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Motivations

Motivations

Joint works with:

• Denis Villemonais and Sylvie Méléard

• Diala Abu Awad

We aim at studying:

• Extinction of populations
• Evolution of populations near extinction
• Joint dynamics of demography and genetics

• Genetic composition of populations conditioned on survival
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Model and rescaling

Microscopic model

Features:

• Diploid individuals, 1 gene, L alleles

• Competition and sexual Mendelian reproduction

• Individual-based model

Model:

• Multi-type non-linear birth-and-death process

• Rescaling: Large population, frequent reproduction and death

events



Model and rescaling

Jump rates

n = number of individuals

xij = proportion of genotype ij
x = (n, (xij)i≤j) = state of the population

xi = proportion of allele i

µij(x) =

dij + ∑
1≤k,l≤L

cij,klnxkl

nxij ,

λij(x) = bijn× 2xixj , λii(x) = biinx
2
i .



Model and rescaling

Rescaling

Large population, frequent reproduction and death events

ZKt =

(
NK(t)XK

ij (t)

K

)
i≤j

ZK0 =⇒ Z0

bKij = γK + βij ,

dKij = γK + δij ,

cKij,kl =
αij,kl
K

,



Model and rescaling

Slow-fast convergence

Fast convergence to Hardy-Weinberg structure (Ethier & Nagylaki (1980))

sup
t≤u≤t+s

E((εKij (u))2) −→
K→∞

0

Slow convergence to a di�usion process:

((nK(t), xK2 (t), ..., xKL (t)))t≤T =⇒
K→∞

((n(t), x2(t), ..., xL(t)))t≤T



Model and rescaling

Limiting di�usion process

f(N(t), X2(t), ..., XL(t)) =Mt +
∫ t
0 Lf(N(s), X2(s), ..., XL(s))ds

Lf(n, x2, ..., xL) = n
(
ρ− αn+

L∑
i=2

sixi

) ∂f
∂n

(n, x2, ..., xL)

+ γn
∂2f

∂n2
(n, x2, ..., xL)

+

L∑
i=2

xi

(
si −

L∑
j=1

xjsj

) ∂f
∂xi

(n, x2, ..., xL)

+

L∑
i=2

γ
xi(1− xi)

2n

∂2f

∂x2i
(n, x2, ..., xL)

−
∑

i 6=j∈[[2,N ]]

γ
xixj
2n

∂2f

∂xi∂xj
(n, x2, ..., xL).



Model and rescaling

Questions

• Behaviour of genetics at extinction

• Impact of adding demography
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Demography and allele �xation

Wright-Fisher with demography

Theorem

(i) The population gets extinct almost surely in �nite time.

(ii) One of the allele will get �xed a.s. before extinction.

(iii) The population experiences successive allele extinctions.



Demography and allele �xation

Extinction and �xation

{
dNt = σ(Nt) dBt +Nt(ρ− αNt)dt, α > 0

dXt =
√

Xt(1−Xt)
f(Nt)

dWt

t < TN0+, (1)

Theorem

Fixation occurs before extinction with probability one if and only if∫
0+

y

σ2(y)f(y)
dy = +∞. (2)



Demography and allele �xation

Extinction before �xation

dNt =

√
N

(1−ε)
t dB1

t +Nt(−1− 0.1Nt)dt (3)

dXt =

√
Xt(1−Xt)

Nt
dB2

t (4)
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Demography and allele �xation

Ideas of the proof

Theorem

(i) The population gets extinct almost surely in �nite time.

Well-known (Ikeda-Watanabe, Chapter VI.3).

(ii) One of the allele will get �xed a.s. before extinction.

Girsanov+Time change+Path integrability argument.

(iii) The population experiences successive allele extinctions.

Girsanov+Rescaling+Time change+Path integrability argument.
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Path integrability

Path integrability criterion

Theorem

• (Zt, 0 ≤ t ≤ T0) regular di�usion process on [0,+∞)

• Scale function s, speed measure m.

• Pz(T0 < +∞) = 1 for all z ∈ [0,+∞)

• f : (0,+∞)→ R+ locally bounded measurable function.

