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Second order selection

An individual is first-order-fit if it produces on average more
offspring than others.

An individual is second-order-fit if its offspring produce on
average more offspring than others.

Example (from Mao et al (1997)):
In E. coli, the fraction of cells lacking a certain DNA repair
mechanism, is ∼ 10−5.
→ they carry a mutator allele
Treat a population with antibiotics. After four rounds of
treatments, only mutators have survived.

Conclusion: Mutators can be second-order fit.





The model

There is an A-locus (types: `, h) and a B-locus (types: 0,1)
The A-allele determines the mutation rate at the B-locus
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Xh0 Xh1

Environment favors 0 over 1
with σZ for Z ∈ {−1, 1}

Z → −Z at rate γn2/2

dX`0 = −σnZX`0X1dt+θ`(X`1 − X`0)dt +
√

X`0(1− X`0)dW`0,

dX`1 = −σnZX`1X0dt+θ`(X`0 − X`1)dt +
√

X`1(1− X`1)dW`1,

dXh0 = −σnZXh0X1dt+θh(Xh1 − Xh0)dt +
√

Xh0(1− Xh0)dWh0,

dXh1 = −σnZXh1X0dt+θh(Xh1 − Xh0)dt +
√
Xh1(1− Xh1)dWh1
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Stochastic averaging

The genertor of (X ,Z ) is

Gf (x , z) = G0f (x , z)︸ ︷︷ ︸
mutation,

resampling

+ nG1f (x , z)︸ ︷︷ ︸
selection

+ n2G2f (x , z)︸ ︷︷ ︸
environment

Any Markov process can be characterized via a martingale
problem. Here, this means that

f (Xt ,Zt)−
∫ t

0
Gf (Xs ,Zs)ds

= f (Xt ,Zt)−
∫ t

0
(G0f + nG1f + n2G2f )(Xs ,Zs)ds

is a martingale for all smooth, bounded f .

Is there a limit of X as n→∞?



Stochastic averaging

Goal: Averaging out a fast variable (environemnt).

Dates back at least to Khashminskii (1966)
A limit theorem for the solutions of differential equations with random right-hand sides. Theor. Probability

Appl., 11(11):390–406, 1966.

General reference is Kurtz (1992)
Averaging for martingale problems and stochastic approximation. In Applied stochastic analysis (New Brunswick,

NJ, 1991), volume 177 of Lecture Notes in Control and Inform. Sci., 186–209. Springer, Berlin, 1992.

For processes on three time-scales:

Semigroup approach: See Theorem 1.7.6 of Ethier, Kurtz (1986)
Markov processes: Characterization and conver- gence. Wiley Series in Probability and Mathematical

Statistics: Probability and Mathe- matical Statistics. John Wiley & Sons Inc., New York, 1986.

Special case of diffusion operators E. Pardoux and A. Yu. Veretennikov. On Poisson

equation and diffusion approximation 1 and 2. Ann. Probab., 29:1061–1085, 2001 and 31:1166–1192,

2003.

Martingale-problem approach Hutzentaler, Pfaffelhuber, Printz (2018) Stochastic

averaging for multiscale Markov processes with an application to a Wright-Fisher model with fluctuating

selection. Submitted.



Stochastic averaging

The generator is

G = G0 + nG1 + n2G2

with G2f = 0 if f only depends on x .

Let f only depend on x and find h such that G2h = −G1f .

For n→∞, Z is a fast process with equilibrium πx , so

(f + 1
nh) (Xt ,Zt)−

∫ t

0
G (f + 1

nh) (Xs ,Zs)ds

≈ f (Xt)−
∫ t

0
G0f (Xs) + nG1f (Xs ,Zs)

+G1h(Xs ,Zs)+nG2h(Xs ,Zs)ds

≈ f (Xt)−
∫ t

0
G0f (Xs) +

=:Ḡ1h(Xs)︷ ︸︸ ︷
EπXs [G1h(Xs ,Z )]︸ ︷︷ ︸

potential generator of limit process

ds

is a martingale.
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For h = G1f ,
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Limit has generator, for smooth f ,

