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Motivation: Estimation of Effective Population Size

Effective Population Size Trajectory Ne(z)

N,(¢) is a measure of relative genetic diversity over time.
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Motivation: Estimation of Effective Population Size

Effective Population Size Trajectory Ne(t)

N,(t) is a measure of relative genetic diversity over time.

Why is it important?
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Example 1: Hepatitis C Virus

HCV Has Broad Global Prevalence . )
. _ ) o @ |dentified in 1989

@ Spread by blood
to blood contact

@ ~3% of infected
population
worldwide

@ 8,000 - 10,000
deaths per year

in the USA
— TBerE @ Egypt has the
Prevalence of HCV - WHO 1999 highest

prevalence



Example 1: Hepatitis C Virus

@ 62 samples in 1993
from the E1 gene
(411bp)

@ Parenteral
antischistosomal
therapy (PAT) was
practiced from
1920s to 1980s

@ In the 1970s started
a transition from the
intravenous to the
oral administration
of the PAT



Example 1: Hepatitis C Virus

1 1
1970s: Transition from intrdvenous;
to oral administration of tI:le PAT !

@ 62 samples in 1993
from the E1 gene
(411bp)

@ Parenteral
antischistosomal
therapy (PAT) was
practiced from
1920s to 1980s

H:F @ In the 1970s started

1e+05
I

1920s: Contaminated PAT

Scaled Effective Population Size
1e+03
1

S+ o+ U
N 0 1aeo | 1om0 a transition from the
1750 1850 1950 )
Time (years) intravenous to the
[Palacios and Minin, Biometrics 2013] oral administration
of the PAT



Present-day DNA data inform us about the past

Recent common Distant common
ancestor ancestor

Time

ArWON =

Present
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Present-day DNA data inform us about the past

Recent common Distant common
ancestor ancestor

Time

@ In humans, mutation rate is estimated to be ~ 1078 per
base per generation.

ArWON =

Present
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Present-day DNA data inform us about the past

Recent common Distant common
ancestor ancestor

Time

@ In humans, mutation rate is estimated to be ~ 1078 per
base per generation.
@ Recent ancestry indicates small population sizes.

ArWON =

Present
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Goal: Estimation of Effective Population Size

Coalescent-based model

1 AATTCCCCCCCAAAAA
2 ATTTCCCCCCCAAAAT
» arrcd@at@anaa
4 AATTCCCCCCGAAAAA
5 TTAAGGGGGGTTTTTTT
¢ TTAAGGGGGGTTTTTTT
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Goal: Estimation of Effective Population Size

Coalescent-based model

@ Ancestral process: coalescent process of genealogies

1 AATTCCCCCCCAAAAA
2 ATTTCCCCCCCAAAAT
—» |« arrcl@at@assa
4 AATTCCCCCCGAAAAA
5 TTAAGGGGGGTTTTTTT
& TTAAGGGGGGTTTTTTT

s
+

P
oo wn

@ Mutation process: Poisson process along the branches of
the genealogy
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Goal: Estimation of Effective Population Size

Coalescent-based model

- 1 1 1 AATTCCCCCCCAAAAA
OPUIatl n - 2 ATTTCCCCCCCAAAAT
ize —>» en 2|+ 5 | > | s arrc@dat@anaa

. . 4 AATTCCCCCCGAAAAA

: s 5 TTAAGGGGGGTTTTTTT

Time 6 TTAAGGGGGGTTTTTTT

@ Ancestral process: coalescent process of genealogies.

@ Mutation process: Poisson process along the branches of
the genealogy.

