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Loss of Phylogenetic Diversity

I Q : "What fraction of the underlying evolutionary history survives
when k of n species in a taxon are lost?" (Nee & May 1997)

I Phylogenies as metric trees, carry a footprint of evolutionary history

I Phylogenetic Diversity PD= Total Length of Tree (Faith 1992)

I Q becomes : "Can we predict howmuch Phylogenetic Diversity will
remain in the face of present extinctions?"
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Field of Bullets Model (FoB)

I Take a phylogeny : tips = species

I Paint independently each tip in white w probability p,
in black w probability 1− p

I White dot = extant/sampled

I Black dot = extinct/not sampled
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The Loss of Phylogenetic Diversity

I Field of Bullets model : each species is
removed independently, kept with
probability p

I Remaining PD S(p) = total length of tree
spanned by extant/sampled species

I For a given tree, ES(p) is increasing and
concave (Faller, Pardi, Steel 2008)

ES(p) =
∑
e

`(e)
(
1− (1− p)n(e))

where :
`(e) = length of edge e,
n(e) = # tips descending from e

(Mooers, Gascuel, Stadler, Li, Steel 2011)
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Nee & May Science 1997
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Nee & May Science 1997
"Approximately 80 percent of the underlying tree of life can survive even
when approximately 95 percent of species are lost"

Rule of thumb :
ESn(1) =

∑n
k=2

k
(k2)
∼ 2 log(n) so

Sn(p)

Sn(1)
≈ log(pn)

log(n)
≈ 1

1. Field of Bullets

2. Very Small External Edges

3. Balanced

The Kingman Coalescent 7



Perfectly Balanced Tree (A) vs Caterpillar Tree (B)
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Loss of PD in Random Trees

Remaining PD is...

I Low in imbalanced trees : more ‘distinctive’ sp

I High for the Kingman coalescent (Nee & May Science 1997)

I Lower for the Yule tree (Mooers, Gascuel, Stadler, Li, Steel Syst Biol 2011) :

ES(p)

ES(1)
= Ratio of expected remaining PD-to-Old PD ≈ −p log p

1− p
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Field of Bullets on a Birth-Death Tree

In a birth-death process stopped at time T, the reduced tree is a
coalescent point process (CPP) : node depths are i.i.d.
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Remaining PD for general Birth-Death Trees (1)
Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification
Models" JTB 2013

I CPP (e.g., reconstructed birth-death tree) : node depths Hi are i.i.d.

I Conditional on n tips before FoB,

lim
n

Sn(p)

Sn(1)
= p

E(B)

E(H)

where
B := max

i=1,...,G
Hi,

and G is a geometric r.v. with success probability p.

I Simple argument :

I A�er FoB, the phylogenetic tree is a CPP with node depth B and Kn tips

I By the SLLN, Sn(1) ∼ nE(H) and Sn(p) ∼ KnE(B),

I Conclude with Kn/n→ p.
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Remaining PD for general Birth-Death Trees (2)
Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification
Models" JTB 2013

For a Birth-Death tree with sp rate b, ext rate d, div rate r := b− d

Remaining PD-to-old PD Ratio = S(p)/S(1)

=


dp

bp−r
ln(bp/r)
ln(b/r) if b > r 6= bp

− p ln(p)
1−p if b = r

− 1−p
ln(p) if b > r = bp

Right : Slow progression towards the unit step function (from pure birth to
critical) : d/b = 0 (the lowest curve) and then d/b = 0.5, 0.9, 0.99, 0.999.
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Remaining Questions

1. What if trees are imbalanced?
= ∃ small clades= unprotected nodes

2. What if older clades are more species-poor?
= deep nodes are in small clades

3. What if older clades carry more extinct-prone species?
= deep nodes are in first hit clades

=⇒We need random tree models able to tune jointly :

1. Tree shape =⇒ β = tree imbalance

2. Node depths’ rankings =⇒ α = age-richness index

3. Abundances at tips =⇒ η = abundance-richness index
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Aldous’ program
Aldous "Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today" Statist.
Sci. 2001

1. What is a useful way to describe balance and imbalance in a general
phylogenetic tree?

2. Is there some particular region of the balance-imbalance spectrum
containing most actual phylogenetic trees?

3. If so, is there somemathematically simple and biologically plausible
stochastic model for phylogenetic trees whose realizations mimic
actual trees?
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Aldous’ Markov branching model on binary tree shapes
Aldous (1996, 2001)

I We are given distributions qn on [n− 1] = {1, . . . , n− 1}, ∀n ≥ 2

I Recursively split each k-subset of [n] according to qk independently :

I Induces a law on binary tree shapes with n labelled leaves.

