting host
- in the reinfected host a single parasite is replaced by the transmitted parasite

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Figure downloaded from pixabay.com and modified

- Reinfection happens at rate r_N per host
- At reinfection the reinfecting host transmits a single parasite to the reinfected host
- the type of the transmitted parasite is chosen randomly from the reinfecting host
- in the reinfected host a single parasite is replaced by the transmitted parasite

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

The dynamics of the parasite frequencies in the hosts

 $\mathbf{X}^{N,M} = (X_1^M, ..., X_M^M)$ - frequencies of type A in hosts 1, ..., M

 $\mathbf{X}^{N,M} = (X_1^M,...,X_M^M)$ is a Markovian jump process with jumps from

$$\begin{split} \mathbf{x} &= (x_1, ..., x_i, ..., x_M) \text{ to} \\ (x_1, ..., x_i + \frac{1}{N}, ..., x_M) \quad \text{at rate} \quad g_N(1 + \frac{s_N(\eta - x_i)}{M}) Nx_i(1 - x_i) \\ &+ r_N \frac{1}{M} \sum_{j=1}^M x_j(1 - x_i) \\ (x_1, ..., x_i - \frac{1}{N}, ..., x_M) \quad \text{at rate} \quad g_N(1 + \frac{s_N(x_i - \eta)}{M}) Nx_i(1 - x_i) \\ &+ r_N \frac{1}{M} \sum_{j=1}^M (1 - x_j) x_i \\ (x_1, ..., 1, ..., x_M) \quad \text{at rate} \quad \bar{\mathbf{x}} = \frac{1}{M} \sum_{j=1}^M x_j \\ (x_1, ..., 0, ..., x_M) \quad \text{at rate} \quad 1 - \bar{\mathbf{x}} \end{split}$$

Asymptotic behaviour as $N \to \infty$?

Aim:

Find a parameter regime

- with a long maintenance of both parasites types
- with hosts carrying a single parasite type as well as hosts carrying both types (as observed in samples of HCMV hosts)

Ingredients

- Host replacement: Creates monomorphic hosts
- Reinfection: Creates polymorphic hosts

Choose parameters r_N , s_N , g_N such that

effective reinfection events and host replacements appear on the same time scale

Conditions C

(moderate selection)

$$s_N = N^{-\epsilon}$$

for $0 < \epsilon < \frac{1}{5}$. In particular, as $N \to \infty$

 $s_N \rightarrow 0$,

but

$$Ns_N \rightarrow \infty$$
.

(frequent reinfection)

$$r_N s_N \xrightarrow{N \to \infty} r$$

for some r > 0.

 $N^{5\epsilon} \ll g_N \ll \exp(N^{1/5}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

Let $M \in \mathbb{N}$. Assume Conditions C are valid and

$$\mathbf{X}^{N,M}(0) \xrightarrow{\text{weakly}}
ho_0$$

as $N \to \infty$, for some distribution ρ_0 concentrated on $(\{0\} \cup [\delta, 1 - \delta] \cup \{1\})^M$ for some $0 < \delta < 1$.

Then $\mathbf{X}^{N,M}$ converges on each time interval (0, t] in distribution (in the Skorohod topology) to the process \mathbf{Y}^{M} , with $\mathbf{Y}^{M}(0)$ being the image of the ρ_{0} under the map $0 \mapsto 0, 1 \mapsto 1, [\delta, 1 - \delta] \ni x \mapsto \eta$.

The process \mathbf{Y}^M is of the following form:

The process $\mathbf{Y}^M = (Y_1^M, ..., Y_M^M)$ starting in \mathbf{y}^0 is a pure jump process on $\{0, \eta, 1\}^M$ with

jumps from
$$y = (y_1, ..., 1, ..., y_M)$$
 to
 $(y_1, ..., 0, ..., y_M)$ at rate $1 - \overline{\mathbf{y}}$ (host replacement)
 $(y_1, ..., \eta, ..., y_M)$ at rate $2r(1 - \eta)(1 - \overline{\mathbf{y}})$ (effective reinfection)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

jumps from $y = (y_1, ..., 0, ..., y_M)$ to

$$(y_1, ..., 1, ..., y_M)$$
 at rate $\bar{\mathbf{y}}$ (host replacement)
 $(y_1, ..., \eta, ..., y_M)$ at rate $2r\eta \bar{\mathbf{y}}$ (effective reinfection)

jumps from
$$y = (y_1, ..., \eta, ..., y_M)$$
 to
 $(y_1, ..., 1, ..., y_M)$ at rate $\mathbf{\bar{y}}$ (host replacement)
 $(y_1, ..., 0, ..., y_M)$ at rate $1 - \mathbf{\bar{y}}$ (host replacement).

