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What do we want to infer?

Data:

Sample of size n of present-day genetic data (DNA sequences) from a
population of a single species

Can we pinpoint loci under positive selection?

Search for deviation of
data from selectively neutral model (includes ALL other processes
affecting genetic diversity)

Can we infer the evolutionary history of the processes?

Model
selection between biologically reasonable models
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Model the genetic diversity of n DNA SNP sequences

0 1 1

0 1 0

1 0 0

1 0 0︸ ︷︷ ︸
observed

Genealogy: random tree w. n leaves

Mutation: Poisson PP w. rate θ
2 ,

infinite-sites m.

Mutation is neutral: independent of
genealogy

︸ ︷︷ ︸
not observed

genetic locus (no recomb.)
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Which evolutionary forces affect the genealogy?

Standard null model: Kingman’s n-coalescent KM
Strictly bifurcating ⇔ no multiple mergers

Assumptions (robust to small deviations): Sample from large,
randomly mating fixed size population, offspring distributions
non-skewed (e.g. offspring/parent has bounded variance), no selection

Preserves bifurcation

Moderate population size
fluctuations (e.g. exponential
growth)

Population structure

Moderate positive selection
(affects locally)

Seed banks

(Recombination & HGT)

May lead to multiple mergers

Extreme, repeated bottlenecks

Skewed offspring distributions
(Reproduction sweepstakes)

Rapid selection

Recurrent selective sweeps
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Genealogy: (Λ-)n-coalescents with multiple mergers

Random tree: n leaves, random branch lengths. Goes backwards in time.

1 2 3 4 5

E
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(λ
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E
xp

(λ
3
)

E
xp

(λ
2
)

S0 We have l lineages (n at time 0)
present. Only one lineage left: Reached
MRCA of the sample

S1 Prolongue/set each lineage by/to
Exp(λl)

S2 Add an ancestral lineage which
connects 2 ≤ k ≤ l present lineages
chosen randomly, k is chosen with

probability
λl,k∑
k λl,k

=
λl,k
λl

S3 Return to Step S0

λn,k =
∫

xk(1− x)n−kx−2Λ(dx),
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∫

xk(1− x)n−kx−2Λ(dx), Λ finite measure on [0, 1]

Beta-n-coalescents BETA Λ = B(2− α, α), 1 ≤ α ≤ 2
Dirac-n-coalescents DIRAC Λ = δp (point mass in p ∈ (0, 1])
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∫

xk(1− x)n−kx−2Λ(dx), Λ = B(2− α, α), α ∈ {0, 1}
α = 1: Bolthausen-Sznitman n-coalescent BSZ
α = 2: Kingman’s n-coalescent (Λ = δ0)KM
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Some models with Λ-n-coalescent genealogy (Population
size N →∞)

BSZ (w. +1 to all external branch lengths): Clonal interference of
equal-effect mutations [DWF13],[Sch17]

BSZ: Fixed-size population with increasing fitness given by a
travelling wave, e.g. [BBS13],[BD13], [NH13]

BETA: Random sampling from a supercritical Galton-Watson process
(offspring distribution heavy-tailed) [Sch03]

DIRAC: Modified Moran models (”lucky” individual produces 2 or U
offspring) with fixed U = ΨN [EW06]

Recurring extinction-recolonisation pattern (as # demes →∞)
[TV09]

Any Λ-n-coalescent: limit genealogy of a family of modified Moran models
(for N →∞) [HM13]
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Adding exponential growth to multiple mergers

[MHAJ17]

from [MHAJ17]

Eldon-Wakeley model + exponen-
tial growth

Population size back k
generations: Nk = b(1− Ψ2

Nγ )kc
Large N:
UNk

= NkΨ1{BIG} + 2 · 1{small},

P(BIG ) = 1− P(small) = N−γk ,
Ψ ∈ (0, 1)

For N →∞, γ ∈ (0, 2): Genealogy converges to a time-changed
Dirac-n-coalescent (ΠGt )t≥0 w. Λ = δΨ and Gt = (ργ)−1(eργt − 1) if one
scales time in the discrete models by c−1

