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Allele frequency trajectory
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Quantities of interest
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Sampling alleles
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Figure: At each time, ti, a sample of size ni chromosomes is taken and ci copies of
the derived allele are observed. Note that t1 is more ancient than the allele age, t0.
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The model

• Population of 2N chromosomes

• Two alleles: A/a
- Keep track of Zt̃, number of A

chromosomes in generation t̃

• In�nite pool of gametes
- Under neutrality, each chromosome
contributes equally

- With natural selection, chromosomes
contribute unequally depending on allelic
state

• 2N Bernoulli draws from the gamete pool
produce the next generation

Zt̃ = 3

Zt̃+1 = 5
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Allele frequency change

• On average, general diploid selection

Genotype AA Aa aa

Fitness 1 + s 1 + hs 1

Expected allele frequency change

E(Zt̃+1|Zt̃) =
(1 + s)Z2

t̃
+ (1 + sh)Zt̃(2N − Zt̃)

(1 + s)Z2
t̃

+ 2(1 + sh)Zt̃(2N − Zt̃) + (2N − Zt̃)2

• Variance due to binomial

Variance in allele frequency change

Var(Zt̃+1|Zt̃) ≈ Zt̃(2N − Zt̃)
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Di�usion limit

• De�ne Xt =
Zt̃/2N

2N
.

- The allele frequency with time measured in units of 2N generations.

• Take a limit as N ↑ ∞ and |s| ↓ 0 such that 2Ns→ α.

• Get a di�usion limit.

Wright-Fisher SDE

dXt = αXt(1−Xt)(Xt + h(1− 2Xt)) dt+
√
Xt(1−Xt) dBt,

where B is a standard Brownian motion.
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Di�usion limit with varying population size

• Suppose in rescaled time that the population size after 2Nt generations is
2Nρ(t).

• Still get a di�usion limit.

Wright-Fisher SDE with varying population size

dXt = αXt(1−Xt)(Xt + h(1− 2Xt)) dt+

√
Xt(1−Xt)

ρ(t)
dBt,

where B is a standard Brownian motion.
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Inference from a time series

• The likelihood of the data given the allele frequency path, α, h and t0
only depends on the allele frequency path and is easy to compute (just
binomials).

• Computing the likelihood of the data given α, h and t0 is hard � it
involves integrating out the allele frequency path, and this is equivalent to
solving a PDE with no explicit solution.

• Various approaches:
- Bollback et al. (2008): solve the PDE numerically.
- Malaspinas et al. (2012): approximate the di�usion using a birth-and-death
type Markov chain (essentially the same).

- Steinrücken et al. (2013): use orthogonal polynomials
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Another solution: infer the whole path!

• Treat the unknown allele frequency path as another parameter that has to
be estimated.

• If we use Bayesian inference, then to be consistent we should ideally use a
prior such that the conditional distribution of the allele frequency path
given α, h and t0 and segregation at the present is what it should be
under the W-F model.

• An imputation of the allele frequency path is interesting in its own right.
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Di�usion path likelihoods?

• The obvious way to obtain the posterior is to use a Markov chain Monte
Carlo method such as Metropolis-Hastings.

• This requires a prior with a density against some �xed reference measure.

• What measure should we use on path space?
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Girsanov's theorem

Write Wt∗,x for the distribution of a Brownian motion that starts at time t∗ at
position x.

Di�usion path likelihoods

Suppose that a di�usion satis�es the SDE

dXt = a(Xt, t)dt+ dBt, Xt∗ = x,

and let Pt∗,x be the corresponding distribution on paths indexed by [t∗,∞).
The likelihood under Pt∗,x relative to Wt∗,x for paths indexed by [t∗, t] is

dPt∗,x
dWt∗,x

(X) = exp

{∫ t

t∗

a(Xs, s) dXs −
1

2

∫ t

t∗

a2(Xs, s) ds

}
.
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Can we use Girsanov?

