Multiple-merger coalescents - extended models, inference methods & evidence

F. Freund, (U. Hohenheim)

joint works w.

S. Matuszewski, M. Lapierre, E. Kerdoncuff (SMILE Paris), A.

Lambert(SMILE Paris), J. Jensen (U. Arizona), G. Achaz (SMILE Paris) A. Siri- Jégousse (UNAM Mexico City)

and F. Menardo (Swiss Tropical and Public Health Institute, Basel)

Probabilités et évolution biologique, Luminy, 28.06.2018

What do we want to infer?

Data:

Sample of size n of present-day genetic data (DNA sequences) from a population of a single species

• Can we pinpoint loci under positive selection?

• Can we infer the evolutionary history of the processes?

Data:

Sample of size n of present-day genetic data (DNA sequences) from a population of a single species

- Can we pinpoint loci under positive selection? Search for deviation of data from selectively neutral model (includes ALL other processes affecting genetic diversity)
- Can we infer the evolutionary history of the processes? Model selection between biologically reasonable models

Model the genetic diversity of n DNA SNP sequences

Model the genetic diversity of n DNA SNP sequences

Which evolutionary forces affect the genealogy?

Standard null model: Kingman's *n*-coalescent \mathbb{KM}

- Strictly bifurcating \Leftrightarrow no multiple mergers
- Assumptions (robust to small deviations): Sample from large, randomly mating fixed size population, offspring distributions non-skewed (e.g. offspring/parent has bounded variance), no selection

Which evolutionary forces affect the genealogy?

Standard null model: Kingman's *n*-coalescent \mathbb{KM}

- Strictly bifurcating ⇔ no multiple mergers
- Assumptions (robust to small deviations): Sample from large, randomly mating fixed size population, offspring distributions non-skewed (e.g. offspring/parent has bounded variance), no selection

Preserves bifurcation

- Moderate population size fluctuations (e.g. exponential growth)
- Population structure
- Moderate positive selection (affects locally)
- Seed banks
- (Recombination & HGT)

Which evolutionary forces affect the genealogy?

Standard null model: Kingman's *n*-coalescent \mathbb{KM}

- Strictly bifurcating \Leftrightarrow no multiple mergers
- Assumptions (robust to small deviations): Sample from large, randomly mating fixed size population, offspring distributions non-skewed (e.g. offspring/parent has bounded variance), no selection

Preserves bifurcation

- Moderate population size fluctuations (e.g. exponential growth)
- Population structure
- Moderate positive selection (affects locally)
- Seed banks
- (Recombination & HGT)

May lead to multiple mergers

- Extreme, repeated bottlenecks
- Skewed offspring distributions (Reproduction sweepstakes)
- Rapid selection
- Recurrent selective sweeps

June 28, 2018

4 / 40

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

Random tree: n leaves, random branch lengths. Goes backwards in time.

S0 We have I lineages (n at time 0) present. Only one lineage left: Reached MRCA of the sample

1 2 3 4 5

Random tree: n leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached MRCA of the sample

S1 Prolongue/set each lineage by/to $Exp(\lambda_l)$

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached MRCA of the sample

- S1 Prolongue/set each lineage by/to $Exp(\lambda_l)$
- S2 Add an ancestral lineage which connects $2 \le k \le l$ present lineages chosen randomly, k is chosen with probability $\frac{\lambda_{l,k}}{\sum_k \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_l}$

Exp(\lambda_5)

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached MRCA of the sample

S1 Prolongue/set each lineage by/to $Exp(\lambda_l)$

S2 Add an ancestral lineage which

connects $2 \le k \le l$ present lineages

chosen randomly, k is chosen with

probability
$$\frac{\lambda_{l,k}}{\sum_k \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_l}$$

S3 Return to Step S0

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached

 $\sum_{i=1}^{\infty} \text{IIneage } i$ $\sum_{i=1}^{\infty} \text{Or } i \text{ for a sample}$ $\sum_{i=1}^{\infty} \frac{1}{2} \text{ of the sample}$ $\sum_{i=1}^{\infty} \frac{1}{2} \text{ or a sample}$ connects $2 \le k \le l$ present lineages chosen randomly, *k* is chosen with probability $\frac{\lambda_{l,k}}{\sum_{k} \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_{l}}$

S3 Return to Step S0

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached MRCA of the sample

- S1 Prolongue/set each lineage by/to $Exp(\lambda_l)$
- S2 Add an ancestral lineage which connects $2 \le k \le l$ present lineages chosen randomly, k is chosen with probability $\frac{\lambda_{l,k}}{\sum_k \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_l}$

S3 Return to Step S0

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Reached MRCA of the sample S1 Prolongue/set each lineage by/to $Exp(\lambda_l)$ S2 Add an ancestral lineage which connects $2 \le k \le l$ present lineages chosen randomly, k is chosen with probability $\frac{\lambda_{l,k}}{\sum_{l,k} \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_{l}}$ S3 Return to Step S0

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

S0 We have *l* lineages (*n* at time 0) present. Only one lineage left: Real MRCA of the sample S1 Prolongue/set each lineage by/to $Exp(\lambda_I)$ S2 Add an ancestral lineage which connects $2 \le k \le I$ present lineage chosen randomly, k is chosen with probability $\frac{\lambda_{l,k}}{\sum_k \lambda_{l,k}} = \frac{\lambda_{l,k}}{\lambda_l}$ present. Only one lineage left: Reached connects $2 \le k \le l$ present lineages

chosen randomly, k is chosen with

S3 Return to Step S0

 $\lambda_{n,k} = \int x^k (1-x)^{n-k} x^{-2} \Lambda(dx)$, Λ finite measure on [0,1] Beta-*n*-coalescents BETA $\Lambda = \mathcal{B}(2 - \alpha, \alpha), 1 \leq \alpha \leq 2$ Dirac-*n*-coalescents $\mathbb{DIRAC} \Lambda = \delta_p$ (point mass in $p \in (0, 1]$)

Random tree: *n* leaves, random branch lengths. Goes backwards in time.

