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Introduction

Goal of the talk:

• Study general PDE models of evolution, describing the evolution
of quantitative phenotypic traits.

• Explain the approach of limit of “concentration” allowing to
describe the population dynamics as Dirac mass(es) evolving
with time.

• Give an alternative description of the Hamilton-Jacobi limit given
by this approach using a probabilistic interpretation of the PDE.

• Discuss extensions of this approach, including the case of a finite
trait space, for which the limit can be fully characterized.
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Chemostat example

Chemostat example

Evolutionary models of chemostat Link between the two notions of fitness Monotonicty of ps (x)

The chemostat

Chemostat
Chemostat

substrat substrat + biomasse

2/12

PDE model with r resources: u(t , x ) is the density of population with
trait x ∈ R at time t ≥ 0

∂tu(t , x ) = u(t , x )

(
γ

r∑
i=1

vi(t)ηi(x )︸ ︷︷ ︸
growth

− 1︸︷︷︸
outflow

)
+

1

2
∆u(t , x )︸ ︷︷ ︸
mutation

v̇i(t) = ci︸︷︷︸
inflow

− vi(t)︸︷︷︸
outflow

− vi(t)

∫
R
ηi(x )u(t , x )dx︸ ︷︷ ︸

consumption of resource i



Introduction Chemostat example General model, HJ limit Probabilistic interpretation and Varadhan’s lemma Finite trait space Conclusion

Chemostat example

Resources dynamics on a fast time scale

Putting resources dynamics at equilibrium, we obtain the PDE

∂tu(t , x ) =
1

2
∆u(t , x ) + u(t , x )

(
r∑

i=1

γciηi(x )

1 +
∫
ηi(x )u(t , x )

− 1

)

Competition for two re-
sources

(Diekmann, Jabin, Mischler,

Perthame, 2005)

 evolutionary branching
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Chemostat example

An example

Two resources, trait having opposite effects on consumption.

• K (z )dz = N (0, σ2),

• d(x ) = 1 + 4(x − 1/2)2, (minimum at 1/2), x ∈ [0, 1],

• r = 2 (2 resources), g1 = g2 = 1,

• η1(x ) = 2(x − 1)2, η2(x ) = 2x2, x ∈ [0, 1].

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,5

1

1,5

2

⎯⎯⎯   d(x)
⎯⎯⎯   eta_1(x)
⎯⎯⎯   eta_2(x)
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General model

General model

∂tu(t , x ) =
1

2
∆u(t , x ) + u(t , x )R (x , vt) , x ∈ Rd , t ≥ 0,

v i
t =

∫
Rd

ηi(x )u(t , x )dx , 1 ≤ i ≤ r ,

where

• −M ≤ ∂vi R (x , v1, . . . , vr ) ≤ −M−1.

• minx∈Rd R(x , v) > 0 as soon as ‖v‖ < vmin, and
maxx∈Rd R(x , v) < 0 as soon as ‖v‖ > vmax
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Hamilton-Jacobi limit

Small/rare mutations and large time/strong selection

∂tu
ε(t , x ) =

ε

2
∆uε(t , x ) +

1

ε
uε(t , x )R (x , vεt ) ,

uε(0, x ) = exp−hε(x )

ε
, vε,it =

∫
Rd

ηi(x )uε(t , x )dx ,

where hε converges to h in L∞, and

vmin ≤
∑
i

∫
e−hε(x)/εηi(x )dx ≤ vmax.

Diekmann et al., 2005: defining (WKB ansatz)

uε(t , x ) = exp

(
ϕε(t , x )

ε

)
, ∂tuε =

uε
ε
∂tϕε, ∆uε =

∆ϕε
ε

uε+
|∇ϕε|2

ε2
uε,

the PDE becomes

∂tϕε(t , x ) = R(x , vεt ) +
1

2
|∇ϕε(t , x )|2 +

ε

2
∆ϕε



Introduction Chemostat example General model, HJ limit Probabilistic interpretation and Varadhan’s lemma Finite trait space Conclusion

Hamilton-Jacobi limit

Hamilton-Jacobi limit with constraints

This suggests the convergence of ϕε to a solution of

∂tϕ(t , x ) = R(x , vt) +
1

2
|∇ϕ(t , x )|2,

ϕ(0, x ) = −h(x ), v i
t =

∫
Rd

ηi(x )µt(dx ),

where µt(dx ) is (in some sense) the limit of uε(t , x )dx .