• The Wright-Fisher SDE

dXt = αXt(1−Xt)(Xt + h(1− 2Xt)) dt

+

√
Xt(1−Xt)

ρ(t)
dBt

is NOT of the form

dXt = a(Xt, t)dt+ dBt,

so how can we use Girsanov?

• Answer: We transform the time and space scales.
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Changing the time scale

Apply the time transformation τ = f(t) with

f(t) =

∫ t

0

1

ρ(s)
ds

to the W-F di�usion to obtain a new SDE

dXτ = αρ(f−1(τ))Xτ (1−Xτ )(Xτ + h(1− 2Xτ )) dτ

+
√
Xτ (1−Xτ ) dBτ .
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Changing the space scale: the Fisher transformation

Next, apply the space transformation

Yτ = arccos(1− 2Xτ )

and note that the result is an SDE

dYτ =
1

4

(
αρ(f−1(τ)) sin(Yτ )(1 + (2h− 1) cos(Yτ ))− 2 cot(Yτ )

)
dτ

+ dBτ

to which Girsanov applies.
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Bad things happen at the boundaries

• The process Yτ lives on (0, π) and is absorbed at the boundaries
(corresponding to loss or �xation).

• However, Brownian motion lives on all of R.

• This causes the drift of Y to blow up at the boundaries.

• This will create problems for inferring allele age.

• We need a better reference measure.
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A consequence of Girsanov

• Suppose that Pt∗,x is the distribution of a di�usion satisfying the SDE

dXt = a(Xt, t) dt+ dBt, Xt∗ = x.

• Suppose that Qt∗,x is the distribution of a di�usion satisfying the SDE

dXt = b(Xt, t) dt+ dBt, Xt∗ = x.

• The likelihood under Pt∗,x relative to Qt∗,x for paths indexed by [t∗, t] is

dPt∗,x
dQt∗,x

(X) =
dPt∗,x
dWt∗,x

(X)

/
dQt∗,x
dWt∗,x

(X)

= exp

{∫ t

t∗

(a(Xs, s)− b(Xs, s)) dXs

− 1

2

∫ t

t∗

(
a2(Xs, s)− b2(Xs, s)

)
dt

}
.
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Matching the singularities at 0

• Suppose that Pt∗,x = Pα,ht∗,x is the distribution of the time and space
transformed process (Yτ ) started from x at time t∗.

• Because

1

4

(
αρ(f−1(τ)) sin(Yτ )(1 + (2h− 1) cos(Yτ ))− 2 cot(Yτ )

)
= − 1

2Yτ
+ O(Yτ )

when Yτ is small, a good choice for Qt∗,x would be one where
b(x, t) ≈ − 1

2x
as x ↓ 0.

• Practically, such a choice is only helpful in a Metropolis-Hastings
algorithm if we can easily sample from distributions related to Qt∗,x.
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Bessel processes

Bessel process of dimension d

Suppose that Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional standard Brownian

motion. The radial part process

Rt =

√√√√ d∑
i=1

(W i
t )2

is the Bessel process of dimension d, written Bes(d). The di�usion R satis�es
the SDE

dRt =
d− 1

2Rt
dt+ dBt.

Note that this SDE makes sense for all d ≥ 0, even if d 6∈ N, and the resulting
process is still called Bes(d).
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Bes(2)
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Bes(0)

• Near 0, the drift of the time and space transformed Wright-Fisher
di�usion looks like - 1

2y

• The Bes(0) di�usion satis�es

dRt = − 1

2Rt
dt+ dBt

• This is exactly what we want.
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Avoiding Itô integrals

• Recall that the likelihood under Pα,ht∗,x relative to Qt∗,x for paths indexed
by [t∗, t] is

dPα,ht∗,x
dQt∗,x

(X) = exp

{∫ t

t∗

(a(Xs, s)− b(Xs, s)) dXs

− 1

2

∫ t

t∗

(
a2(Xs, s)− b2(Xs, s)

)
dt

}
for suitable a and b.