Sketch of the proof

 X_i^N , i = 1, ..., M, are concentrated on the states 0, 1 und $(\eta - s_N, \eta + s_N)$

- A reinfection is effective if in the reinfected host the neighbourhood $(\eta s_N^{3/2}, \eta + s_N^{3/2})$ of the frequency η is reached.
- Parasite frequencies within hosts are only correlated by reinfection and host replacement events

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In a single host ...

without host replacement

- Ineffective excursions are short, i.e. $\ll N^{2\epsilon}/g_N$
- Ineffective excursions are "rare" on the host time scale (they do not overlap)

 Time to balance is short: After an effective reinfection the neighbourhood (η - s_N^{3/2}, η + s_N^{3/2}) is reached after time ≪ N^{4ε}/g_N
 Then the frequency remains within (η - s_N, η + s_N) for a long time ≫ exp(N^{3/10})/g_N

In a single host ...

without host replacement

- ▶ Ineffective excursions are short, i.e. $\ll N^{2\epsilon}/g_N$
- Ineffective excursions are "rare" on the host time scale (they do not overlap)
- Time to balance is short: After an effective reinfection the neighbourhood (η − s_N^{3/2}, η + s_N^{3/2}) is reached after time ≪ N^{4ε}/g_N
 Then the frequency remains within (n − s_N n + s_N) for a long
- ► Then the frequency remains within $(\eta s_N, \eta + s_N)$ for a long time $\gg \exp(N^{3/10})/g_N$

Since $g_N \gg N^{5\epsilon}$ as $N \to \infty$

- Ineffective excursions disappear
- Effective reinfection events result in a jump to frequency η

In a single host ...

without host replacement

- Ineffective excursions are short, i.e. $\ll N^{2\epsilon}/g_N$
- Ineffective excursions are "rare" on the host time scale (they do not overlap)
- Time to balance is short: After an effective reinfection the neighbourhood $(\eta - s_N^{3/2}, \eta + s_N^{3/2})$ is reached after time $\ll N^{4\epsilon}/g_N$
- ► Then the frequency remains within $(\eta s_N, \eta + s_N)$ for a long time $\gg \exp(N^{3/10})/g_N$

Since $g_N \ll \exp(N^{1/5})$ as $N \to \infty$

• $(\eta - s_N, \eta + s_N)$ is left only due to a host replacement event and not due to random fluctuations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

"Correct" rates

- Reinfections in single hosts do not overlap
- "Probability to balance"

 $2\eta s_N + o(s_N),$

if a pure B-type host was infected with type A, and

 $2(1-\eta)s_N+o(s_N),$

if a pure A-type host with reinfected with type B.

⇒ Effective reinfection rate $2\eta s_N r_N \rightarrow 2\eta r$ and $2(1 - \eta)r$ The process $\mathbf{Y}^M = (Y_1^M, ..., Y_M^M)$ starting in \mathbf{y}^0 is a pure jump process on $\{0, \eta, 1\}^M$ with

jumps from
$$y = (y_1, ..., 1, ..., y_M)$$
 to
 $(y_1, ..., 0, ..., y_M)$ at rate $1 - \overline{\mathbf{y}}$ (host replacement)
 $(y_1, ..., \eta, ..., y_M)$ at rate $2r(1 - \eta)(1 - \overline{\mathbf{y}})$ (effective reinfection)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

jumps from $y = (y_1, ..., 0, ..., y_M)$ to

$$(y_1, ..., 1, ..., y_M)$$
 at rate $\bar{\mathbf{y}}$ (host replacement)
 $(y_1, ..., \eta, ..., y_M)$ at rate $2r\eta \bar{\mathbf{y}}$ (effective reinfection)

jumps from
$$y = (y_1, ..., \eta, ..., y_M)$$
 to
 $(y_1, ..., 1, ..., y_M)$ at rate $\mathbf{\bar{y}}$ (host replacement)
 $(y_1, ..., 0, ..., y_M)$ at rate $1 - \mathbf{\bar{y}}$ (host replacement).