Some models with Λ -*n*-coalescent genealogy (Population size $N \rightarrow \infty$)

- BSZ (w. +1 to all external branch lengths): Clonal interference of equal-effect mutations [DWF13],[Sch17]
- BSZ: Fixed-size population with increasing fitness given by a travelling wave, e.g. [BBS13],[BD13], [NH13]
- BETA: Random sampling from a supercritical Galton-Watson process (offspring distribution heavy-tailed) [Sch03]
- DIRAC: Modified Moran models ("lucky" individual produces 2 or U offspring) with fixed U = ΨN [EW06]
- Recurring extinction-recolonisation pattern (as # demes $\rightarrow \infty)$ [TV09]

Any A-n-coalescent: limit genealogy of a family of modified Moran models (for $N \to \infty$) [HM13]

イロト 不得下 イヨト イヨト 二日

Adding exponential growth to multiple mergers

from [MHAJ17]

$$\label{eq:eldon-Wakeley model} \begin{split} & \mathsf{Eldon-Wakeley model} + \mathsf{exponential growth} \end{split}$$

- Population size back k generations: $N_k = \lfloor (1 \frac{\Psi^2}{N^{\gamma}})^k \rfloor$
- Large N: $U_{N_k} = N_k \Psi 1_{\{BIG\}} + 2 \cdot 1_{\{small\}},$ $P(BIG) = 1 - P(small) = N_k^{-\gamma},$ $\Psi \in (0, 1)$

For $N \to \infty$, $\gamma \in (0, 2)$: Genealogy converges to a time-changed Dirac-*n*-coalescent $(\Pi_{\mathcal{G}_t})_{t \ge 0}$ w. $\Lambda = \delta_{\Psi}$ and $\mathcal{G}_t = (\rho \gamma)^{-1} (e^{\rho \gamma t} - 1)$ if one scales time in the discrete models by c_N^{-1} w. $c_N = P_N(1, 2 \text{ share parent})$ from the fixed model.

イロト 不得下 イヨト イヨト 二日

• For the modified Moran models with changing pop. sizes, we want to lump # generations given by the pseudo-inverse $\mathcal{G}_N^{-1}(t)$ of $\sum_{r=1}^{[s]} c_{N,r}$, $c_{N,r} = P(1,2 \text{ have same parent})$ to end up at coalescent time t

- For the modified Moran models with changing pop. sizes, we want to lump # generations given by the pseudo-inverse $\mathcal{G}_N^{-1}(t)$ of $\sum_{r=1}^{[s]} c_{N,r}$, $c_{N,r} = P(1,2$ have same parent) to end up at coalescent time t
- Check that on this scale, the population changes moderately $(\sup c_{N,r} \to 0, \inf N_r \to \infty)$ the transition

- For the modified Moran models with changing pop. sizes, we want to lump # generations given by the pseudo-inverse $\mathcal{G}_N^{-1}(t)$ of $\sum_{r=1}^{[s]} c_{N,r}$, $c_{N,r} = P(1,2 \text{ have same parent})$ to end up at coalescent time t
- Check that on this scale, the population changes moderately $(\sup c_{N,r} \to 0, \inf N_r \to \infty)$ the transition
- Convergence of the time-scaled discrete models follows if

$$\lim_{N\to\infty}\sum_{r=1}^{\mathcal{G}_N^{-1}(t)}\Phi_l^{(N)}(r;a_1,\ldots,a_l)<\infty$$

 $\Phi_l^{(N)}(r; a_1, \ldots, a_l) = P_{\text{gen -r}, \sum_i a_i \text{ ind.}}((a_i \text{ ind. common parent})_i)$. If it has the form $q_{a_1, \ldots, a_l} t$, the limit is a time-homogeneous Markov process with rates q.

イロト 不得下 イヨト イヨト 二日

- For the modified Moran models with changing pop. sizes, we want to lump # generations given by the pseudo-inverse $\mathcal{G}_N^{-1}(t)$ of $\sum_{r=1}^{[s]} c_{N,r}$, $c_{N,r} = P(1,2 \text{ have same parent})$ to end up at coalescent time t
- Check that on this scale, the population changes moderately $(\sup c_{N,r} \to 0, \inf N_r \to \infty)$ the transition
- Convergence of the time-scaled discrete models follows if

$$\lim_{N\to\infty}\sum_{r=1}^{\mathcal{G}_N^{-1}(t)}\Phi_l^{(N)}(r;a_1,\ldots,a_l)<\infty$$

 $\Phi_l^{(N)}(r; a_1, \ldots, a_l) = P_{\text{gen -r}, \sum_i a_i \text{ ind.}}((a_i \text{ ind. common parent})_i)$. If it has the form $q_{a_1, \ldots, a_l} t$, the limit is a time-homogeneous Markov process with rates q.

For the modified Dirac coalescents, one gets the only non-zero limit $\lim_{N\to\infty}\sum_{r=1}^{\mathcal{G}_N^{-1}(t)}\Phi_l^{(N)}(r;a_1,\ldots,a_l)=\Psi^{k-2}t=\int x^{k-2}(1-x)^0\delta_{\Psi}(dx)$ for l=1 and $a_1 \geq 2$.

- For the modified Moran models with changing pop. sizes, we want to lump # generations given by the pseudo-inverse $\mathcal{G}_N^{-1}(t)$ of $\sum_{r=1}^{[s]} c_{N,r}$, $c_{N,r} = P(1,2 \text{ have same parent})$ to end up at coalescent time t
- Check that on this scale, the population changes moderately $(\sup c_{N,r} \to 0, \inf N_r \to \infty)$ the transition
- Convergence of the time-scaled discrete models follows if

$$\lim_{N\to\infty}\sum_{r=1}^{\mathcal{G}_N^{-1}(t)}\Phi_l^{(N)}(r;a_1,\ldots,a_l)<\infty$$

 $\Phi_l^{(N)}(r; a_1, \ldots, a_l) = P_{\text{gen -r}, \sum_i a_i \text{ ind.}}((a_i \text{ ind. common parent})_i)$. If it has the form $q_{a_1, \ldots, a_l} t$, the limit is a time-homogeneous Markov process with rates q.

For the modified Dirac coalescents, one gets the only non-zero limit $\lim_{N\to\infty}\sum_{r=1}^{\mathcal{G}_N^{-1}(t)}\Phi_I^{(N)}(r;a_1,\ldots,a_l)=\Psi^{k-2}t=\int x^{k-2}(1-x)^0\delta_{\Psi}(dx)$ for l=1 and $a_1 \geq 2$. In the end scale with c_N , $\lim_{N\to\infty}c_N\mathcal{G}_N^{-1}(t)=\mathcal{G}(t)$

Works for other modified Moran models, too

w. S. Matuszewski, M. Lapierre, E. Kerdoncuff, A. Lambert, J. Jensen, G. Achaz, in prep.