@ Population process: Effective population size trajectory
over time.
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Challenging inference from data

. a 1 1 AATTCCCCCCCAAAAA
OPUIatI n 2 ATTTCCCCCCCAAAAT
ize e |+ H 3 TATTC!
. 5 4 AATTC 5
6 6 5 TTAAGGGGGGTTTTTTT
Time 4 4 6 TTAAGGGGGGTTTTTTT

Ne(t)

P(Ne(1),G,Q,7|Y) o< P(Y|G,Q) P(G|N(1)) P(Q) P(Ne(t) | ) P ()

G

Y

Likelihood

Coalescent prior

log GP(0,C(7))
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Challenging inference from data

H 1 1 1 AATTCCCCCCCAAAAA
o pu I at I n ) 2 ATTTCCCCCCCAAAAT
ize > 2 | + 2 | 5 | mrrc@atana
: ; . A
6 6 5
Time 9 4

TTAAGGGGGGTTTTTTT
8 TTAAGGGGGGTTTTTTT

N.(t) G Q Y

P(Ne(1),G,Q,7|Y) o< P(Y|G,Q) P(G|N(1)) P(Q) P(Ne(t) | ) P ()

Likelihood  Coalescent prior log GP(0,C(7))

@ The likelihood P (Y | G, Q) is tractable.
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Challenging inference from data

i ' ' 1 AATTCCCCCCCAAAAA
OPUIatI n 2 ATTTCCCCCCCAAAAT
1ze > 2 | + 31 > | mrre@@at@asaa
5 5 4 AATTCC 'CGAAAAA

6 6

‘ s

_ 5 TTAAGGGGGGTTTTTTT
Time 8 TTAAGGGGGGTTTTTTT

Ne(t) G Q Y

P(Ne(1),G,Q,7|Y) o< P(Y|G,Q) P(G|N(1)) P(Q) P(Ne(t) | ) P ()

Likelihood  Coalescent prior log GP(0,C(7))

@ The likelihood P (Y | G, Q) is tractable.
The state space of genealogies G
° =T, @R
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Challenging inference from data

i ' ' 1 AATTCCCCCCCAAAAA
OPUIatI n 2 ATTTCCCCCCCAAAAT
1ze > 2 | + 31 > | mrre@@at@asaa
5 5 4 AATTCC 'CGAAAAA

6 6

‘ s

_ 5 TTAAGGGGGGTTTTTTT
Time 8 TTAAGGGGGGTTTTTTT

Ne(t) G Q Y

P(Ne(1),G,Q,7|Y) o< P(Y|G,Q) P(G|N(1)) P(Q) P(Ne(t) | ) P ()

Likelihood  Coalescent prior log GP(0,C(7))

@ The likelihood P (Y | G, Q) is tractable.
The state space of genealogies G

° =T, @R

@ |7, =nl(n—1)!/2"1

(*} ‘7100’ ~ 10284
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Challenging inference from data

i ' ' 1 AATTCCCCCCCAAAAA
OPUIatI n 2 ATTTCCCCCCCAAAAT
1ze > 2 | + 31 > | mrre@@at@asaa
5 5 4 AATTCC 'CGAAAAA

6 6

‘ s

_ 5 TTAAGGGGGGTTTTTTT
Time 8 TTAAGGGGGGTTTTTTT

Ne(t) G Q Y

P(Ne(1),G,Q,7|Y) o< P(Y|G,Q) P(G|N(1)) P(Q) P(Ne(t) | ) P ()

Likelihood  Coalescent prior log GP(0,C(7))

@ The likelihood P (Y | G, Q) is tractable.
The state space of genealogies G

° =T, @R

@ |7, =nl(n—1)!/2"1

@ [Tigo| ~ 1024

@ ~ 10% atoms in the universe

@ ~ 4.4 x 10! seconds since the Big Bang
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Coalescent times alone are sufficient statistics for N(r)

60
I

Time (past to present)

40

Population Size

20
L

%% ¥
it B, 13 t t7 it
Time (past to present)

Coalescent Density:

n

P(GIN,(1)) o< [ | Plta—1ltx, Ne(2)).
k=2

t=(r,13,...,1,) are sufficient statistics for inferring N, ()
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An alternative coalescent model?

A ' i 1 AATTCCCCCCCAAAAA
OPUIatI n n 2 ATTTCCCCCCCAAAAT
ize i d |+ 2 | 9 | arrc@@@at@anaa
2 . 4 AATTCCCCCCGAAAAA

H H

B .