Coupling

Define an approximation $\hat{\mathbf{X}}^{N,M}$ of $\mathbf{X}^{N,M}$.

 $\hat{\mathbf{X}}^{N,M}$ has the same dynamics as $\mathbf{X}^{N,M}$, with modified reinfections:

- Ignore a reinfection event if the hitted host is not in state 0 or 1.
- Otherwise, if the reinfected host is in state 0 (resp. 1) and the transmitted type is 1 (resp. 0), toss a coin which shows up head with probability 2s_Nη (resp. with prob. 2s_N(1 − η)).

- If the coin shows tail, ignore the reinfection.
- If the coin shows head, start a transition from 1/N (resp. 1-1/N) to $\eta s_N^{3/2}$ (resp. $\eta + s_N^{3/2}$).

Coupling

Then

the finite dimensional distributions (fdd) of X^{N,M} converge to those of Y^M

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\hat{\mathbf{X}}^{N,M}$ and $\mathbf{X}^{N,M}$ have the same limiting fdd

Hence, the convergence follows by showing that $\mathbf{X}^{N,M}$ is tight.

Mean field limit for $M \to \infty$

Consider
$$\mathbf{Z}^{M} = (Z_{t}^{0}, Z_{t}^{\eta}, Z_{t}^{1})_{t \geq 0}$$
 with
 $Z_{t}^{\ell} := \frac{|\{i \in \{1, ..., M\} | Y_{i}^{M}(t) = \ell\}|}{M},$

the frequency of type- ℓ hosts in the population at time t, for $\ell \in \{0, \eta, 1\}$. Assume $\lim_{M \to \infty} \mathbf{Z}_0^M = \mathbf{v}^0 \in S^3$. For $M \to \infty$ the process \mathbf{Z}^M converges to the deterministic dynamical system $\mathbf{v} = (v_t^0, v_t^\eta, v_t^1)_{t \ge 0}$ with

$$\begin{split} \dot{v}^{0} &= (1-\eta)v^{\eta} - 2r\eta v^{0}(v^{1}+\eta v^{\eta}) \\ \dot{v}^{\eta} &= -v^{\eta} + 2r(\eta^{2}v^{0}v^{\eta} + (1-\eta)^{2}v^{1}v^{\eta} + v^{0}v^{1}) \\ \dot{v}^{1} &= \eta v^{\eta} - 2r(1-\eta)v^{1}(v^{0} + (1-\eta)v^{\eta}). \end{split}$$

started in \mathbf{v}^0 .

Propagation of chaos: Typical host type frequency process

Let $k \in \mathbb{N}$. Denote by $V_i = \lim_{M \to \infty} Y_i^M$ for $i \in \{1, ..., k\}$. Then V_i are independent copies of the jump process V which jumps at time s from any state to state

$$\begin{array}{lll} 0 & \text{at rate} & \textit{v}_{\textit{s}}^{0} + (1-\eta)\textit{v}_{\textit{s}}^{\eta} \\ 1 & \text{at rate} & \textit{v}_{\textit{s}}^{1} + \eta\textit{v}_{\textit{s}}^{\eta}, \end{array}$$

from state 0 to state η at rate $2r\eta(v_s^1 + \eta v_s^{\eta})$, and from state 1 to state η at rate $2r(1 - \eta)(v_s^0 + (1 - \eta)v_s^{\eta})$.