- [HM13]: The fixed-size modified Moran model w. $P(U_N = j) = {N \choose j} \frac{B(j-\alpha,\alpha+N-j)}{B(2-\alpha,\alpha)}, j \ge 2$, has a Beta $(2 - \alpha, \alpha)$ -*n*-coalescent genealogy for $N \to \infty$
- Analogously, adding exponential growth $(N_k \sim N(1 \frac{\rho}{N^{\alpha}})^k)$ leads to a time-changed Beta coalescent genealogy, scaling with c_N^{-1} from the fixed N model
- [Sch03] (Fixed N): Each individual produces independent X_i offspring (heavy-tailed, P(X_i ≥ k) ~ Ck^{-α}). Next gen. randomly sampled from these.
- Adding exponential growth $N_k \sim N \left(1 \frac{\rho}{N^{\alpha-1}}\right)^r$ again leads to a time-changed Beta $(2 \alpha, \alpha)$ -*n*-coalescent $(\Pi_{\mathcal{G}_t})_{t \geq 0}$ with $\mathcal{G}_t = c^{-1}(e^{ct} 1)$ for a constant c

イロン 不通 と イヨン イヨン

$\mathsf{Genealogy} \ \mathsf{models} \leftrightarrow \mathsf{species}$

Species with non-skewed offspring distribution: Mammals, most plants,...

pictures from Wikimedia commons (users Tkgd2007,MrFrosty2)

Should lead to a bifurcating genealogy of (short) neutral loci $(\mathbb{KM},+\text{growth},+\text{pop. struct.})$. *Do they?*

$\mathsf{Genealogy} \ \mathsf{models} \leftrightarrow \mathsf{species}$

Reproduction sweepstakes (BETA):

Japanese sardine [NNY16]

Atlantic cod [ÁH14]

copy numbers in cancer cells [KVS⁺17]

Candidate populations for rapid selection ($\Lambda = U_{[0,1]}$):

B-cells under HIV [NOL+18]

HIV [ZBT+15]

SeaFIC; H. Hillewaert; Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014".

WikiJournal of Medicine 1 (2); CDC/ C. Goldsmith, P. Feorino, E. L. Palmer, W. R. McManus June 28, 2018 11 / 40 Usually, we would be interested in inferring the true (best-fitting) genealogy model, while we treat θ as a nuisance parameter

Inference approaches

- (Nearly) Full likelihood on SNP data (MCMC-based for moderate n) [SBB13],[BG00],[KJS15]...
 Slow, does not scale well w. large data sets
- Based on the site-frequency spectrum (SFS) $\xi_i^{(n)} := \#$ SNPs with derived allele frequency $\frac{i}{n}$, $i \in [n-1]$ Quicker, but needs approximations and/or simulations

A (10) A (10)

SFS-based inference between *n*-coalescents

Pseudo-likelihood approach [EBBF15], $s = \sum_i \eta_i$ Base approximate LRT on $PsL(\xi_i^{(n)} = k_i, i \in [n-1])$ $= \frac{s!}{k_1!\cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{E(\xi_i^{(n)})}{E(\sum_{i=1}^n \xi_i^{(n)})} \right)^{k_i}$ Assumptions: fixed-*s*, $\frac{\xi_{i}^{(n)}}{\sum_{i=1}^{n} \xi_{i}^{(n)}} \approx \frac{E(\xi_{i}^{(n)})}{E(\sum_{i=1}^{n} \xi_{i}^{(n)})}$ $E(\xi_i^{(n)})$ can be computed analytically [SKS16], [PK03] Multiple loci: Add up SFS

SFS-based inference between *n*-coalescents

Pseudo-likelihood approach [EBBF15], $s = \sum_{i} \eta_i$

Base approximate LRT on $PsL(\xi_i^{(n)} = k_i, i \in [n-1])$ $= \frac{s!}{k_1! \cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{E(\xi_i^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})} \right)^{k_i}$

Assumptions:

fixed-*s*,
$$\frac{\xi_i^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}} \approx \frac{E(\xi_i^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})}$$

 $E(\xi_i^{(n)})$ can be computed analytically [SKS16],[PK03] Multiple loci: Add up SFS Monte Carlo Likelihood approach [Kos17] Perform approximate LRT for

 $\left(\frac{\xi_1^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}}, \frac{\sum_{i=k}^{n-1} \xi_i^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}}\right),$

estimating the two-dimensional kernel density via simulation

Multiple loci: Use average over loci for LRT, estimate density of average

For distinguishing coalescent models, both methods are very robust if models tested misspecify θ

SFS-based inference between *n*-coalescents

Pseudo-likelihood approach [EBBF15], $s = \sum_{i} \eta_i$

Base approximate LRT on $PsL(\xi_i^{(n)} = k_i, i \in [n-1])$ $= \frac{s!}{k_1! \cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{E(\xi_i^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})} \right)^{k_i}$

Assumptions:

fixed-*s*,
$$\frac{\xi_i^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}} \approx \frac{E(\xi_i^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})}$$

 $E(\xi_i^{(n)})$ can be computed analytically [SKS16],[PK03] Multiple loci: Add up SFS Monte Carlo Likelihood approach [Kos17] Perform approximate LRT for

 $\left(\frac{\xi_1^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}}, \frac{\sum_{i=k}^{n-1} \xi_i^{(n)}}{\sum_{j=1}^n \xi_j^{(n)}}\right),$

estimating the two-dimensional kernel density via simulation

Multiple loci: Use average over loci for LRT, estimate density of average

For distinguishing coalescent models, both methods are very robust if models tested misspecify θ

[Kos17] Using KDE is superior, more loci is better

 H_0 : KM w. exp. growth, $g \in [0, 1000]$, +.1 near 0, +10 for $g \ge 40$ H_1 : Beta $(2 - \alpha, \alpha)$ -*n*-coalescent, $\alpha \in \{1, 1.025, \dots, 2\}$

Freely recomb. loci in MMC are not ind. (though unlinked) [BBE13]. [Kos17]'s coalescent model accounts for this (PP-construction of Λ -*n*-coal.: Given PPP, each locus uses it independently to construct its tree)

[Kos17] Using KDE is superior, more loci is better

 H_0 : KM w. exp. growth, $g \in [0, 1000]$, +.1 near 0, +10 for $g \ge 40$ H_1 : Beta $(2 - \alpha, \alpha)$ -*n*-coalescent, $\alpha \in \{1, 1.025, \dots, 2\}$