N w. cN = PN(1,2 share parent)
from the fixed model.
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Proof idea: Use [Möh02]

For the modified Moran models with changing pop. sizes, we want to

lump # generations given by the pseudo-inverse G−1
N (t) of

∑[s]
r=1 cN,r ,

cN,r = P(1,2 have same parent) to end up at coalescent time t

Check that on this scale, the population changes moderately
(sup cN,r → 0, inf Nr →∞) the transition
Convergence of the time-scaled discrete models follows if

lim
N→∞

G−1
N (t)∑
r=1

Φ
(N)
l (r ; a1, . . . , al) <∞

Φ
(N)
l (r ; a1, . . . , al) = Pgen -r,

∑
i ai ind.((ai ind. common parent)i ). If

it has the form qa1,...,al t, the limit is a time-homogeneous Markov
process with rates q.

For the modified Dirac coalescents, one gets the only non-zero limit

limN→∞
∑G−1

N (t)
r=1 Φ

(N)
l (r ; a1, . . . , al) = Ψk−2t =

∫
xk−2(1− x)0δΨ(dx) for

l = 1 and a1 ≥ 2.

In the end scale with cN , limN→∞ cNG−1
N (t) = G(t)
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For the modified Moran models with changing pop. sizes, we want to

lump # generations given by the pseudo-inverse G−1
N (t) of

∑[s]
r=1 cN,r ,

cN,r = P(1,2 have same parent) to end up at coalescent time t
Check that on this scale, the population changes moderately
(sup cN,r → 0, inf Nr →∞) the transition
Convergence of the time-scaled discrete models follows if

lim
N→∞

G−1
N (t)∑
r=1

Φ
(N)
l (r ; a1, . . . , al) <∞

Φ
(N)
l (r ; a1, . . . , al) = Pgen -r,

∑
i ai ind.((ai ind. common parent)i ). If

it has the form qa1,...,al t, the limit is a time-homogeneous Markov
process with rates q.

For the modified Dirac coalescents, one gets the only non-zero limit

limN→∞
∑G−1

N (t)
r=1 Φ

(N)
l (r ; a1, . . . , al) = Ψk−2t =

∫
xk−2(1− x)0δΨ(dx) for

l = 1 and a1 ≥ 2.

In the end scale with cN , limN→∞ cNG−1
N (t) = G(t)

June 28, 2018 8 / 40



Proof idea: Use [Möh02]
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Works for other modified Moran models, too

w. S. Matuszewski, M. Lapierre, E. Kerdoncuff, A. Lambert, J.
Jensen, G. Achaz, in prep.

[HM13]: The fixed-size modified Moran model w.

P(UN = j) =
(N
j

)B(j−α,α+N−j)
B(2−α,α) , j ≥ 2, has a

Beta(2− α,α)-n-coalescent genealogy for N →∞
Analogously, adding exponential growth (Nk ∼ N(1− ρ

Nα )k) leads to

a time-changed Beta coalescent genealogy, scaling with c−1
N from the

fixed N model

[Sch03] (Fixed N): Each individual produces independent Xi offspring
(heavy-tailed, P(Xi ≥ k) ∼ Ck−α). Next gen. randomly sampled
from these.

Adding exponential growth Nk ∼ N
(
1− ρ

Nα−1

)r
again leads to a

time-changed Beta(2− α,α)-n-coalescent (ΠGt )t≥0 with
Gt = c−1(ect − 1) for a constant c
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Genealogy models ↔ species

Species with non-skewed offspring distribution: Mammals, most plants,...

pictures from Wikimedia commons (users Tkgd2007,MrFrosty2)

Should lead to a bifurcating genealogy of (short) neutral loci
(KM,+growth,+pop. struct.). Do they?
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Genealogy models ↔ species

Reproduction sweepstakes (BETA ):

Japanese sardine
[NNY16]

Atlantic cod [ÁH14]

with exp. growth:

copy numbers in
cancer cells [KVS+17]

Candidate populations for rapid selection (Λ = U[0,1] ):

B-cells under HIV [NO L+18]
HIV [ZBT+15]

SeaFIC; H. Hillewaert; Blausen.com staff (2014). ”Medical gallery of Blausen Medical 2014”.