Gf = G0f + Eπ[G1G1f (x ,Z )]
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Main result

Theorem (Baumdicker, Huss, P, 2018)

As n→∞, X = X n converges weakly to the unique solution of

dX`0 = σ2

γ X`0X1(X1 − X0)dt + θ`(X`1 − X`0)dt

+
√

X`0(1− X`0)dW`0 +
√

2σ2

γ X`0X1dW ,

dX`1 = σ2

γ X`1X0(X0 − X1)dt + θ`(X`0 − X`1)dt

+
√

X`1(1− X`1)dW`1 −
√

2σ2

γ X`1X0dW ,

dXh0 = σ2

γ Xh0X1(X1 − X0)dt + θh(Xh1 − Xh0)dt

+
√

Xh0(1− Xh0)dWh0 +
√

2σ2

γ Xh0X1dW ,

dXh1 = σ2

γ Xh1X0(X0 − X1)dt + θh(Xh0 − Xh1)dt

+
√

Xh1(1− Xh1)dWh1 −
√

2σ2

γ Xh1X0dW ,

where W is an independent Brownian motion.



Main result

Corollary 1 (Karlin-Levikson model)

If θ = θh = θ`, X0 = X satisfies

dX = 2σ2

γ X (1− X )( 1
2 − X )dt + θ(1− 2X )dt

+
√

X (1− X )dW +
√

2σ2

γ X (1− X )dW ′

with independent Brownian motions W ,W ′.

Corollary 2 (High versus low mutators)

dXh =
σ2

γ
(Xh0X`1 − Xh1X`0)(X1 − X0)dt

+
√

XhX`dW +
√

2σ2

γ (Xh0X`1 − Xh1X`0)dW ′

with independent Brownian motions W ,W ′.



When is a high mutation rate beneficial?

Theorem (Baumdicker, Huss, P; 2018)

If Xh(0) = x ,Xh0(0) = px ,X`0 = q(1− x),

Px(Xh(∞) = 1) = x +
σ2

8γ
x(1− x)f + o(σ2/γ)

with

f = (1− 2x)

(
1

3
− 4

(3 + θh + θ`)
(1− 2p)(1− 2q)

)
+

3

(3 + 2θ`)

(
(1− x)(1− 2q)2 − 1

1 + θ`

)
− 3

(3 + 2θh)

(
x(1− 2p)2 − 1

1 + θh

)
+ 3

θh − θ`
(1 + θ`)(1 + θh)

.



When is a high mutation rate beneficial?

Assume p = q = 1
2 , i.e.

Px(Xh(∞) = 1) ≈ x +
σ2

8γ
x(1− x)·(

1
3 (1− 2x)− 3

(3 + 2θ`)
1

1+θ`
+

3

(3 + 2θh)
1

1+θh
+ 3

θh − θ`
(1 + θ`)(1 + θh)

)
For a maximum, solve

− 4(θ` − 1)θ2
h + 8(2− θ`)θh + 2(7− 2θ`) = 0,

θh =
4− 2θ` +

√
2(θ` + 1)

2(θ` − 1)
.

⇒ there is a fixed point at θ ≈ 1.78.



When is a high mutation rate beneficial?

For small σ2/γ,

P
σ2/γ
x [Xh(∞) = 1] = E

σ2/γ
x [Xh(∞)] = x +

∫ ∞
0

E
σ2/γ
x [ḠXh(s)]ds

= x +
σ2

γ

∫ ∞
0

E
σ2/γ
x [(Xh0(t)X`1(t)− Xh1(t)X`0(t))(X1(t)− X0(t))]dt

= x +
σ2

γ

∫ ∞
0

E0
x [(Xh0(t)X`1(t)− Xh1(t)X`0(t))(X1(t)− X0(t))]︸ ︷︷ ︸

can be computed using Kingman’s coalescent

dt

+o(σ2/γ)
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Summary

Second-order selection favors types which have fit offspring
(rather than being fit themselves).

Fluctuating selection can be trated with stochastic averaging.

For small selection strength or fast fluctuating environments, we
computed the optimal mutation rate.