Freely recomb. loci in MMC are not ind. (though unlinked) [BBE13]. [Kos17]'s coalescent model accounts for this (PP-construction of Λ -*n*-coal.: Given PPP, each locus uses it independently to construct its tree)

U-shaped SFS vs. genealogy models

 Collection of U/J-shaped SFS from G. Achaz' group in a diverse set of species: pill-bug, E. coli, Helicobacter pylori, cuttlefish, A. thaliana, shark,Drosophila melanogaster, humans... (18 ≤ n ≤ 1214)

Caenorhabditis elegans

(日) (同) (三) (三)

Glyphis garricki

(Graphs by R. Clodion)

- Plots of E(nSFS): expected scaled SFS $\tilde{\xi}_i := \frac{\xi_i^n}{\sum_i \xi_i^{(n)}}$
- [Lap17] Possible contributions to U/J-shape: Confusing derived and ancestral alleles (misidentification, MI), selection, demography, biased gene conversion, multiple-merger,...

E(nSFS) corrected for *MI*, fit to \mathbb{BETA} +exp. g.

- [Lap17] Correct E(nSFS) for MI: Via outgroup, estimate MI prob. x, use ((1 − x̂)ξ̃_i − x̂ξ̃_{n−i})/(1 − 2x̂)
- [Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with exp. growth/decline) can match (*MI*-corrected) E(nSFS) rather well

June 28, 2018 16 / 40
- [Lap17] Correct E(nSFS) for MI: Via outgroup, estimate MI prob. x, use ((1 − x̂)ξ̃_i − x̂ξ̃_{n−i})/(1 − 2x̂)
- [Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with exp. growth/decline) can match (*MI*-corrected) E(nSFS) rather well
- Is the fit close enough? How close is an observed genome-wide SFS to the E(SFS) of the true model (# loci and dependence)? To better asses model fit: Estimate likelihood surface vs. PsL or MCL approach

・ロト ・ 同ト ・ ヨト ・ ヨト - -

- [Lap17] Correct E(nSFS) for MI: Via outgroup, estimate MI prob. x, use ((1 − x̂)ξ̃_i − x̂ξ̃_{n−i})/(1 − 2x̂)
- [Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with exp. growth/decline) can match (*MI*-corrected) E(nSFS) rather well
- Is the fit close enough? How close is an observed genome-wide SFS to the E(SFS) of the true model (# loci and dependence)? To better asses model fit: Estimate likelihood surface vs. PsL or MCL approach
- Can be easily adjusted to assess misidentification:

$$PsL((\xi_i^{(n)} = k_i)_i) = \frac{s!}{k_1! \cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{E(\xi_i^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})} \right)^{k_i}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [Lap17] Correct E(nSFS) for MI: Via outgroup, estimate MI prob. x, use ((1 − x̂)ξ̃_i − x̂ξ̃_{n−i})/(1 − 2x̂)
- [Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with exp. growth/decline) can match (*MI*-corrected) E(nSFS) rather well
- Is the fit close enough? How close is an observed genome-wide SFS to the E(SFS) of the true model (# loci and dependence)? To better asses model fit: Estimate likelihood surface vs. PsL or MCL approach
- Can be easily adjusted to assess misidentification:

$$PsL((\xi_i^{(n)} = k_i)_i) = \frac{s!}{k_1! \cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{(1-x)E(\xi_i^{(n)}) + xE(\xi_{n-i}^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})} \right)^{k_i}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [Lap17] Correct E(nSFS) for MI: Via outgroup, estimate MI prob. x, use ((1 − x̂)ξ̃_i − x̂ξ̃_{n−i})/(1 − 2x̂)
- [Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with exp. growth/decline) can match (*MI*-corrected) E(nSFS) rather well
- Is the fit close enough? How close is an observed genome-wide SFS to the E(SFS) of the true model (# loci and dependence)? To better asses model fit: Estimate likelihood surface vs. PsL or MCL approach
- Can be easily adjusted to assess misidentification:

$$PsL((\xi_i^{(n)} = k_i)_i) = \frac{s!}{k_1! \cdots k_{n-1}!} \prod_{i=1}^{n-1} \left(\frac{(1-x)E(\xi_i^{(n)}) + xE(\xi_{n-i}^{(n)})}{E(\sum_{j=1}^n \xi_j^{(n)})} \right)^{k_i}$$

w. S. Matuszewski, M. Lapierre, E. Kerdoncuff, A. Lambert, J. Jensen, G. Achaz

Inference using few loci: Use more statistics? w. A. Siri-Jégousse

- SFS-based inference for few (1) loci is very noisy
- [KVS⁺17] report very low misclassification probabilities in an ABC approach for (essentially) \mathbb{BETA} +exp. growth vs. \mathbb{KM} + exp. growth if additional statistics are used
 - Number of segregating sites
 - Quantiles .1,.3,.5,.7,.9 of allele frequencies
 - Quantiles .1,.3,.5,.7,.9 of pairwise Hamming distances (mismatch count)
 - Quantiles .1,.3,.5,.7,.9 of LD measured as squared correlation r² between SNP allele frequencies
 - Quantiles .1,.3,.5,.7,.9 of total branch length of reconstructed phylogeny (e.g. neighbor-joining tree)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inference using few loci: Use more statistics? w. A. Siri-Jégousse

- SFS-based inference for few (1) loci is very noisy
- [KVS⁺17] report very low misclassification probabilities in an ABC approach for (essentially) \mathbb{BETA} +exp. growth vs. \mathbb{KM} + exp. growth if additional statistics are used
 - Number of segregating sites
 - Quantiles .1,.3,.5,.7,.9 of allele frequencies
 - Quantiles .1,.3,.5,.7,.9 of pairwise Hamming distances (mismatch count)
 - Quantiles .1,.3,.5,.7,.9 of LD measured as squared correlation r² between SNP allele frequencies
 - Quantiles .1,.3,.5,.7,.9 of total branch length of reconstructed phylogeny (e.g. neighbor-joining tree)
- Partly, low misclassification rates stem from models using identitical θ ranges (which can lead to stark differences in # segregating sites)
- If we compare models with comparable # segregating sites, do we see the same effect? Which statistics help to distinguish?