WikiJournal of Medicine 1 (2); CDC/ C. Goldsmith, P. Feorino, E. L. Palmer, W. R. McManus
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How to distinguish genealogy models

Usually, we would be interested in inferring the true (best-fitting)
genealogy model, while we treat θ as a nuisance parameter

Inference approaches

(Nearly) Full likelihood on SNP data (MCMC-based for moderate n)
[SBB13],[BG00],[KJS15]...
Slow, does not scale well w. large data sets

Based on the site-frequency spectrum (SFS)

ξ
(n)
i := # SNPs with derived allele frequency i

n , i ∈ [n − 1]
Quicker, but needs approximations and/or simulations
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SFS-based inference between n-coalescents

Pseudo-likelihood approach
[EBBF15],s =

∑
i ηi

Base approximate LRT on

PsL(ξ
(n)
i = ki , i ∈ [n − 1])

= s!
k1!···kn−1!

∏n−1
i=1

(
E(ξ

(n)
i )

E(
∑n

j=1 ξ
(n)
j )

)ki

Assumptions:

fixed-s,
ξ

(n)
i∑n

j=1 ξ
(n)
j

≈ E(ξ
(n)
i )

E(
∑n

j=1 ξ
(n)
j )

E (ξ
(n)
i ) can be computed

analytically [SKS16],[PK03]

Multiple loci: Add up SFS

Monte Carlo Likelihood
approach [Kos17]

Perform approximate LRT for ξ
(n)
1∑n

j=1 ξ
(n)
j

,

∑n−1
i=k ξ

(n)
i∑n

j=1 ξ
(n)
j

 ,

estimating the two-dimensional
kernel density via simulation

Multiple loci: Use average over
loci for LRT, estimate density of
average

For distinguishing coalescent models, both methods are very robust if
models tested misspecify θ
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[Kos17] Using KDE is superior, more loci is better

H0 : KM w. exp. growth, g ∈ [0, 1000], +.1 near 0, +10 for g ≥ 40
H1 : Beta(2− α,α)-n-coalescent, α ∈ {1, 1.025, . . . , 2}

from [Kos17]

Freely recomb. loci in MMC are not ind. (though unlinked) [BBE13].
[Kos17]’s coalescent model accounts for this (PP-construction of Λ-n-coal.:
Given PPP, each locus uses it independently to construct its tree)
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U-shaped SFS vs. genealogy models

Collection of U/J-shaped SFS from G. Achaz’ group in a diverse set
of species: pill-bug, E. coli, Helicobacter pylori, cuttlefish, A. thaliana,
shark,Drosophila melanogaster, humans... (18 ≤ n ≤ 1214)

Caenorhabditis elegans Glyphis garricki
(Graphs by R. Clodion)

Plots of E (nSFS): expected scaled SFS ξ̃i :=
ξni∑
j ξ

(n)
j

[Lap17] Possible contributions to U/J-shape: Confusing derived and
ancestral alleles (misidentification, MI ), selection, demography,
biased gene conversion, multiple-merger,...
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E(nSFS) corrected for MI , fit to BETA+exp. g.

[Lap17] Correct E (nSFS) for MI : Via outgroup, estimate MI prob. x ,
use ((1− x̂)ξ̃i − x̂ ξ̃n−i )/(1− 2x̂)
[Lap17], R. Clodion, E. Kerdoncuff: Multiple-merger coalescents (with
exp. growth/decline) can match (MI -corrected) E(nSFS) rather well

ri = (xi − EKM(ξ
(n)
i ))/EKM(ξ

(n)
i ),

D. melanogaster

minimize
∑

i
(EBexp(ξ̃

(n)
i )−EKM(ξ̃

(n)
i ))2

EKM(ξ̃
(n)
i )

from [Lap17]

w. S. Matuszewski, M. Lapierre, E. Kerdoncuff, A. Lambert, J. Jensen, G.
Achaz
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s!
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 E (ξ
(n)
i )
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Inference using few loci: Use more statistics?
w. A. Siri-Jégousse