I qn uniform yields the same tree shape as the reduced tree of any
birth–death process (e.g., Yule tree)
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Sampling consistency

I A tree model is a family of probability distributions (Pn) on
(exchangeably labelled) tree shapes with n tips

I Call Tn a random tree with law Pn

I Call T′n the tree obtained by removing one tip from Tn+1 (say the tip
labelled n + 1)

I Themodel is said sampling consistent if Tn and T′n have the same
distribution.

I Example : Kingman coalescent.
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Aldous’ Markov branching model (Mbm)
Theorem (Haas et al 2008, Lambert 2017)
A Mbm is sampling-consistent i� it there is a symmetric measure ν on (0, 1)
s.t.

qn(i) = an(ν)−1
(
n
i

)∫ 1

0
xi(1− x)n−iν(dx)

Construction
I Color dots are uniformly distributed in the interval

I Intervals are fragmented by r.v. R with law∼ ν (red dashes)

18



Fragmentation processes
Bertoin "Homogeneous fragmentation processes" PTRF 2001

I A Markov process (Πt; t ≥ 0)with values in the partitions ofN is a
fragmentation process if it is non-increasing...

I ...and exchangeable = invariant by permutations (∃ block
frequencies) + distinct blocks have independent futures.

I Π is homogeneous if for any block B ofΠ(0) and for any bijection
ϕ : B→ N,

(ϕ(Π|B(t)); t ≥ 0)
L
= (Π(t); t ≥ 0).

I ThenΠ|[n] is Markov ∀n
I IfΠ is a binary, homogeneous fragmentation process, it is
characterized by the fragmentation measure ν on (0, 1), where...

I ...each block fragments into two blocks with frequencies dx and
1− dx at rate ν(dx).

I The previous theorem states the one-to-one correspondence :

Sampling-consistent Mbm ⇐⇒ Π|[n] without fragmentation times

19
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The β-splitting model

I The β-splitting model is for β ∈ (−2,∞) : ν(dx) = cxβ(1− x)βdx

I Balance increases with β
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Estimating β

smin vs smin + smax (Aldous 2001) MLE of β (Blum & François 2006)

My favorite evolutionary conundrum : Why β ≈ −1? (No answer here).
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Outline

1. Loss of Phylogenetic Diversity

2. Introducing β

3. Introducing Two Other Parameters : α and η

4. Inference Results
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ALPHA : age/richness index, α ∈ R

Richness = Number of species in clade

I Recall each subclade is associated w/ an interval of width X

I Daughter subclades have widths Xle� = RX and Xright = (1− R)X

I Iteratively split nodes from root to tipsw/ proba prop. to Xα

I Induces a sampling-consistent law on binary, ranked tree shapes
with n labelled leaves.

I Yule tree/Kingman coalescent⇔ β = 0 and α = 1.

I α > 0 : deeper nodes in rich clades (‘phylogenetic redundancy’)

I α < 0 : deeper nodes in poor clades = PD at risk

I See also : Sainudiin & Véber "A Beta-splitting model for evolutionary trees" Royal
Society Open Science 2016
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Self-similar fragmentation processes
Bertoin "Self-similar fragmentation processes" Annales de l’IHP 2002

I Recall the fragmentation process (Π(t); t ≥ 0)with values in the
partitions ofN.

I Πα is self-similar with index α if for any block B ofΠα(0)with
frequency x and for any bijection ϕ : B→ N,

(ϕ(Πα|B(t)); t ≥ 0)
L
= (Πα(xαt); t ≥ 0).

I Homogeneous fragmentation : α = 0.