We also add a further statistic

 O_n(i) :=# individuals sharing all non-private mutations of i Smallest family of i which can be genetically distinguished

 $O_n(2) = 5$

June 28, 2018 18 / 40

We also add a further statistic

O_n(2)=5

 O_n observable from sequence data if ancestral base calls are known

- O_n(i) :=# individuals sharing all non-private mutations of i Smallest family of i which can be genetically distinguished
- ⇔ # descendants of the youngest ancestor of *i* with a mutation on the branch above it

We also add a further statistic

 $O_n(2) = 5$

 O_n observable from sequence data if ancestral base calls are known

- O_n(i) :=# individuals sharing all non-private mutations of i Smallest family of i which can be genetically distinguished
- ⇔ # descendants of the youngest ancestor of *i* with a mutation on the branch above it
- Use quantiles .1,.3,.5,.7,.9, the harmonic mean, sample mean and s.d.

Model selection via ABC with random forests

Using many test statistics: Curse of dimension, added noise

Random forest-based ABC [PME⁺15]

 Build decision trees (CART) using bootstrap samples of simulated stats *S* (w. prior) to sort the latter into bins *P_i* from the same model.
 For each tree, sort *S_{obs}* to *P_i*

Randomised CART

At node, take stat from random subset w. minimal misclassification (Gini index)

- Misclassification measure: Out-of-the-bag error
- Model selection a) % trees: $S_{obs} \rightarrow \text{model } M \text{ b}$ Posterior probability
- Importance of stat S_i: Decrease in misclassification by all nodes of S_i, averaged over RF

Which statistics distinguish genealogy models?

 $\begin{array}{l} {\it M1}: \mathbb{KM} + \exp. \ {\it growth}, \ {\it g} \in \{0,.5,1,2.5,4,7,10,25,50,75,100,500,1000\} \\ {\it M2}: \mathbb{BETA}, \ \alpha \in \{1,1.1,\ldots,2\} \end{array}$

n = 100, $\theta = 2s/E$ (total coalescent length) for $s \in \{15, 20, 30, 40, 60, 75\}$, 175K sims/model (1x replicated), flat prior

Statistics: O_n , allele frequencies (SFS,fSFS), Hamming distances, r^2 , phylogenetic branch lengths, nucleotide diversity π , # mutations S

Stats	% \mathbb{BETA} misclassified	$\%~{ m KM+growth}$ misclassified
All	16.9/16.8 %	23.2/23.3 %
No On	18.2/18.2 %	26.2/26.2 %
No <i>r</i> ², phylo	17.2/17 %	23.3/23.5 %
ΑF, <i>π</i> , <i>S</i>	21.9/22.1 %	33.9/34.1 %
SFS, π, <i>S</i>	19.1/19.2 %	30.7/30.4 %
$+ O_n$, Hamming	17.7/17.6 %	23.8/23.6 %
fSFS, π, <i>S</i>	23.2/23.2 %	33/33.2 %
+ Hamming	19.8/20 %	27.6/27.5 %
$+ r^2$, phylo	19/19 %	 26.6/26.7.% ≡ ∽ac

June 28, 2018

Importance of statistics (full set)

oc_hm					0	
AF_qu0.9		0				
oc_0.3		0				
S		o				
oc_mean		0				
nucdiv		0				
oc_sd	0					
oc_0.5	0					
r2.90.	o					
oc_0.7			0			
hammd_qu0.9	0					
oc_0.9	O					
r2.70.	o					
oc_0.1	o					
AF_qu0.7	0					
r2.50.	0					
r2.30.	o					
AF_qu0.3	0					
AF_qu0.5	0					
r2.10.		0				
		1	1	1	1	
	0	1000	2000	3000	4000	
measured by av	-	crease in G	ini index ove	er nodes of	the statistic in	

the trees of the RF

Image: A match a ma

Why is the harmonic mean of $(O_n(i))_{i \in [n]}$ distinguishing well?

- $M_n(i)$: smallest family of i, # descendants of the most recent ancestor of i
- $M_n(i) \leq O_n(i)$, equality for $\theta \to \infty$
- *M_n(i)* tends to be bigger for MMC than for KM [BF05], [FSJ14], [SJY16]
- $M_n(i)$'s law not changed if we make a time-change (to model pop.size changes)

June 28, 2018

22 / 40

Mathematical properties of O_n

n-coalescents: Processes in the partitions of $\{1, ..., n\}$ At time *t*: partition blocks = offspring of ancestral lines at *t*

$$O_n(2) = 5$$

• $O_n(i) := B_i^{(n)}(E_n(i) + T_n(i))$, where

- B_i⁽ⁿ⁾(t) is the size of the block containing i at time t
- *E_n(i)* is the waiting time for the first merger of {*i*}
- *T_n(i)* is the waiting time for the first mutation affecting *i* after the first merger
- $T_n(i)$ is independent of $B_i^{(n)}$, $E_n(i)$

Mathematical properties of O_n

n-coalescents: Processes in the partitions of $\{1, ..., n\}$ At time *t*: partition blocks = offspring of ancestral lines at *t*

C

•
$$O_n(i) := B_i^{(n)}(E_n(i) + T_n(i))$$
, where

- B_i⁽ⁿ⁾(t) is the size of the block containing i at time t
- ► E_n(i) is the waiting time for the first merger of {i}
- *T_n(i)* is the waiting time for the first mutation affecting *i* after the first merger
- $T_n(i)$ is independent of $B_i^{(n)}$, $E_n(i)$

• Exchangeability: $O_n(1) \stackrel{d}{=} O_n(i)$

 $O_n(2) = 5$

Mathematical properties of O_n

n-coalescents: Processes in the partitions of $\{1, ..., n\}$ At time *t*: partition blocks = offspring of ancestral lines at *t*

 $O_n(2) = 5$

• $O_n(i) := B_i^{(n)}(E_n(i) + T_n(i))$, where

- B_i⁽ⁿ⁾(t) is the size of the block containing i at time t
- ► E_n(i) is the waiting time for the first merger of {i}
- *T_n(i)* is the waiting time for the first mutation affecting *i* after the first merger
- $T_n(i)$ is independent of $B_i^{(n)}$, $E_n(i)$
- Exchangeability: $O_n(1) \stackrel{d}{=} O_n(i)$
- All moments of $O_n(1)$ can be computed recursively for any Λ -*n*-coalescent

イロト 不得下 イヨト イヨト

Asymptotics of $O_n(i)$ for BETA, $n \to \infty$

 $O_n(1) := B_1^{(n)}(E_n(1) + T_n(1)) \ \mu_{-1} = \infty$, dust-free for Λ -coalescents

