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Second order selection

An individual is first-order-fit if it produces on average more
offspring than others.

An individual is second-order-fit if its offspring produce on
average more offspring than others.

Example (from Mao et al (1997)):

In E. coli, the fraction of cells lacking a certain DNA repair
mechanism, is ~ 107>,

— they carry a mutator allele

Treat a population with antibiotics. After four rounds of
treatments, only mutators have survived.

Conclusion: Mutators can be second-order fit.
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The model

There is an A-locus (types: ¢, h) and a B-locus (types: 0,1)
The A-allele determines the mutation rate at the B-locus

B-locus
0 1

2 0 | Xuo Xo1

O
o
<‘|: h XhO — Xhl

dXp = O¢(Xer — Xeo)dt 4+ / Xoo(1 — Xeo)dWio,
dXpg = 0r(Xeo — Xer)dt + / Xe1 (1 — Xo1)dWipn,
dXp = On(Xn1 — Xno)dt + v/ Xno(1 — Xho)dWho,
dXpy = Gh(Xhl Xho)dt =+ £/ Xhl(l — Xhl dWh1



The model

There is an A-locus (types: ¢, h) and a B-locus (types: 0,1)
The A-allele determines the mutation rate at the B-locus

B-locus 1 Environment favors 1 over 0
0 with onZ for Z € {~1,1}

a ¢ | Xo Xn Z — —Z at rate yn?/2
S
<‘|: h Xpo ¢— Xpm

dXp = —O’ﬁZXgodet—f—@g(Xgl — Xgo)dt + Xgo(l — Xgo)deo,
dXn = O'nZXﬂXodt-f—eg(Xgo — Xgl)d Xgl(l — XZl)dWﬂ,
dXho = —anZXhOdet+0h(Xh1 o)d XhO 1-— XhO dWho,
dXp1 = JnZXh]_Xodt—l—eh(Xh]_ Xho)dt + Xh]_(l — Xhl dWhpy



Stochastic averaging

@ The genertor of (X, Z) is

Gf(x,z) = Gof(x, z) + nGif(x, z) + n*Gof (x, z)

—_—— ~
mutation, selection environment
resampling

@ Any Markov process can be characterized via a martingale
problem. Here, this means that

t
f(Xe, Zt) — / Gf (Xs, Zs)ds
0
t
:f(Xt,Zt)—/ (Gof + nGif 4+ n?Gof)(Xs, Zs)ds
0

is a martingale for all smooth, bounded f.

@ Is there a limit of X as n — o00?



Stochastic averaging

Goal: Averaging out a fast variable (environemnt).
Dates back at least to Khashminskii (1966)

General reference is Kurtz (1992)

For processes on three time-scales:
o Semigroup approach: See Theorem 1.7.6 of Ethier, Kurtz (1986)

e Special case of diffusion operators

e Martingale-problem approach



Stochastic averaging

@ The generator is
G = Gy + nGi + n*Gy
with Gof = 0 if f only depends on x.

@ For n — oo,
t
f (Xt )—/ Gf (Xs, Zs)ds
0

t
~ F(X,) - / Gof (Xs) + NG (X, Z2)
0
ds

is a martingale.



o
Stochastic averaging >
e

@ The generator is
G = Gy + nGi + n*Gy

with Gof = 0 if f only depends on x.
Let f only depend on x and find h such that Goh = —G;f.
@ For n — oo, Z is a fast process with equilibrium 7, so

(F+ih) (Xe, Z;) —/t G(f+Lih) (X, Z)ds
0

t
~ F(X,) - / Gof (Xs) + NG (X, Z2)
0
+GLh(Xs, Z:)+nGoh(Xe, Z.)ds

—Glh(Xs)
F(X,) — /Gof )+ By [GIh(Xe, Z)] ds

potential generator of limit process

is a martingale.



Stochastic averaging

@ The generator is

Gf(x,z) = Gof (x, z) +nGif(x, z) + n? Gof (x, z)
W ~N~ ~~
mutation, resampling selection environment

@ Let f only depend on x and find h with Goh = —G1f
@ For the limit process X,

f(X:) — /Ot Gof (Xs) + GLh(X;)ds

is a martingale.