5 TTAAGGGGGG TTT
fime 6 TTAAGGGGGGTTTTTTT

What if we replace G with t, the vector of coalescent times?
Posteriors:

P(Ne(1),G,Q,7[Y) vs P(Ne(1),£,Q, T[Y)
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An alternative coalescent model?

A ' i 1 AATTCCCCCCCAAAAA
OPUIatI n n 2 ATTTCCCCCCCAAAAT
ize i d |+ 2 | 9 | arrc@@@at@anaa

2 . 4 AATTCCCCCCGAAAAA

j j 5 TTAAGGGGGGTTTTTTT

‘Time 8 TTAAGGGGGGTTTTTTT

What if we replace G with t, the vector of coalescent times?
Posteriors:

P (Ne(1),G,Q,7|Y) vs P(Ne(1),t,Q,7|Y)
Using only coalescent times t:

P(N,(1),t,Q,7|Y) x P(Y|t,Q) P(t|N,(1r)) P(Q,N.(1),T)

Likelihood Coalescent prior
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An alternative coalescent model?

A ' i 1 AATTCCCCCCCAAAAA
OPUIatI n n 2 ATTTCCCCCCCAAAAT
ize i d |+ 2 | 9 | arrc@@@at@anaa

2 . 4 AATTCCCCCCGAAAAA

j j 5 TTAAGGGGGGTTTTTTT

‘Time 8 TTAAGGGGGGTTTTTTT

What if we replace G with t, the vector of coalescent times?
Posteriors:

P (Ne(1),G,Q,7|Y) vs P(Ne(1),t,Q,7|Y)
Using only coalescent times t:
P(N,(1),t,Q,7|Y) x P(Y|t,Q) P(t|N,(1r)) P(Q,N.(1),T)

Likelihood Coalescent prior

@ P(Y|t,Q) => +P(Y,T|t,Q) is not “practical" since we
need to sum over all possible topologies.
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An alternative coalescent model?

A ' i 1 AATTCCCCCCCAAAAA
OPUIatI n n 2 ATTTCCCCCCCAAAAT
ize i d |+ 2 | 9 | arrc@@@at@anaa

2 . 4 AATTCCCCCCGAAAAA

j j 5 TTAAGGGGGGTTTTTTT

‘Time 8 TTAAGGGGGGTTTTTTT

What if we replace G with t, the vector of coalescent times?
Posteriors:

P (Ne(1),G,Q,7]Y) vs P(Ne(1),1,Q,7|Y)
Using only coalescent times t:
P(N,(1),t,Q,7|Y) x P(Y|t,Q) P(t|N,(1r)) P(Q,N.(1),T)

Likelihood Coalescent prior

@ P(Y|t,Q) => +P(Y,T|t,Q) is not “practical" since we
need to sum over all possible topologies.

@ The times alone t are not sufficient for inferring N, (¢) for
whole genomes [Palacios et al., 2015]
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An alternative coalescent model?

Different resolutions of the coalescent:

Finding the best resolution for the Kingman-Tajima
coalescent: theory and applications

R. Sainudiin - T.Stadler - A. Véber

[J. Math. Biol, 2015]

“ considering the optimal resolution with respect to a given statistic can (i) lead to significant computational savings
in terms of time complexity by directly sampling from a much smaller hidden space and (i) help generate samples
from the conditional hidden space (given the observed statistics) by controlling the sampling in such a way that only
trees or shapes in the hidden space that are compatible with the observed statistics are drawn"

Fig. 2 Example for a ranked labeled tree with leaf label set £ = {1,2,3,4,5}, a labeled tree with £ =
{1,2,3,4,5}, aranked tree shape and a tree shape (from left to right).
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Kingman’s genealogies vs Tajima’s genealogies

Kingman’s genealogy Tajima’s genealogy
2
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Kingman’s genealogies vs Tajima’s genealogies