I Now (Πα|[n]) is not Markov

I But (Π|[n], Rn) is Markov, where Rn is the vector of n-tagged fragments
= frequencies of blocks containing elements of [n]

SC Mbmw/ age-richness index α ⇐⇒ Πα|[n] w/ relative fragmentation times
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ETA : abundance/richness index, η ∈ R
Abundance = Relative abundance in number of individuals of clade

I Each subclade assoc. w/ interval of width X, now also abundance A

I Daughter subclades have widths Xle� = RX and Xright = (1− R)X and

Ale� =
|Xle�|η

|Xle�|η + |Xright|η
A =

Rη

Rη + (1− R)η
A

Aright =
|Xright|η

|Xle�|η + |Xright|η
A =

(1− R)η

Rη + (1− R)η
A

I Induces a sampling-consistent law on binary tree shapes with (n
labelled leaves and) a probability measure on its leaf set.

I η < 1 : higher abundances in small clades

I η = 1 : total clade abundance prop. to richness

I η > 1 : lower abundances in small clades = PD at risk

I Sampling (keeping extant) in prop to abundance
≈ Field of Bullets i� η = 1
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η = −3 η = 0 η = 1 η = 3
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I η = −3, rare species are all in large clades

I η = 0, ‘equal-sharing’ measure (inv. prop. to number of splits)

I η = 1, species have equal abundances on average

I η = 3, the few species in poor clades are rare
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Warning!

The next slide represents 1− S = PD loss...

...as a function of 1− p = fraction of extinct species.

This function is expected to be increasing and convex in the FoBmodel.
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‘Danger zone’ : α < 0, η > 1
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Outline

1. Loss of Phylogenetic Diversity

2. Introducing β

3. Introducing Two Other Parameters : α and η

4. Inference Results
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Inference of α
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Inference of η
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Data
Jetz et al "The global diversity of birds in space and time" Nature 2012

I Phylogenies of≈ 100 clades in the
class Aves (a.k.a. birds)

I Information used for inference :
I Shapes of trees

I Relative positions of nodes (but
not the exact datation estimates)

I Species range relative to sum of all
species ranges.
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Inference from≈ 100 bird clades
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Inference from≈ 100 bird clades
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Conclusion
Maliet, O., Gascuel, F., Lambert, A. (2018) "Ranked tree shapes, non-random extinctions and the loss of
phylogenetic diversity" Systematic Biology (in press)

I New stochastic tree model with 3 parameters, tuning :
I tree shape : β = tree balance
I ranked node depths : α = age-richness index
I abundances at tips : η = abundance-richness index

I Danger zone : β < 0, α < 0, η > 1 = PD at risk

I Implemented in R-package apTreeshape (maintained by M.J. Blum)

I Large bird clades have β ≈ −1, α < 0, η ≈ 1

I Bird clades in danger zone!
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Perspectives
Maliet, O., Gascuel, F., Lambert, A. (2018) "Ranked tree shapes, non-random extinctions and the loss of
phylogenetic diversity" Systematic Biology (in press)

I To extend the fragmentation processΠ to a random fragmentation
triple (Π,W,M) (Jean-Jil Duchamps, work in progress), where :

I W(b) is the fragmentation rate of block b, instead of |b|α

I M(b) is the mass measure of block b, instead of∼ |b|η

I To explain the triple conundrum :

I β ≈ −1 : real trees are imbalanced

I α < 0 : real trees have deeper nodes in smaller clades

I η ≥ 1 : real trees have rarer species in smaller clades, but
η ≈ 1 : not much phylogenetic signal for species’ abundances.

I To confirm the last two findings with more data.
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SMILE : an interdisciplinary group in Paris

SMILE = Stochastic Models for the Inference of Life Evolution
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A positive answer to β ≈ −1?
Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical
Phylogenies" Systematic Biology (2015)

I Birth-death process with
age-dependent birth rate
b = b(a) parameterized by

b(a) = caφ−1

I Estimates of φ lie in (0, 1) :
speciation rate decreases
with age

For φ = 0.6, the reconstructed tree has β ≈ −1.

Q : "Why β ≈ −1?"

— "Because φ ≈ 0.6";-)
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Balance of incomplete trees
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