• It appears that computing the likelihood requires numerical evaluation of
an Itô integral.

• This is known to be hard.

• An integration-by-parts type trick developed by the group around Gareth
Roberts circumvents this.

Steven N. Evans Inference from allele frequency time series



Escaping from 0

• The time and space transformed Wright-Fisher di�usion and the Bes(0)
di�usion both stay at 0 if they are started there.

• We need a prior that puts mass on paths that start at 0 but escape.
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Entrance laws

Entrance laws

Suppose that q(s, x; t, y) is the transition density function with respect to
Lebesgue measure of a time-inhomogeneous Markov process with state-space
I, where I is some interval. An entrance law for this process relative to some
entrance time t∗ is a function n(t∗; t, x), t > t∗, x ∈ I, such that∫
I
n(t∗; s, x)q(s, x; t, y) dx = n(t∗; t, y) for t∗ < s < t.

Steven N. Evans Inference from allele frequency time series



Entrance law for Bes(0)

• The transition density function for the Bessel(0) process is

q(s, x; t, y) =
y

t− s exp

(
−x

2 + y2

2(t− s)

)
I1

(
xy

2(t− s)

)
,

where I1 is the modi�ed Bessel function of the �rst kind with index 1.

• Because I1(z) ∼ z
2
as z → 0, it follows that

lim
x↓0

q(s, x; t, y)

q(s, x; s+ 1, 1)
=

y2

t− s exp

(
− y2

2(t− s)

)
exp

(
1

2

)
,

and so

n(t∗; t, x) =
x2

t− t∗
exp

(
− x2

2(t− t∗)

)
is an entrance law for the entrance time t∗.
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Starting Bes(0) from 0

• Let q(s, x; t, y) be the transition density function for the Bessel(0)
process and n(t∗; t, x) the entrance law for the entrance time t∗.

• There is a σ-�nite measure Qt∗,↑ on the paths indexed by (t∗,∞) such
that

Qt∗,↑ {Xs1 ∈ dx1, . . . , Xsk ∈ dxk}
= n(t∗; s1, x1)q(s1, x1; s2, x2) · · · q(sk−1, xk−1; sk, xk) dx1 · · · dxk

for t∗ < s1 < . . . < sk.
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Starting W-F from 0

• Let Pα,ht∗,x be the distribution of W-F process with parameters α, h started
at time t∗ at position x.

• Let Qt∗,x be the distribution of Bes(0) started at time t∗ at position x.

• Recall that the likelihood of a path distributed according to Pα,ht∗,x relative
to Qt∗,x for paths indexed by [t∗, t] is

dPα,ht∗,x
dQt∗,x

(X) = exp

{∫ t

t∗

(a(Xs, s)− b(Xs, s)) dXs

− 1

2

∫ t

t∗

(
a2(Xs, s)− b2(Xs, s)

)
dt

}
=: Φα,ht∗,t(X),

for suitable a and b.

• Set
Pα,ht∗,↑ (dX) := Φα,ht∗,t(X)Qt∗,↑ (dX)

for a path X indexed by (t∗, t].
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Conditional prior for allele frequency path

• With a slight abuse of notation, think of Pα,ht∗,↑ as a measure that lives on
paths indexed by R that are zero on (−∞, t∗].
• Take the (improper) conditional prior on the time and space transformed

allele frequency path Y given (α, h, t0) to be Pα,hf(t0),↑ .
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Full prior

• Take any convenient distributions as the marginal priors on the selection
coe�cient α and the dominance coe�cient h.

• Take the (improper) marginal prior on the allele age t0 to be the measure
with density ρ, where ρ(t) is the relative population size at time t.

• Take the (improper) marginal prior on (α, h, t0) to be the product of the
respective marginal priors.

