
State-space exploration of Tajima Trees

Julia A. Palacios
Joint with A. Véber, J. Wakeley and S. Ramachandran

Department of Statistics
Department of Biomedical Data Science

Stanford University

CIRM
July 2018

1 / 54



Motivation: Estimation of Effective Population Size

Effective Population Size Trajectory Ne(t)

Ne(t) is a measure of relative genetic diversity over time.

Why is it important?
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Motivation: Estimation of Effective Population Size

Effective Population Size Trajectory Ne(t)

Ne(t) is a measure of relative genetic diversity over time.

Why is it important?

Viral Gene Sequences Reveal the Variable History
of Hepatitis C Virus Infection among Countries

Tatsunori Nakano,1 Ling Lu,2,a Pengbo Liu,3 and Oliver G. Pybus4

1Department of Internal Medicine, Ichinomiya Nishi Hospital, Ichinomiya, Aichi, Japan; 2Division of Digestive Disease, Department of Medicine,

and 3Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; 4Department of Zoology,

University of Oxford, Oxford, United Kingdom
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Example 1: Hepatitis C Virus

Prevalence of HCV - WHO 1999

Identified in 1989
Spread by blood
to blood contact
≈3% of infected
population
worldwide
8,000 - 10,000
deaths per year
in the USA
Egypt has the
highest
prevalence
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Example 1: Hepatitis C Virus

62 samples in 1993
from the E1 gene
(411bp)
Parenteral
antischistosomal
therapy (PAT) was
practiced from
1920s to 1980s
In the 1970s started
a transition from the
intravenous to the
oral administration
of the PAT
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1970s: Transition from intravenous
to oral administration of the PAT

[Palacios and Minin, Biometrics 2013]
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Present-day DNA data inform us about the past
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In humans, mutation rate is estimated to be ≈ 10−8 per
base per generation.
Recent ancestry indicates small population sizes.
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Goal: Estimation of Effective Population Size

Coalescent-based model
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Challenging inference from data

Time

Population
Size Genealogy + Mutations
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P (Ne(t),G,Q, τ |Y) ∝ P (Y |G,Q)︸ ︷︷ ︸
Likelihood

P (G |Ne(t))︸ ︷︷ ︸
Coalescent prior

P (Q)P (Ne(t) | τ)︸ ︷︷ ︸
log GP(0,C(τ))

P (τ)

The likelihood P (Y |G,Q) is tractable.
The state space of genealogies G

G = Tn ⊗ R+n−1

|Tn| = n!(n− 1)!/2n−1

|T100| ≈ 10284

≈ 1080 atoms in the universe
≈ 4.4× 1017 seconds since the Big Bang
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Coalescent times alone are sufficient statistics for N(t)
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An alternative coalescent model?

Population
  Labeled

Genealogy
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What if we replace G with t, the vector of coalescent times?
Posteriors:

P (Ne(t),G,Q, τ |Y) vs P (Ne(t), t,Q, τ |Y)

Using only coalescent times t:

P (Ne(t), t,Q, τ |Y) ∝ P (Y | t,Q)︸ ︷︷ ︸
Likelihood

P (t |Ne(t))︸ ︷︷ ︸
Coalescent prior

P (Q,Ne(t), τ )

P (Y | t,Q) =
∑
T P (Y, T | t,Q) is not “practical" since we

need to sum over all possible topologies.
The times alone t are not sufficient for inferring Ne(t) for
whole genomes [Palacios et al., 2015]
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An alternative coalescent model?

Different resolutions of the coalescent:

[J. Math. Biol, 2015]
“ considering the optimal resolution with respect to a given statistic can (i) lead to significant computational savings
in terms of time complexity by directly sampling from a much smaller hidden space and (ii) help generate samples
from the conditional hidden space (given the observed statistics) by controlling the sampling in such a way that only
trees or shapes in the hidden space that are compatible with the observed statistics are drawn"
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Kingman’s genealogies vs Tajima’s genealogies
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Ranked tree shapes

For n = 5
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In parenthetical notation, the first tree would be represented by

4 : (3 : (1 : (, ), ), 2 : (, )) (1)
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Inference with Tajima’s coalescent
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With Kingman’s coalescent:
Goal: P (Ne(t),G,Q, τ |Y)

The state space of
genealogies G
G = Tn ⊗ R+n−1

The likelihood P (Y |G,Q)
is tractable.

With Tajima’s coalescent:
Goal: P

(
Ne(t),GT,Q, τ |Y

)

The state space of Tajima’s
genealogies GT

GT = Rn ⊗ R+n−1

P
(
Y |GT,Q

)
directly with

infinite sites mutations
model
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Outline

Inference with Tajima’s coalescent:
Felsenstein-Tajima conditional likelihood
Bayesian model for inferring N(t)
MCMC Algorithm for Posterior inference

Sampling of ranked tree shapes (F)
Sampling of coalescent times (t)
Sampling of N(t)

Results
Summary and future directions
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Felsenstein-Tajima conditional likelihood

Goal:
P(Y | GT = {F, t}, µ)