SFS-based inference for few (1) loci is very noisy
[KVS+17] report very low misclassification probabilities in an ABC
approach for (essentially) BETA+exp. growth vs. KM+ exp. growth
if additional statistics are used

I Number of segregating sites
I Quantiles .1,.3,.5,.7,.9 of allele frequencies
I Quantiles .1,.3,.5,.7,.9 of pairwise Hamming distances (mismatch

count)
I Quantiles .1,.3,.5,.7,.9 of LD measured as squared correlation r 2

between SNP allele frequencies
I Quantiles .1,.3,.5,.7,.9 of total branch length of reconstructed

phylogeny (e.g. neighbor-joining tree)

Partly, low misclassification rates stem from models using identitical θ
ranges (which can lead to stark differences in # segregating sites)

If we compare models with comparable # segregating sites, do we see
the same effect? Which statistics help to distinguish?
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We also add a further statistic

1 2 3 4 5 6

x

x

x

x

On(2)=5

On observable from
sequence data if
ancestral base calls are
known

On(i) :=# individuals sharing all
non-private mutations of i
Smallest family of i which can be
genetically distinguished

⇔ # descendants of the youngest
ancestor of i with a mutation on the
branch above it

Use quantiles .1,.3,.5,.7,.9, the
harmonic mean, sample mean and s.d.
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Model selection via ABC with random forests

Using many test statistics: Curse of dimension, added noise

Random forest-based ABC
[PME+15]

1) Build decision trees (CART) using
bootstrap samples of simulated stats
S (w. prior) to sort the latter into
bins Pi from the same model.
2) For each tree, sort Sobs to Pi

P1 P2 P3

Stat2 < t1

Stat1 > t2

Randomised CART

At node, take stat from random
subset w. minimal misclassifica-
tion (Gini index)

Misclassification measure:
Out-of-the-bag error

Model selection a) % trees:
Sobs → model M b)
Posterior probability

Importance of stat Si :
Decrease in misclassification
by all nodes of Si , averaged
over RF
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Which statistics distinguish genealogy models?

M1 : KM + exp. growth, g ∈ {0, .5, 1, 2.5, 4, 7, 10, 25, 50, 75, 100, 500, 1000}
M2 : BETA, α ∈ {1, 1.1, . . . , 2}
n = 100, θ = 2s/E (total coalescent length) for s ∈ {15, 20, 30, 40, 60, 75},
175K sims/model (1x replicated), flat prior

Statistics: On, allele frequencies (SFS,fSFS), Hamming distances, r 2,
phylogenetic branch lengths, nucleotide diversity π, # mutations S

Stats % BETA misclassified % KM+growth misclassified

All 16.9/16.8 % 23.2/23.3 %
No On 18.2/18.2 % 26.2/26.2 %

No r 2, phylo 17.2/17 % 23.3/23.5 %
AF, π, S 21.9/22.1 % 33.9/34.1 %

SFS, π, S 19.1/19.2 % 30.7/30.4 %
+ On, Hamming 17.7/17.6 % 23.8/23.6 %

fSFS, π, S 23.2/23.2 % 33/33.2 %
+ Hamming 19.8/20 % 27.6/27.5 %
+ r 2, phylo 19/19 % 26.6/26.7 %
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Importance of statistics (full set)

measured by average decrease in Gini index over nodes of the statistic in
the trees of the RF
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Why is the harmonic mean of (On(i))i∈[n] distinguishing
well?

1 2 3 4 5 6

x

x

x

x

Mn(i): smallest family of i , #
descendants of the most recent
ancestor of i

Mn(i) ≤ On(i), equality for
θ →∞
Mn(i) tends to be bigger for
MMC than for KM [BF05],
[FSJ14], [SJY16]

Mn(i)’s law not changed if we
make a time-change (to model
pop.size changes)
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Mathematical properties of On

n-coalescents: Processes in the partitions of {1, ..., n}
At time t: partition blocks = offspring of ancestral lines at t