• This completely speci�es the full prior on (t0, Y, α, h).
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A Markov chain Monte Carlo algorithm

For each step of the algorithm:
1. Decide whether to update one of:

a. a bit of the path,
b. allele age,
c. the current allele frequency,
d. selection coe�cient,
e. dominance coe�cient.

2. Update the chosen parameter.
3. Compute the proposal ratio.
4. Compute the prior ratio.
5. Compute the likelihood ratio.
6. Accept or reject the update according to the Metropolis-Hastings criterion.

Steven N. Evans Inference from allele frequency time series



Path updates

• Choose a piece of the path with random
endpoints to update.

• Ideally, proposed path updates would come
from the posterior, but that's hard.

• Simulate a new piece of path that follows a
Bes(0) process conditioned to keep the same
values at the endpoints as the original piece of
path.

- Such a Bes(0) bridge is not too di�erent from
a time and space transformed Wright-Fisher
bridge.

- That is, the proposal ratio ≈ 1.
- It's easy to simulate a Bes(0) bridge (WHY?). 0.00 0.02 0.04 0.06 0.08 0.10
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Simulating Bes(0) bridges

• Simulate a Bes(0) bridge from x at time 0 to y in time t as follows.

1. Take the 4-dimensional vector u = (0, 0, 0, x)T .
2. Sample a vector V ∼ von Mises-Fisher

(
u
x
, xy
t

)
3. Sample a 4-dimensional standard Brownian motion {Bs, 0 ≤ s ≤ t}.
4. Construct the 4-dimensional Brownian bridge from u to V ,

B
(x,y,t)
s =

(
1−

s

t

)
u+

s

t
yV +

(
Bs −

s

t
Bt

)
, 0 ≤ s ≤ t.

5. Compute the Euclidean norm of B(x,y,t).

• The result is a Bes(4) bridge from x at time 0 to y in time t.

• However, the Bes(4) process is the same as the Bes(0) process conditioned
to never hit 0.

• Moreover, the bridges of a conditioned di�usion are the same as the
unconditioned di�usion.

• So the result is a Bes(0) bridge.
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Allele age updates

• Choose a new age from some proposal
distribution q(t′0|t0).

• Generate a bridge from (t′0, 0) to (tf , Ytf )
where tf is the time of the �rst non-zero
observation.

• The proposal ratio needs to account for the
densities of paths that go from (t0, 0) to
(tf , Ytf ) and from (t′0, 0) to (tf , Ytf )
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Current frequency updates

• Choose a new current frequency from some
proposal distribution q(Y ′tk |Ytk)

• Generate a bridge from (ts, Yts) to (tk, Ytk)
where ts is a (�xed) time in the �nal interval.

• The proposal ratio needs to account for the
densities of Bes(0) paths that go from
(ts, Yts) to (tk, Ytk) and from (ts, Yts) to
(tk, Y

′
tk).
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Summary of results for the ASIP locus in horses
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Figure: Panel A shows the posterior distribution of paths as well as the posterior distribution
of allele age. Filled circles are the sample allele frequencies, while the solid black, red and
green lines show the median, interquartile, and 95% credible intervals of the path,
respectively. The blue curve shows the posterior distribution of the allele age. Time is
measured in di�usion units relative to the most recent sample (so that 0.0 corresponds to 500
years BCE). Panel B and C show the posterior distribution of α and h, respectively. In both,
solid lines are the posterior while dashed lines show the prior.
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ASIP locus in horses continued
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Figure: Joint posterior density of α and h for the ASIP locus in horses. Regions of
highest posterior density are shown in blue.
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ASIP locus in horses continued

• The most likely selective mechanism is overdominance (ĥ = 2.02,
α̂ = 10.23), in agreement with the conclusion reached by Steinrücken et

al. (2013).

• The inferred allele frequency quickly rises to intermediate value and then
stays approximately constant, a hallmark of overdominance.

• The allele almost certainly arose more recently than the most ancient time
point, at which time zero copies of the derived allele were found
(t̂0 = −0.53, approximately 13, 700 years BCE).
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