Remark:

Also in the case $M = M_N$ and $M_N \xrightarrow{N \to \infty} \infty$ this propagation of chaos holds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fixed points and stability of the dynamical system

The fixed points of the dynamical system \mathbf{v} are

(1, 0, 0), (0, 0, 1),

and $\mathbf{u} = (u^0, u^\eta, u^1)$ with

$$u^{0} = \frac{2r\eta(1-\eta)^{2} - (2\eta-1)}{2r\eta^{2} + 4r^{2}\eta^{3}(1-\eta)} \quad u^{1} = \frac{2r(1-\eta)\eta^{2} + 2\eta-1}{2r(1-\eta)^{2} + 4r^{2}\eta(1-\eta)^{3}}$$
$$u^{\eta} = \frac{4r^{2}\eta^{3}(1-\eta)^{3} - (2\eta-1)^{2}(2r\eta(1-\eta)+1)}{2r\eta^{2}(1-\eta)^{2}(1+2r\eta(1-\eta))}.$$

If $r > \max\{\frac{2\eta-1}{2\eta(1-\eta)^2}, \frac{1-2\eta}{2\eta^2(1-\eta)}\}$, then $\mathbf{u} \in \operatorname{int} S^3$ and \mathbf{u} is on $S^3 \setminus \{(0,0,1), (1,0,0)\}$ a globally stable equilibrium; (0,0,1) and (1,0,0) are saddle points.

(日)((1))

Maintenance of a polymorphic state

- For finite N and finite $M = M_N$ eventually one type gets lost due to random fluctuations
- Add a (small) mutation rate µ_N at which parasites mutate (on the host time scale, population wide mutation rate). Eventually this turns a monomorphic parasite population to a polymorphic one.

How long does it take until a polymorphic state is reached from a monomorphic one and vice versa?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Switching between monomorphic and polymorphic states

► Let

$$T_{\text{mono}} = \inf\{t > 0 | \bar{\mathbf{X}}^{N,M}(t) \in \{0,1\}\}$$
► For $\delta > 0$ let

$$T_{\text{poly}}^{\delta} = \inf\{t > 0 | \bar{\mathbf{X}}^{N,M}(t) > \delta \text{ and } 1 - \bar{\mathbf{X}}^{N,M}(t) > \delta\}$$
with $\bar{\mathbf{X}}^{N,M}(t) = \frac{\sum_{i=1}^{M} X_{i}^{N}(t)}{M}$.

・ロト・日本・ヨト・ヨー うへの

Switching between monomorphic and polymorphic states

Theorem

Assume Conditions (C), $\mu_N \ll r_N$ and $r > \max\{\frac{\eta}{2(1-\eta)^2}, \frac{1-\eta}{2\eta^2}\}$. Then for any $\gamma > 0$:

• If $\mathbf{X}^{N,M}$ is started in a monomorphic state, for any $\delta > 0$

$$T^{\delta}_{\mathsf{poly}} = O(rac{1}{\mu_N s_N}) + O(M^{\gamma}_N).$$

▶ If **X**^{*N*,*M*} is started in a polymorphic state,

$$T_{
m mono} \gg \exp(M_N^{1-\gamma})$$

Switching between monomorphic and polymorphic states

Theorem

Assume Conditions (C), $\mu_N \ll r_N$ and $r > \max\{\frac{\eta}{2(1-\eta)^2}, \frac{1-\eta}{2\eta^2}\}$. Then for any $\gamma > 0$:

• If $\mathbf{X}^{N,M}$ is started in a monomorphic state, for any $\delta > 0$

$${\cal T}^{\delta}_{
m poly} = O(rac{1}{\mu_{N} s_{N}}) + O(M^{\gamma}_{N}).$$

▶ If **X**^{*N*,*M*} is started in a polymorphic state,

$$T_{
m mono} \gg \exp(M_N^{1-\gamma})$$

If $\frac{1}{\exp(M_N^{1-\gamma})s_N} \ll \mu_N \ll r_N$, then $T_{\text{poly}}^{\delta} \ll T_{\text{mono}}$. In this case both types coexist most of the time in the parasite population.

Perspective

Persistence and reinfection are effective mechanisms

- to introduce diversity into parasite populations of single hosts
- maintain diversity in the parasite population also in the case of small mutation rates

Figure from Puchhammer-Stöckl and Görzer (2011)

(日本)(同本)(日本)(日本)(日本)

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Literature:

P., Wakolbinger: Maintenance of diversity in a hierarchical host-parasite model with balancing selection and reinfection, submitted, Preprint: arXiv:1802.02429.