Stochastic averaging

@ The generator is

Gf(x,z) = Gof (x, z) +nGif(x, z) + n? Gof (x, z)
W ~N~ ~~
mutation, resampling selection environment

Gof(x,z)=E,[f(x,Z)] — f(x, 2)

Let f only depend on x and find h with Goh = —G; f
For the limit process X,

f(X:) — /Ot Gof (Xs) + Gih(Xs)ds

is a martingale.
For h = Gif,

Goh(x,z) = E;[Z]g(x) — Gif(x,z) = —Gif(x, 2)

Limit has generator, for smooth f,

Gf = Gof + Eﬂ-[Gl Glf(X, Z)]
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Main result ::E
&
Theorem (Baumdicker, Huss, P, 2018) =
As n — 0o, X = X" converges weakly to the unique solution of
X0 = T XeoXa (X1 — Xo)dt + 0s(Xer — Xio)dlt
+V/Xeo(1 = Xeo)dWiao + 1/ 22 X XadW,
dXpn = Z X Xo(Xo — X1)dt + 04(Xeo — Xer)dlt
X1 (1 — Xo1)dWyp — 2#'2X61XodW,
dXhO = %ZXh(JXl(Xl — Xo)dt + Hh(Xhl — Xho)dt
+ v/ Xno(L = Xno)dWho + 1/ 2= Xpo X1 dW,
dXp = %2Xh1X0(X0 — Xl)dt 4F Hh(XhO — Xhl)dt
+ v/ Xh1(1 — Xh1)dWhp1 — 4/ 2%QXMXOC/W,

where W ic an indenendent Rrownian motion



Main result

Corollary 1 (Karlin-Levikson model)
If 6 =0, =0y, Xog = X satisfies

dX =22 X(1 - X)(3 — X)dt +6(1 — 2X)dt
202 !
+ v/ X(1 = X)dW + TX(l — X)dW
with independent Brownian motions W, W'.

Corollary 2 (High versus low mutators)

2
g
X, = T(Xh()Xgl - XhIXEO)(Xl - XO)dt

+ VXX dW + /22 (Xpo Xer — Xy Xeo)dW'

with independent Brownian motions W, W'.
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When is a high mutation rate beneficial? ::E
&

Theorem (Baumdicker, Huss, P; 2018)
If X,(0) = x, Xpo(0) = px, Xeo = g(1 — x),
52
Py(Xp(o0) =1) = x+ %X(l — x)f 4 o(a?/7)
with
1 4

f=(1-2x) <3 - m(l —2p)(1 - 2Q)>
3

1
+ (G+20) <(1 =)l =2 = 1+9e>

3 1
— 2 (x(1-2p2 -
(3 + 205) (X( P) 1+9,,>
On — O

T30




O
When is a high mutation rate beneficial? >
=

@ Assume p=qg = % i.e.
o2
Py(Xp(o0) =1) = x + 8—X(1 — X)-
Y

3 3 On — be
11 _ _ 1 1
(30-20- 35550 + Gramy o5 AT 000 a)

@ For a maximum, solve

—4(0, — 1)02 +8(2 — 0,)0), + 2(7 — 26,) = 0,

0 4—20,++/2(0,+1)
h = .

2(0, — 1)

= there is a fixed point at § ~ 1.78.



O
When is a high mutation rate beneficial? >
=

o For small 02/,
P/ [Xn(00) = 1] = EZ /[ Xp(00)] = x + / E/7[GXi(s)]ds
0

x4 & / - EZ /7 [(Xpo(£)Xea (£) — X (£)Xeo(£)) (X (£) — Xo(£))]lt
Y Jo



O
When is a high mutation rate beneficial? >
=

o For small 02/,
P/ [Xn(00) = 1] = EZ /[ Xp(00)] = x + /Ooo ES (G Xi(s)]ds
x4 & / - EZ /7 [(Xpo(£)Xea (£) — X (£)Xeo(£)) (X (£) — Xo(£))]lt

=X+ / [ XhO Xgl Xhl(t)Xgo(t))(Xl(t) — Xo(t))] dt

can be computed using Kingman's coalescent

+o(0?/7)




Summary

UNI
1

FREIBURG

@ Second-order selection favors types which have fit offspring
(rather than being fit themselves).

o Fluctuating selection can be trated with stochastic averaging.

@ For small selection strength or fast fluctuating environments, we
computed the optimal mutation rate.