•
$$f_1(t) := \lim_{n \to \infty} n^{-1} B_1(t)$$

•
$$\lim_{n\to\infty} n^{-1}O_n(1) = f_1(T(1))$$

▲ @ ▶ < ∃ ▶</p>

June 28, 2018

24 / 40

- B₁⁽ⁿ⁾(t): size of block of 1 at time t
- $E_n(1)$: waiting time for first merger of $\{1\}$
- T_n(1): waiting time for first mutation affecting 1 after E_n(1)
- $T_n(1)$: independent of $B_1^{(n)}$, $E_n(1)$

$$egin{aligned} & E_n(1) \stackrel{d}{ o} Exp(\mu_{-1}), \ n o \infty \ & T_n(1) \stackrel{d}{=} Exp(heta/2) \end{aligned}$$

Asymptotics of $O_n(i)$ for BETA, $n \to \infty$

 $O_n(1) := B_1^{(n)}(E_n(1) + T_n(1)) \quad \mu_{-1} = \infty$, dust-free for Λ -coalescents

- B₁⁽ⁿ⁾(t): size of block of 1 at time t
- $E_n(1)$: waiting time for first merger of $\{1\}$
- *T_n*(1): waiting time for first mutation affecting 1 after *E_n*(1)
- $T_n(1)$: independent of $B_1^{(n)}$, $E_n(1)$

$$egin{aligned} & E_n(1) \stackrel{d}{ o} Exp(\mu_{-1}), \ n o \infty \ & T_n(1) \stackrel{d}{=} Exp(heta/2) \end{aligned}$$

- $f_1(t) := \lim_{n \to \infty} n^{-1} B_1(t)$
- $\lim_{n\to\infty} n^{-1}O_n(1) = f_1(T(1))$
- All moments of *f*₁(*t*) known from [Pit99, Prop 29]
- $E[(f_1(T(1)))^k] = 1 \sum_{r=2}^{k+1} a_{k,r} \frac{\theta/2}{\lambda_r + \theta/2}$, where λ_r is the total rate of the Λ -coalescent in a state with r blocks and $a_{k,r}$ is a rational function of $\lambda_2, \ldots, \lambda_k$.

< ロ > < 同 > < 三 > < 三

•
$$E[f_1(T(1))] = \frac{\Lambda([0,1])}{\Lambda([0,1]) + \theta/2}$$

Asymptotics of $O_n(i)$ for BETA, $n \to \infty$

 $O_n(1) := B_1^{(n)}(E_n(1) + T_n(1)) \quad \mu_{-1} = \infty$, dust-free for Λ -coalescents

- B₁⁽ⁿ⁾(t): size of block of 1 at time t
- $E_n(1)$: waiting time for first merger of $\{1\}$
- T_n(1): waiting time for first mutation affecting 1 after E_n(1)
- $T_n(1)$: independent of $B_1^{(n)}$, $E_n(1)$

$$egin{aligned} & E_n(1) \stackrel{d}{ o} Exp(\mu_{-1}), \ n o \infty \ & T_n(1) \stackrel{d}{=} Exp(heta/2) \end{aligned}$$

- $f_1(t) := \lim_{n \to \infty} n^{-1} B_1(t)$
- $\lim_{n\to\infty} n^{-1}O_n(1) = f_1(T(1))$
- All moments of *f*₁(*t*) known from [Pit99, Prop 29]
- $E[(f_1(T(1)))^k] = 1 \sum_{r=2}^{k+1} a_{k,r} \frac{\theta/2}{\lambda_r + \theta/2}$, where λ_r is the total rate of the Λ -coalescent in a state with r blocks and $a_{k,r}$ is a rational function of $\lambda_2, \ldots, \lambda_k$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$E[f_1(T(1))] = \frac{\Lambda([0,1])}{\Lambda([0,1]) + \theta/2}$$

•
$$\mathbb{BSZ}$$
 $f_1(T(1)) \stackrel{d}{=} Beta\left(\frac{1}{1+\frac{\theta}{2}}, \frac{\frac{\theta}{2}}{1+\frac{\theta}{2}}\right)$

June 28, 2018

25 / 40

• Bacterial agent of tuberculosis, haploid

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus
- Data sequenced with high coverage, mutations can be well-polarized (phylogeny very clear ⇒ practically no misorientation [Lap17])

June 28, 2018

25 / 40

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus
- Data sequenced with high coverage, mutations can be well-polarized (phylogeny very clear ⇒ practically no misorientation [Lap17])
- Could be under strong selection pressure $\Rightarrow \mathbb{BSZ}$ genealogy ($\mathbb{BSZ} + 1$ also tested, fits clearly worse that other models)

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus
- Data sequenced with high coverage, mutations can be well-polarized (phylogeny very clear ⇒ practically no misorientation [Lap17])
- Could be under strong selection pressure $\Rightarrow \mathbb{BSZ}$ genealogy ($\mathbb{BSZ} + 1$ also tested, fits clearly worse that other models)

June 28, 2018

25 / 40

• Reproduction also potentially skewed* $\Rightarrow \mathbb{BETA},$ other multiple-merger coalescents

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus
- Data sequenced with high coverage, mutations can be well-polarized (phylogeny very clear ⇒ practically no misorientation [Lap17])
- Could be under strong selection pressure $\Rightarrow \mathbb{BSZ}$ genealogy ($\mathbb{BSZ} + 1$ also tested, fits clearly worse that other models)
- Reproduction also potentially skewed* $\Rightarrow \mathbb{BETA},$ other multiple-merger coalescents
- We use data sets from outbreaks and local samples to control population structure

- Bacterial agent of tuberculosis, haploid
- Clonal reproduction (gen.≈ 15-20 h), rather small 4 Mb genome, very few recombination events ⇒ treated as a single locus
- Data sequenced with high coverage, mutations can be well-polarized (phylogeny very clear ⇒ practically no misorientation [Lap17])
- Could be under strong selection pressure $\Rightarrow \mathbb{BSZ}$ genealogy ($\mathbb{BSZ} + 1$ also tested, fits clearly worse that other models)
- Reproduction also potentially skewed* $\Rightarrow \mathbb{BETA},$ other multiple-merger coalescents
- We use data sets from outbreaks and local samples to control population structure
- Genealogy model (usually) proposed in the literature: Kingman's *n*-coalescent with exponential growth

ABC with random forest approach w. F. Menardo, in prep.