Kingman’s genealogy Tajima’s genealogy
2
to oo to
3
ty o—d tg ——
4
ty o ty o

tg o )
by s -
tg Al -

=
2 3167 8 5 4

n labeled topologies ranked tree shapes
3

5

3 1

180 5

10 2.5 x 10° 7936
20 5.64 x 10¥ 2.9 x 1013
50 3.28 x 1012 1.9 x 1073
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Ranked tree shapes

Forn=15

[
mﬁm

In parenthetical notation, the first tree would be represented by

4:(3:(1:(,),),2:(,)) (1)
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Inference with Tajima’s coalescent

H 1 1 1 AATTCCCCCCCAAAAA
opUIatI n . 2 ATTTCCCCCCCAAAAT
i2e d en y: | T 3 | o> | arred@at@anaa
5 5 4 AATTCCCCCCGAAAAA

: :

_ TTAAGGGGGGTTTTTTT
Time 8 TTAAGGGGGGTTTTTTT

With Kingman’s coalescent: With Tajima’s coalescent:

@ Goal: P(N,(1),G,Q,7|Y) @ Goal: P (N.(1),G",Q,7|Y)

@ The state space of @ The state space of Tajima’s
genealogies § genealogies G’
g:E®R+n71 gT R ®R+n 1

@ The likelihood P (Y |G, Q) e P(Y|G", Q) directly with
is tractable. infinite sites mutations

model
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Inference with Tajima’s coalescent:
@ Felsenstein-Tajima conditional likelihood

@ Bayesian model for inferring N(z)
@ MCMC Algorithm for Posterior inference

e Sampling of ranked tree shapes (F)
e Sampling of coalescent times (¢)
e Sampling of N(z)

@ Results
@ Summary and future directions
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Felsenstein-Tajima conditional likelihood

Goal:
P(Y | G" = {F,t}, )
Assumptions:
@ We assume the infinite-sites mutation model
@ We know the ancestral state at each polymorphic site
@ Our data can be represented as sequences of 0s and 1s

@ There is a one-to-one correspondence between data
consistent with ISM and a perfect phylogeny (gene tree)

P(Y | G" = {F,t},u) = P(PP | G" = {F,t}, )

/N

3 2 2

N oA WN =
DOHOO0O0OO

ancestral: T C
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Data as perfect phylogeny (gene tree)

A bigger example (Dan Gusfield, 1991):

A Data (Y) B Perfect Phylogeny (7)
Haplotype Frequency|a|b bfc|d|e e|f f f].. |
1 2 1|0 0f1|0|0 O[O0 O O
2 1|0 0f(0|1|0 O[O0 O O
3 2 1|0 0f{0(0|1 1{0 0 O
4 1 1{0 of0|0j0 0|1 11
5 2 0[O0 0|0|0[0O O|O OO
6 2 0[O0 o|0|0[0O O|O OO
7 2 0[1 1|0|0({0 O|O O O
8 2 0[{0 o|0|0[0 OO OO
9 1 0/0 0/0]0j0 0[O0 0O

16

= Number of mutations = Frequency
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Felsenstein-Tajima conditional likelihood

o, T
Perfect Phylogeny (Y) Tajima’s genealogy (,q )

= Number of mutations = Frequency

Goal:
P(Y |G" ={F,t},p)
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Felsenstein-Tajima conditional likelihood

The tricky part: once we remove the labels, we can have more
than one assignment of mutations to branches

With Kingman’s coalescent

—_ ts
! | t

NoaRwN
0 6OO00000

"

ancestral

[
‘ tr
4

1 2 3 4 5 7
P(Y|G,u)=P(ee| G,p)

With Tajima’s coalescent

allocation 1 allocation 2

4 4

P (Y | GT, ) = P (epin allocation 1 or allocation 2 | GT, 1)
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Felsenstein-Tajima conditional likelihood

: We use the structure of the perfect
phylogeny to generate a probabilistic DAG model (Bayes
network, Bayes nets, belief networks, Bayesian graphical
model)

(Y) Perfect Phylogeny DAG

@
RN G
clolclo

CONNCD

= Number of mutations = Frequency

We merge sister leaves with the same number of descendants
into a single leaf in the DAG.
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Felsenstein-Tajima conditional likelihood

We equip the DAG with mutations ...