Assumptions:
We assume the infinite-sites mutation model
We know the ancestral state at each polymorphic site
Our data can be represented as sequences of 0s and 1s
There is a one-to-one correspondence between data
consistent with ISM and a perfect phylogeny (gene tree)

P(Y | GT = {F, t}, µ) = P(PP | GT = {F, t}, µ)
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Data as perfect phylogeny (gene tree)

A bigger example (Dan Gusfield, 1991):
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Felsenstein-Tajima conditional likelihood
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Felsenstein-Tajima conditional likelihood
The tricky part: once we remove the labels, we can have more
than one assignment of mutations to branches
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Felsenstein-Tajima conditional likelihood

The computational helper: We use the structure of the perfect
phylogeny to generate a probabilistic DAG model (Bayes
network, Bayes nets, belief networks, Bayesian graphical
model)
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   DAG

We merge sister leaves with the same number of descendants
into a single leaf in the DAG. 34 / 54



Felsenstein-Tajima conditional likelihood

We equip the DAG with mutations ...
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We merge sister leaves with the same number of descendants
into a single leaf in the DAG.
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Felsenstein-Tajima conditional likelihood

We augment the DAG with allocation of mutations (Aj) along GT
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Felsenstein-Tajima conditional likelihood

We augment the DAG with allocation of mutations (Aj) along GT
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Bayesian model for inferring N(t)
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γ = log N(t) ∼ GP(0,C(τ)), τ ∼ Gamma(α, β)

Tajima coalescent prior

P[GT = {F, t} | Ne(t)] = P(F)
n∏

k=2

P[tk | tk+1,Ne(t)], (2)

and

P(F) =
2n−c−1

(n− 1)!
, (3)

P[tk−1|tk,Ne(t)] =
Ck−1

Ne(tk−1)
exp

[
−
∫ tk−1

tk

Ck−1dt
Ne(t)

]
, (4)

where Ck =
(k

2

)
is the coalescent factor that depends on

the number of lineages k = 2, ..., n.
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MCMC Algorithm for Posterior inference

Goal:

P[γ,GT , τ | Y, µ] ∝ P(Y | GT , µ)P[GT | γ]P[γ | τ ]P(τ) (5)

Metropolis-Hastings
splitHMC [Lan et al., Bioinformatics 2015] to sample γ, τ

HMC to sample t
q(F | Y) proposal for ranked tree shapes exploiting the
DAG representation of perfect phylogeny
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Results

Simulation

    Perfect Phylogeny
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Only 548 ranked tree shapes are compatible with the data
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Results

Simulation: Sampling coalescent times
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Results

Simulation: Sampling Ne
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Results

Comparison with BEAST [Suchard et al (2018)]

t10 t9 t8 t7 t6 t5 t4 t3 t2
0.

00
0.

05
0.

10
0.

15
0.

20

Beast Skyride

Po
st

er
io

r o
f i

nt
er

co
al

es
ce

nt
 ti

m
es

x x

x
x

x x
x

x

x

x truth

t10 t9 t8 t7 t6 t5 t4 t3 t2

0.
00

0.
05

0.
10

0.
15

0.
20

BESTT

x x

x
x

x x
x

x

x

0.
0

0.
1

0.
2

0.
3

TM
R

C
A

0.
0

0.
1

0.
2

0.
3

0.10 0.08 0.06 0.04 0.02 0.00

1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0

1e
+0

1

Time (past to present)

N
e

Truth
Median

0.10 0.08 0.06 0.04 0.02 0.00

1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0

1e
+0

1

Time (past to present)

44 / 54



Summary

Tajima’s coalescent is a more efficient lower resolution
model for inference of effective population sizes.
A priori, the hidden state space of ranked tree shapes is
much smaller than the space of labeled topologies.
Current implementation (in R phylodyn) is limited to the
infinite-sites mutation model.
Tajima’s inference can be extended for modeling
recombination under the sequential Markovian coalescent.
The Felsenstein-Tajima conditional likelihood calculation
can be extended for tree shapes.
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Size of ranked tree shapes

The cardinality of the hidden space of ranked tree shapes
depends on your observed data.
For our simulation example (n = 10 samples)

|T10| = 2.5× 109 labeled topologies

|R10| = 7936
Only |R10 | Y| = 548 compatible with the data

Let βx = (x + 1, n− x + 1) be a binary perfect phylogeny
with two leaves with x + 1 leaves on one side and n− x + 1
on the other side.
The set of unlabeled histories (ranked tree shapes)
compatible with βx, assuming x < n/2 is

|Rn+2 | βx| = ex · en−x ·
(

n
x

)
, (6)

where ei is the number of unlabeled histories with i internal
nodes. The integer ei is the ith Euler number:

∞∑

i=0

eizi

i!
=

1
cos(z)

+ tan(z) (7)
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Size of ranked tree shapes

Theorem
The maximum number of ranked tree shapes of n leaves
compatible with the perfect phylogeny occurs when the perfect
phylogeny is a multifurcating phylogeny of degree n or n− 1.

Theorem
The maximum number of ranked tree shapes of n leaves
compatible with a binary perfect phylogeny occurs when there
is a single bifurcation event dividing the samples in two groups
of sizes (n− 2) and (2).
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