Models

```
\begin{array}{l} \mathbb{KM} + \exp. \ \text{growth, } g \in \{0, \dots, 5000\}, \{0, \dots, 20000\} \\ \mathbb{BETA} \ \alpha \in \{1, 1.025, \dots, 1.975, 0.\} \\ \mathbb{DIRAC} \ \Psi \in \{0.025, 0.05, \dots, 0.975\} \end{array}
```

Setup

- $\theta \in [\hat{\theta}_w/5, 5\hat{\theta}_w]$
- Sequential ABC (2x) to fit growth range
- ABC w. RF can also be used for parameter estimation
- $\bullet\,$ Many mutations, large samples: Misclassification $\leq 5\%$

PROBLEM: We treat the sequences as sampled at the same time!

A (10) N (10)

ABC with random forest results w. F. Menardo, in prep.

sample	п	Sobs	best model	.1/.9 quant.	
			(post. prob.)	posterior $\pmb{g}, lpha$	
(Inuit, '11,'13	147	454	$\mathbb{BETA}(1)$	1.2/1.425	
Hamburg, 99-'10	61	74	BETA (.96)	1.075/1.35	
Argentinia 96-'09	248	497	BETA (.998)	1.1/1.3	
subset '01-'05	137	312	BETA (.95)	1.125/1.35	
subsubset '01-'03	91	205	BETA (.98)	1.075/1.375	
Ethiopia '06-'10	21	1334	BETA (.78)	1.3/1.725	
East Europe/Russia	176	1164	$\mathbb{KM} + exp$ (0.98)	(1535, 3629)	
data from [LRP+15],[RDK+13],[EMR+15],[CHK+15],[SKM+17]					
$([SBJ^+16], Uganda: not completely analysed, but subsets fit better to$					
$\mathbb{KM} + exp)$					
D 1 4					

Different sampling times, but we assume an ultrametric tree

ABC with random forest results w. F. Menardo, in prep.

sample	п	Sobs	best model	.1/.9 quant.	
			(post. prob.)	posterior ${\it g}, lpha$	
(Inuit, '11,'13	147	454	BETA (1)	1.025/1.25)	
Hamburg, 99-'10	61	74	BETA (. <mark>98</mark>)	1/1.4	
Argentinia 96-'09	248	497	BETA (. <mark>95</mark>)	1/1.225	
subset '01-'05	137	312	BETA (.9)	1.025/1.3	
subsubset '01-'03	91	205	BETA (. <mark>95</mark>)	1.025/1.3	
Ethiopia '06-'10	21	1334	BETA (.77)	1.175/1.8	
East Europe/Russia	176	1164	$\mathbb{KM} + exp$ (1)	(2536, 4867)	
data from [LRP+15],[RDK+13],[EMR+15],[CHK+15],[SKM+17]					
([SBJ ⁺ 16], Uganda: not completely analysed, but subsets fit better to					
$\mathbb{KM} + exp)$					

Different sampling times, but we assume an ultrametric tree

Method is rather robust \Rightarrow Leave out all private mutations: $\leq 6\%$ misclassification, same results for classification

Posterior predictive checks

・ロト ・回ト ・ヨト э June 28, 2018

28 / 40

Multiple mergers vs. Mycobacterium tuberculosis

Still many questions!

- Magnitude of bias on non-singleton mutations by assuming equal sampling times?
- Account for different sampling times by modifying the coalescent trees as suggested in [HP18]?
- Better fitting model: **BETA**+growth? Others?

Image: A match a ma

Multiple mergers vs. Mycobacterium tuberculosis

Still many questions!

- Magnitude of bias on non-singleton mutations by assuming equal sampling times?
- Account for different sampling times by modifying the coalescent trees as suggested in [HP18]?
- Better fitting model: BETA+growth? Others?
- For the majority (2/3) of data sets analysed, BETA reasonable alternative null model. What is a reasonable reproduction model underlying it?
- BSZ: Some doubt (or noise), signal has to be clarified (more simulations, adjusted BSZ?)
- Nearly all sets fit clearly to conceptually very different models: biological reasons?

• • • • • • • • • • • •

Thanks for the attention!

Any questions?

June 28, 2018 30 / 40

Bibliography I

[ÁH14] Einar Árnason and Katrín Halldórsdóttir. Nucleotide variation and balancing selection at the ckma gene in atlantic cod: Analysis with multiple merger coalescent models. *PeerJ PrePrints*, 2, 2014.

- [BBE13] Matthias Birkner, Jochen Blath, and Bjarki Eldon. An ancestral recombination graph for diploid populations with skewed offspring distribution. *Genetics*, 193(1):255–290, 2013.
- [BBS13] Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg. The genealogy of branching brownian motion with absorption. *The Annals of Probability*, 41(2):527–618, 2013.
 - [BD13] Éric Brunet and Bernard Derrida. Genealogies in simple models of evolution. Journal of Statistical Mechanics: Theory and Experiment, 2013(01):P01006, 2013.

ホット 人間マ 人間マ 人口マ

Bibliography II

- [BF05] Michael G. B. Blum and Olivier François. Minimal clade size and external branch length under the neutral coalescent. Adv. in Appl. Probab., 37(3):647–662, 06 2005.
- [BG00] M Bahlo and RC Griffiths. Inference from gene trees in a subdivided population. *Theoretical population biology*, 57(2):79–95, 2000.
- [CHK⁺15] Iñaki Comas, Elena Hailu, Teklu Kiros, Shiferaw Bekele, Wondale Mekonnen, Balako Gumi, Rea Tschopp, Gobena Ameni, R Glyn Hewinson, Brian D Robertson, et al. Population genomics of mycobacterium tuberculosis in ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-saharan africa. *Current Biology*, 25(24):3260–3266, 2015.
 - [DWF13] Michael M Desai, Aleksandra M Walczak, and Daniel S Fisher. Genetic diversity and the structure of genealogies in rapidly adapting populations. *Genetics*, 193(2):565–585, 2013.

(日) (同) (日) (日) (日)

Bibliography III

- [EBBF15] Bjarki Eldon, Matthias Birkner, Jochen Blath, and Fabian Freund. Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents? *Genetics*, 199(3):841–856, 2015.
- [EMR⁺15] Vegard Eldholm, Johana Monteserin, Adrien Rieux, Beatriz Lopez, Benjamin Sobkowiak, Viviana Ritacco, and Francois Balloux. Four decades of transmission of a multidrug-resistant mycobacterium tuberculosis outbreak strain. Nature communications, 6:7119, 2015.
 - [EW06] Bjarki Eldon and John Wakeley. Coalescent processes when the distribution of offspring number among individuals is highly skewed. *Genetics*, 172(4):2621–2633, 2006.
 - [FSJ14] Fabian Freund and Arno Siri-Jégousse. Minimal clade size in the Bolthausen-Sznitman coalescent. Journal of Applied Probability, 51(3):657–668, 2014.