(Y) Perfect Phylogeny
16, a9 = (bs, ba, b14))

DAG
20 = (do =
@ 21 = (dy =7,z =1,a1 = ((br2,b9), b10))
20 = (dy = 7,22 = 0,02 = ((bs, b13), b11))
@7 &) a-w-
> zg=(ds = ’
@ @ @ @ 25 = (ds = 3,25 =0,
26 = (ds = 2,26 = (1,
27 = (d7 = 3,27 =1,
GG @O Tan
29 = (dg = 1,39 = 3)
{AJ) jevi 210 = (dio = 2,210 = 1)
Zj = (Dj, 45) j=0 211 = (du=1lLan=1)

= Number of mutations = Frequency

We merge sister leaves with the same number of descendants
into a single leaf in the DAG.
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Felsenstein-Tajima conditional likelihood

We augment the DAG with allocation of mutations (4;) along G”

A Tajima’s genealogy and a possible allocation B DAG corresponding to A
of the mutations observed in the data
@ 20 = (do = 16,a9 = (s, bs, b14))
21 = (dy =7,z = 1,a1 = ((br2, bo), b10))
. ‘ 2y = (do = 7,25 = 0,az = ((bs. b13), b11))
ts
Al | @ @ z3 = (d3 = 2,23 = 2)
} ‘ 2y = (dy = 2,24 = (1,1))
£ T t6 @ @ @ 25 = (ds = 3,25 = 0,a5 = (b1s, b2a))
| ) 26 = (dg = 2,26 = (1,2))
2 ll 2 t z7 = (d7 = 3,27 = 1,a7 = (b15,ba3))
Ll ®O  Ge Esi
111 | T,
MJL ] t 29 = (dg = 1,9 = 3)
ol HH (Dj, X;.4;) j€Vr 210 = (dio = 2,210 = 1)
‘ ‘ [‘\ ‘ Zj = (Dj, 45) j=0 211 = (du=1lLan=1)
bas (Dj, X;) JjeVe

= Number of mutations
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Felsenstein-Tajima conditional likelihood

We augment the DAG with allocation of mutations (4;) along G”

A Tajima’s genealogy and a possible allocation B DAG corresponding to A
of the mutations observed in the data
@ 20 = (do = 16,a9 = (s, bs, b14))
21 = (dy =7,z = 1,a1 = ((br2, bo), b10))
; ‘ @ 2= (dy = T, = 0, a5 = ((bs, brs), bu1))
ts .
4] | [ @ @ 3= (ds =2,
/ (dy =2,
Sl GOm0 i
| ' (ds =2,
2 l‘1 > (dr =3
i (ds =2,
R e |GG L A ( 1,
P e
Gt
IR
b25
= Number of mutations
T T —ul
P(Y |G, p) Dono 2o, - 2an, PO GY, p)e

= e He ZAO ZAI ce ZA,,I P(ZO7 s ’Zﬂl-‘rnL | GT7 M)
_ nr+n,
= ent ZAO ZA] - ~ZA,,, Hilzl " P(Z; | Zpa(i)s GTM‘)
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Bayesian model for inferring N(¢)

opulation i '
Time : :

1 AATTCOCCCCCAAAAA
2 ATTTCCCCCCCAAAAT
« arrcd@t@asaa
4 AATTCCCCCCGAAAAA
5 TTAAGGGGGGTTTTTTT
© TTAAGGGGGGITTTTTT

@ v =1logN(t) ~ GP(0,C(7)), T ~ Gamma(c, [3)
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Bayesian model for inferring N(¢)

: 0 i 1 AATTCCCCCCCAAAAA
OPUIatI n N 2 ATTTCCCCCCCAAAAT
ize —> en y§ + 2| > | iarre@@at@asaa