∫
0+
s(y) f(y)m(dy) < +∞ ⇐⇒

∫ T0

0
f(Zs) ds < +∞ Pz − a.s.∫

0+
s(y) f(y)m(dy) = +∞ ⇐⇒

∫ T0

0
f(Zs) ds = +∞ Pz − a.s.



Path integrability

Path integrability criterion: proof

• Engelbert & Tittel (2002), Khoshnevisan, Salminen & Yor (2006)

Mijatovic & Urusov (2012)

• P(
∫ T0
0 f(Zs)ds <∞) ∈ {0, 1}

• If
∫∞
0 s(y) f(y)m(dy) = +∞ then Pz

(∫ T0
0 f(Zs) ds = +∞

)
≥ 1

20 .

• Ez
[(∫ T0

0 f(Zs) ds
)n ]

≤ n!
(∫∞

0 s(y) f(y)m(dy)
)n



Path integrability

Path integrability, Feller di�usion

Lemma

Let N be solution of

dNt =
√
γNt dBt +Nt(ρ− ξNt)dt.

Let TN0 = inf{t ≥ 0, Nt = 0}. For any x ∈ R+,

Px
(∫ TN

0

0

1

Ns
ds = +∞

)
= 1.



Path integrability

Path integrability, Wright-Fisher di�usion

Lemma

Let Y be solution of

dYt =
√
Yt(1− Yt) dBt, Y0 ∈ [0, 1).

Let T1 = inf{t ≥ 0, Yt = 1}. For any y ∈ (0, 1),

Py
(∫ T1

0

1

1− Ys
ds = +∞

)
= 1.



Rescaling and time changes

1 Model and rescaling

2 Demography and allele �xation

3 Path integrability

4 Rescaling and time changes

5 Distance to the Wright-Fisher di�usion



Rescaling and time changes

Wright-Fisher di�usion behaviour

Proposition

Let (X1, ..., XL−1) be an L-type Wright-Fisher neutral di�usion process.

• One of the L alleles is �xed a.s. in �nite time.

By induction on L.

• The population experiences successive allele extinctions.

By induction on L: Time change+Path integrability



Rescaling and time changes

Proof: Time change+Path integrability

•
∫ TXL

1
0

1
1−XL

s
ds = +∞

• De�ne τ on [0,+∞) such that
∫ τ(t)
0

1
1−XL(s)

ds = t for all t ≥ 0.

• Let

(Y 1
t , Y

2
t , ..., Y

L−2
t )t≥0 =

(
X1

1−XL
(τ(t)), ...,

XL−2

1−XL
(τ(t))

)
t≥0

.

Lemma

(Y 1
t , Y

2
t , ..., Y

L−2
t )t≥0 is a L− 1-type Wright-Fisher di�usion process.

• Successive allele extinctions at time SY1 < ... < SYL−2 < +∞
• Successive allele extinctions for (X1, X2, ..., XL) at times

τ(SY1 ) < ... < τ(SYL−2) < τ(+∞) = TX
L

1 if TX
L

1 <∞



Rescaling and time changes

Demographic Wright-Fisher di�usion

• L-dimensional Girsanov transformation->neutral case

•
∫ TN

0
0

γ
2Ns

ds = +∞ a.s.

•
∫ τ(t)
0

γ
2Ns

ds = t for all t ∈ R+

• X̂t = Xτ(t) follows a neutral classical Wright-Fisher di�usion

process.
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Distance to the Wright-Fisher di�usion

E�ective population size

• 2 neutral alleles

• (X,N) demographic Wright-Fisher di�usion with parameters ρ, α.

• XWF classical Wright-Fisher di�usion with parameter Ne

• Calibration: we impose

E(TX{0,1}) = E(TX
WF

{0,1} ),

which gives

Ne = E

 TX{0,1}∫ TX
{0,1}

0
1
Nt
dt

 .



Distance to the Wright-Fisher di�usion

Law of absorption time

Decreasing population size



Distance to the Wright-Fisher di�usion

Law of absorption time

Increasing populations size



Distance to the Wright-Fisher di�usion

Law of absorption time

"Constant" population size
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Distance to the Wright-Fisher di�usion

Perspectives

• Continuum of alleles: demographic Fleming-Viot process

• Quasi-stationary behaviour



Distance to the Wright-Fisher di�usion
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