Bibliography IV

- [HM13] Thierry Huillet and Martin Möhle. On the extended moran model and its relation to coalescents with multiple collisions. *Theoretical population biology*, 87:5–14, 2013.
- [HP18] Patrick Hoscheit and Oliver G. Pybus. The multifurcating skyline plot. *submitted*, 2018.
- [KJS15] Jere Koskela, Paul Jenkins, and Dario Spanò. Computational inference beyond kingman's coalescent. *Journal of Applied Probability*, 52(2), 2015.
- [Kos17] Jere Koskela. Multi-locus data distinguishes between population growth and multiple merger coalescents. arXiv preprint arXiv:1701.07787, 2017.

イロン イヨン イヨン

Bibliography V

- [KVS⁺17] Mamoru Kato, Daniel A. Vasco, Ryuichi Sugino, Daichi Narushima, and Alexander Krasnitz. Sweepstake evolution revealed by population-genetic analysis of copy-number alterations in single genomes of breast cancer. *Royal Society Open Science*, 4(9), 2017.
 - [Lap17] Marguerite Lapierre. *Extensions du modèle standard neutre pertinentes pour l'analyse de la diversité génétique*. PhD thesis, Université Pierre et Marie Curie-Paris VI, 2017.
- [LRP⁺15] Robyn S. Lee, Nicolas Radomski, Jean-Francois Proulx, Ines Levade, B. Jesse Shapiro, Fiona McIntosh, Hafid Soualhine, Dick Menzies, and Marcel A. Behr. Population genomics of mycobacterium tuberculosis in the inuit. *Proceedings of the National Academy of Sciences*, 112(44):13609–13614, 2015.

Bibliography VI

[MHAJ17] Sebastian Matuszewski, Marcel E. Hildebrandt, Guillaume Achaz, and Jeffrey D. Jensen. Coalescent processes with skewed offspring distributions and non-equilibrium demography. *Genetics*, 2017.

- [Möh02] M Möhle. The coalescent in population models with time-inhomogeneous environment. *Stochastic processes and their applications*, 97(2):199–227, 2002.
 - [NH13] Richard A Neher and Oskar Hallatschek. Genealogies of rapidly adapting populations. Proceedings of the National Academy of Sciences, 110(2):437–442, 2013.
- [NNY16] Hiro-Sato Niwa, Kazuya Nashida, and Takashi Yanagimoto. Reproductive skew in japanese sardine inferred from dna sequences. *ICES Journal of Marine Science*, 73(9):2181–2189, 2016.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Bibliography VII

- [NOŁ⁺18] Armita Nourmohammad, Jakub Otwinowski, Marta Łuksza, Thierry Mora, and Aleksandra M Walczak. Clonal competition in b-cell repertoires during chronic hiv-1 infection. arXiv preprint arXiv:1802.08841, 2018.
 - [Pit99] Jim Pitman. Coalescents with multiple collisions. Annals of Probability, pages 1870–1902, 1999.
 - [PK03] A Polanski and M Kimmel. New explicit expressions for relative frequencies of single-nucleotide polymorphisms with application to statistical inference on population growth. *Genetics*, 165(1):427–436, 2003.
- [PME⁺15] Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, and Christian P Robert. Reliable abc model choice via random forests. *Bioinformatics*, 32(6):859–866, 2015.

・ロン ・四 ・ ・ ヨン ・ ヨン

Bibliography VIII

- [RDK⁺13] Andreas Roetzer, Roland Diel, Thomas A. Kohl, Christian Rckert, Ulrich Nbel, Jochen Blom, Thierry Wirth, Sebastian Jaenicke, Sieglinde Schuback, Sabine Rsch-Gerdes, Philip Supply, Jrn Kalinowski, and Stefan Niemann. Whole genome sequencing versus traditional genotyping for investigation of a mycobacterium tuberculosis outbreak: A longitudinal molecular epidemiological study. *PLOS Medicine*, 10(2):1–12, 02 2013.
 - [SBB13] Matthias Steinrücken, Matthias Birkner, and Jochen Blath. Analysis of dna sequence variation within marine species using beta-coalescents. *Theoretical population biology*, 87:15–24, 2013.
 - [SBJ⁺16] David Stucki, Daniela Brites, Leïla Jeljeli, Mireia Coscolla, Qingyun Liu, Andrej Trauner, Lukas Fenner, Liliana Rutaihwa, Sonia Borrell, Tao Luo, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. *Nature genetics*, 48(12):1535, 2016.

Bibliography IX

- [Sch03] Jason Schweinsberg. Coalescent processes obtained from supercritical Galton–Watson processes. *Stochastic processes* and their applications, 106(1):107–139, 2003.
- [Sch17] Jason Schweinsberg. Rigorous results for a population model with selection ii: genealogy of the population. *Electronic Journal of Probability*, 22, 2017.
- [SJY16] Arno Siri-Jégousse and Linglong Yuan. Asymptotics of the minimal clade size and related functionals of certain beta-coalescents. Acta Applicandae Mathematicae, 142(1):127–148, 2016.
- [SKM⁺17] Egor Shitikov, Sergey Kolchenko, Igor Mokrousov, Julia Bespyatykh, Dmitry Ischenko, Elena Ilina, and Vadim Govorun. Evolutionary pathway analysis and unified classification of east asian lineage of mycobacterium tuberculosis. *Scientific reports*, 7(1):9227, 2017.

Bibliography X

- [SKS16] Jeffrey P. Spence, John A. Kamm, and Yun S. Song. The site frequency spectrum for general coalescents. *Genetics*, 202(4):1549–1561, 2016.
- [TV09] Jesse E Taylor and Amandine Véber. Coalescent processes in subdivided populations subject to recurrent mass extinctions. *Electron. J. Probab*, 14:242–288, 2009.
- [ZBT⁺15] Fabio Zanini, Johanna Brodin, Lina Thebo, Christa Lanz, Göran Bratt, Jan Albert, and Richard A Neher. Population genomics of intrapatient hiv-1 evolution. *Elife*, 4:e11282, 2015.

イロト 不得下 イヨト イヨト