1 2 3 4 5 6

x

x

x

x

On(2)=5

On(i) := B
(n)
i (En(i) + Tn(i)), where

I B
(n)
i (t) is the size of the block

containing i at time t
I En(i) is the waiting time for the first

merger of {i}
I Tn(i) is the waiting time for the first

mutation affecting i after the first
merger

I Tn(i) is independent of B
(n)
i , En(i)

Exchangeability: On(1)
d
= On(i)

All moments of On(1) can be computed
recursively for any Λ-n-coalescent
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Asymptotics of On(i) for BETA, n→∞

On(1) := B
(n)
1 (En(1) + Tn(1))

B
(n)
1 (t): size of block of

1 at time t

En(1): waiting time for
first merger of {1}
Tn(1): waiting time for
first mutation affecting 1
after En(1)

Tn(1): independent of

B
(n)
1 , En(1)

En(1)
d→ Exp(µ−1), n→∞

Tn(1)
d
= Exp(θ/2)

µ−1 =∞, dust-free for Λ-coalescents

f1(t) := limn→∞ n−1B1(t)

limn→∞ n−1On(1) = f1(T (1))

All moments of f1(t) known from
[Pit99, Prop 29]

E [(f1(T (1)))k ] = 1−
∑k+1

r=2 ak,r
θ/2

λr+θ/2 ,
where λr is the total rate of the
Λ-coalescent in a state with r blocks
and ak,r is a rational function of
λ2, . . . , λk .

E [f1(T (1))] = Λ([0,1])
Λ([0,1])+θ/2

BSZ f1(T (1))
d
= Beta

(
1

1+ θ
2

,
θ
2

1+ θ
2

)
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Mycobacterium tuberculosis - multiple-merger genealogy?

Bacterial agent of tuberculosis, haploid

Clonal reproduction (gen.≈ 15-20 h ), rather small 4 Mb genome,
very few recombination events ⇒ treated as a single locus
Data sequenced with high coverage, mutations can be well-polarized
(phylogeny very clear ⇒ practically no misorientation [Lap17])
Could be under strong selection pressure ⇒ BSZ genealogy (BSZ + 1
also tested, fits clearly worse that other models)
Reproduction also potentially skewed∗ ⇒ BETA, other
multiple-merger coalescents
We use data sets from outbreaks and local samples to control
population structure
Genealogy model (usually) proposed in the literature: Kingman’s
n-coalescent with exponential growth

pic from NIAID
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ABC with random forest approach w. F. Menardo, in prep.

Models

KM + exp. growth, g ∈ {0, . . . , 5000}, {0, . . . , 20000}
BETA α ∈ {1, 1.025, . . . , 1.975, 0.}
DIRAC Ψ ∈ {0.025, 0.05, . . . , 0.975}

Setup

θ ∈ [θ̂w/5, 5θ̂w ]

Sequential ABC (2x) to fit growth range

ABC w. RF can also be used for parameter estimation

Many mutations, large samples: Misclassification ≤ 5%

PROBLEM: We treat the sequences as sampled at the same time!
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ABC with random forest results w. F. Menardo, in prep.

sample n Sobs best model .1/.9 quant.
(post. prob.) posterior g , α

(Inuit, ’11,’13 147 454 BETA (1) 1.2/1.425
Hamburg, 99-’10 61 74 BETA (.96) 1.075/1.35
Argentinia 96-’09 248 497 BETA (.998) 1.1/1.3

subset ’01-’05 137 312 BETA (.95) 1.125/1.35
subsubset ’01-’03 91 205 BETA (.98) 1.075/1.375
Ethiopia ’06-’10 21 1334 BETA (.78) 1.3/1.725

East Europe/Russia 176 1164 KM + exp (0.98) (1535, 3629)

data from [LRP+15],[RDK+13],[EMR+15],[CHK+15],[SKM+17]
([SBJ+16], Uganda: not completely analysed, but subsets fit better to
KM + exp)

Different sampling times, but we assume an ultrametric tree

Method is rather robust ⇒ Leave out all private mutations: ≤ 6%
misclassification, same results for classification
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ABC with random forest results w. F. Menardo, in prep.