Such a convergence and the limit HJ equation were studied in lots of
works (Diekmann, Jabin, Mischler, Perthame, 2005; Barles, Perthame,
2007, 2008; Barles, Mirrahimi, Perthame, 2009; C., Jabin, 2011; Lorz,
Mirrahimi, Perthame, 2011; Mirrahimi, Roquejoffre, 2016...)
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Hamilton-Jacobi limit

How to characterize µt?

• The total population mass remains bounded  maxx ϕ(t , x ) = 0
for all t ≥ 0.

• The limit population density at time t is 0 except at the points x
where ϕ(t , x ) = 0  µt has support in {ϕ(t , ·) = 0}.

• The measure µt has to be metastable, i.e.

• R(x , vt) ≤ 0 for all x such that ϕ(t , x) = 0,
• R(x , vt) = 0 for all x in the support of µt .

These properties are enough to characterize µt from {ϕ(t , ·) = 0} in
the case of a single resources (r = 1), but it is only known in
particular models for two or more resources (chemostat example, cf.
C., Jabin, 2011).

Well-posedness for the HJ equation is a hard problem, only solved in
general for a single resource (r = 1, cf. Mirrahimi, Roquejoffre, 2016).
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Hamilton-Jacobi limit

Simulation of the PDE in the chemostat example [T.
Causseron]
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Hamilton-Jacobi limit

Simulation of HJ in the chemostat example
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Biological implications

Back to the chemostat example

R(x , v) =

r∑
i=1

γciηi(x )

1 + vi
− d(x )

The measure µt

• has support in {x s.t. ϕ(t , x ) = 0}
• is metastable: ∀x ∈ Supp(µt), R(x , vt) = 0, where

vt,i =

∫
ηi(x )µt(dx )

Generically,

 η1(x1)
...

η1(xr+1)

 , . . . ,

 ηr (x1)
...

ηr (xr+1)

 ,

 d(x1)
...

d(xr+1)

 are linearly

independent

so Card Supp(µt) ≤ r , i.e. no more species than resources can coexist
(competitive exclusion principle).
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Biological implications

Fitness function

Hamilton-Jacobi equation:

∂tϕ(t , x ) = R(x , vt) +
1

2
|∇ϕ(t , x )|2

The growth of ϕ(t , x ) close to local maxima is governed by the sign of

f (x , t) = R(x , vt),

which can be interpreted as the invasion fitness of a (mutant) trait x
in the environment vt implied by the population at time t .

We get the usual picture of hill-climbing process in a fitness landscape
that depends on the population state (Metz et al., 1996, Geritz et al.,
1997).
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Biological implications

Coevolution with the fitness landscape
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Biological implications

Coevolution with the fitness landscape
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Biological implications

Canonical equation (in dim. 1)

Assuming that µt has support {x̄ (t)}
• µt metastable implies that µt = a(t)δx̄(t) where a(t) is the

unique a s.t. R(x̄ (t), aη(x̄ (t))) = 0 and vt,i = a(t)ηi(x̄ (t))

• ϕ(t , x ) maximal at x̄ (t) implies that ∂xϕ(t , x̄ (t)) = 0 and so

∂t∂xϕ(t , x̄ (t)) + ˙̄x (t)∂xxϕ(t , x̄ (t)) = 0

• differentiating the HJ equation w.r.t. x at x = x̄ (t) gives

∂t∂xϕ(t , x̄ (t)) = ∂xR(x̄ (t), vt)

• hence

˙̄x (t) = −∂xR(x̄ (t), vt)

∂xxϕ(t , x̄ (t))
,

where ∂xR(x̄ (t), vt) is the fitness gradient and ∂xxϕ(t , x̄ (t)) is the
(scaled) variance of the population distribution.
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Feynman-Kac formula

Probabilistic interpretation of the PDE

We follow ideas from Freidlin (1987, 1992).

Feynman-Kac formula expresses solutions of linear PDEs as
expectation of stochastic processes

uε (t , x ) = Ex

[
exp

(
−hε (X ε

t )

ε
+

1

ε

∫ t

0

R
(
X ε

s , v
ε
t−s
)

ds

)]
,

where X ε
t = x +

√
εBt with Bt Brownian motion.