. . 4 AATTCCCCCCGAAAAA

: ¢ 5 TTAAGGGGGGTTTTTTT

Time & TTAAGGGGGGTTTTTTT

=logN(t) ~ GP(0,C(7)), T ~ Gamma(«, [3)
@ Tajima coalescent prior

PIG" = {F,t} | N,(t HPtk’tk—Hv @ (2
and
2n—c—1

Plty—1|tx, No(2)] = le;kll) exp {_/tk—l iée(lt?t] , (4)

where C; = (5) is the coalescent factor that depends on
the number of lineages k =2, ....n
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MCMC Algorithm for Posterior inference

Goal:

Ply,G", 7| Y, u] < P(Y | G", )P[G" | y]P[y | T]P(T)  (5)

Metropolis-Hastings
@ splitHMC [Lan et al., Bioinformatics 2015] to sample ~, 7
@ HMC to sample t

@ ¢(F | Y) proposal for ranked tree shapes exploiting the
DAG representation of perfect phylogeny
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Simulation

Perfect Phylogeny (Y)

= Number of mutations

= Frequency

@ Only 548 ranked tree shapes are compatible with the data
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Simulation: Sampling coalescent times

Posterior of coalescent times

ch 4
1 +1E
) Eaa
- 1=« %"
A=

[ S A A
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Simulation: Sampling Ne

Simulation
o
o 4
N
o
n 4
= o
Q
4 -
o
o
[sY)
o 4
S
T T T T T
0.4 0.3 0.2 0.1 0.0
Time
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Comparison with BEAST [Suchard et al (2018)]

i |

é "- H é _

11 HH TR =
gl =2 HoooaB | slas i Bogaeg |
S A A A A A R S A A

|
|

Time (past to present) Time (past to present)
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@ Tajima’s coalescent is a more efficient lower resolution
model for inference of effective population sizes.

@ A priori, the hidden state space of ranked tree shapes is
much smaller than the space of labeled topologies.

@ Current implementation (in R phylodyn) is limited to the
infinite-sites mutation model.

@ Tajima’s inference can be extended for modeling
recombination under the sequential Markovian coalescent.

@ The Felsenstein-Tajima conditional likelihood calculation
can be extended for tree shapes.
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes

depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
® |Ri| = 7936
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
® |Ri| = 7936
e Only |Ryy | Y| = 548 compatible with the data
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
® |Ri| = 7936
e Only |Ryy | Y| = 548 compatible with the data
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
® |Ri| = 7936
e Only |Ryy | Y| = 548 compatible with the data
@ Let 5, = (x+ 1,n —x + 1) be a binary perfect phylogeny
with two leaves with x + 1 leaves on one side and n — x + 1
on the other side.
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Size of ranked tree shapes

@ The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
@ For our simulation example (n = 10 samples)
@ |Tio| = 2.5 x 10° labeled topologies
® |Ri| = 7936
e Only |Ryy | Y| = 548 compatible with the data
@ Let 5, = (x+ 1,n —x + 1) be a binary perfect phylogeny
with two leaves with x + 1 leaves on one side and n — x + 1
on the other side.
@ The set of unlabeled histories (ranked tree shapes)

compatible with 3., assuming x < n/2 is

|Rn+2 | /8x| = €x - €p—x" <Z>a (6)

where ¢; is the number of unlabeled histories with i internal
nodes. The integer ¢; is the ith Euler number:

> ez 1
= t 7
Zo: i cos(z) + tan(2) (7
= 51/54




Size of ranked tree shapes

The maximum number of ranked tree shapes of n leaves
compatible with the perfect phylogeny occurs when the perfect
phylogeny is a multifurcating phylogeny of degree n orn — 1.
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Size of ranked tree shapes

Theorem

The maximum number of ranked tree shapes of n leaves
compatible with the perfect phylogeny occurs when the perfect
phylogeny is a multifurcating phylogeny of degree n orn — 1.

Theorem

The maximum number of ranked tree shapes of n leaves
compatible with a binary perfect phylogeny occurs when there
is a single bifurcation event dividing the samples in two groups
of sizes (n — 2) and (2).
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