sample n Sobs best model .1/.9 quant.
(post. prob.) posterior g , α

(Inuit, ’11,’13 147 454 BETA (1) 1.025/1.25)
Hamburg, 99-’10 61 74 BETA (.98) 1/1.4
Argentinia 96-’09 248 497 BETA (.95) 1/1.225

subset ’01-’05 137 312 BETA (.9) 1.025/1.3
subsubset ’01-’03 91 205 BETA (.95) 1.025/1.3
Ethiopia ’06-’10 21 1334 BETA (.77) 1.175/1.8

East Europe/Russia 176 1164 KM + exp (1) (2536, 4867)

data from [LRP+15],[RDK+13],[EMR+15],[CHK+15],[SKM+17]
([SBJ+16], Uganda: not completely analysed, but subsets fit better to
KM + exp)

Different sampling times, but we assume an ultrametric tree

Method is rather robust ⇒ Leave out all private mutations: ≤ 6%
misclassification, same results for classification
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Posterior predictive checks
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Multiple mergers vs. Mycobacterium tuberculosis

Still many questions!

Magnitude of bias on non-singleton mutations by assuming equal
sampling times?

Account for different sampling times by modifying the coalescent
trees as suggested in [HP18]?

Better fitting model: BETA+growth? Others?

For the majority (2/3) of data sets analysed, BETA reasonable
alternative null model. What is a reasonable reproduction model
underlying it?

BSZ: Some doubt (or noise), signal has to be clarified (more
simulations, adjusted BSZ?)

Nearly all sets fit clearly to conceptually very different models:
biological reasons?
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Thanks for the attention!

Any questions?

June 28, 2018 30 / 40



Bibliography I
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[CHK+15] Iñaki Comas, Elena Hailu, Teklu Kiros, Shiferaw Bekele,
Wondale Mekonnen, Balako Gumi, Rea Tschopp, Gobena
Ameni, R Glyn Hewinson, Brian D Robertson, et al.
Population genomics of mycobacterium tuberculosis in ethiopia
contradicts the virgin soil hypothesis for human tuberculosis in
sub-saharan africa. Current Biology, 25(24):3260–3266, 2015.

[DWF13] Michael M Desai, Aleksandra M Walczak, and Daniel S Fisher.
Genetic diversity and the structure of genealogies in rapidly
adapting populations. Genetics, 193(2):565–585, 2013.

June 28, 2018 32 / 40



Bibliography III

[EBBF15] Bjarki Eldon, Matthias Birkner, Jochen Blath, and Fabian
Freund. Can the site-frequency spectrum distinguish
exponential population growth from multiple-merger
coalescents? Genetics, 199(3):841–856, 2015.

[EMR+15] Vegard Eldholm, Johana Monteserin, Adrien Rieux, Beatriz
Lopez, Benjamin Sobkowiak, Viviana Ritacco, and Francois
Balloux. Four decades of transmission of a multidrug-resistant
mycobacterium tuberculosis outbreak strain. Nature
communications, 6:7119, 2015.

[EW06] Bjarki Eldon and John Wakeley. Coalescent processes when the
distribution of offspring number among individuals is highly
skewed. Genetics, 172(4):2621–2633, 2006.

[FSJ14] Fabian Freund and Arno Siri-Jégousse. Minimal clade size in
the Bolthausen-Sznitman coalescent. Journal of Applied
Probability, 51(3):657–668, 2014.

June 28, 2018 33 / 40



Bibliography IV

[HM13] Thierry Huillet and Martin Möhle. On the extended moran
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inference beyond kingman’s coalescent. Journal of Applied
Probability, 52(2), 2015.

[Kos17] Jere Koskela. Multi-locus data distinguishes between
population growth and multiple merger coalescents. arXiv
preprint arXiv:1701.07787, 2017.

June 28, 2018 34 / 40



Bibliography V

[KVS+17] Mamoru Kato, Daniel A. Vasco, Ryuichi Sugino, Daichi
Narushima, and Alexander Krasnitz. Sweepstake evolution
revealed by population-genetic analysis of copy-number
alterations in single genomes of breast cancer. Royal Society
Open Science, 4(9), 2017.

[Lap17] Marguerite Lapierre. Extensions du modèle standard neutre
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