Strongly suggests to apply Varadhan’s lemma!!
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Feynman-Kac formula

Sketch of proof

This can be proved applying Itô’s formula between times 0 and t to

Ys = uε(t − s,X ε
s ) exp

(
−1

ε

∫ s

0

R(X ε
u , v

ε
t−u)du

)
.

Setting α(s, x ) = R(x , vεs ), we obtain

uε(0,X ε
t ) exp

(
1

ε

∫ t

0

α(t − u,X ε
u )du

)
= uε(t , x ) +

∫ t

0

∇uε(t − s,X ε
s ) exp

(
1

ε

∫ s

0

α(t − u,X ε
u )du

)
dX ε

s

+

∫ t

0

(
−∂suε +

ε

2
∆uε +

1

ε
αuε

)
(t − s,X ε

s ) exp

(
1

ε

∫ s

0

α(t − u,X ε
u )du

)
.

This gives the formula taking expectations.
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Large deviations principle for Brownian paths

Large deviations principle for Brownian paths

The process X ε
t = x +

√
εBt satisfies a LDP as ε→ 0 (Schilder’s

theorem):

Px

(
(X ε

s )s∈[0,t] ≈ (ϕs)s∈[0,t]

)
≈ exp

(
−1

ε
It(ϕ)

)
, It(ϕ) =

1

2

∫ t

0

‖ϕ̇s‖2ds.

More formally, for all F ⊂ C([0, t ],Rd),

− inf
ϕ∈int(F)

It(ϕ) ≤ lim inf
ε→0

ε logPx (X ε ∈ F )

≤ lim sup
ε→0

ε logPx (X ε ∈ F ) ≤ − inf
ϕ∈adh(F)

It(ϕ).
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Large deviations principle for Brownian paths

Varadhan’s lemma

Varadhan’s lemma is a version of Laplace’s principle: for all
f : [0, 1]→ R continuous,∫ 1

0

e
1
ε f (x)dx ≈ exp

(
1

ε
sup

y∈[0,1]

f (y)

)
,

or, more formally,

lim
ε→0

ε log

∫ 1

0

e
1
ε f (x)dx = sup

y∈[0,1]

f (y).

Varadhan’s lemma: if F : C([0,T ],Rd)→ R is continuous,

Ex

(
e

1
εF(X ε)

)
=

∫
e

1
εF(ϕ)P(X ε ∈ dϕ) ≈

∫
e

1
εF(ϕ)e−

1
ε It (ϕ)dϕ,

or

lim
ε→0

ε logEx

(
e

1
εF(X ε)

)
= sup
ϕ s.t. ϕ(0)=x

(F (ϕ)− It(ϕ)) .
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Application to our model

Application to our model

In our case,

Fε(ϕ) = −hε(ϕt) +

∫ t

0

R(ϕs , v
ε
t−s)ds.

Need it to converge as ε→ 0 to F continuous.

• hε → h in L∞, h Lipschitz,

• to have a continuous limit of∫ t

0

R(ϕs , v
ε
t−s)ds =

∫ t

0

∫
Rr

R(ϕs , y)δvε
t−s

(dy)ds,

it is enough to look at weak convergence of measures: up to a
subsequence εk ,

δvεk
s

(dy)ds →Ms(dy)ds.
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Application to our model

Main result

Theorem

For all x ∈ Rd and t ≥ 0,

V (t , x ) := lim
k→∞

εk log uεk (t , x )

= sup
ϕ s.t. ϕ0=x

{
−h(ϕt) +

∫ t

0

∫
Rr

R(ϕs , y)Mt−s(dy)ds − 1

2

∫ t

0

‖ϕ̇s‖2ds

}
,

V (0, x ) = −h(x ) and V (t , x ) is locally Lipschitz in R+ × Rd .

Interpretation: biologically, the optimal function ϕ may be thought of
as the trait of the ancestral lineage of the dominant individuals at
time t .
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Variational form of HJ problem

Link with the HJ problem

When r = 1, using the results of Lorz, Mirrahimi, Perthame (2011),
we deduce that Mt is a Dirac mass and V (t , x ) = ϕ(t , x ), where

∂tϕ(t , x ) =

∫
R

R(x , y)Mt(dy) +
1

2
|∇ϕ(t , x )|2.

This is the classical variational formulation of Hamilton-Jacobi
problems.

Note that, in general, t 7→ Mt is not continuous, so we cannot apply
the standard results of this theory.
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Other mutation models

Extensions to other mutation models

Our method applies in general to any mutation operator satisfying a
large deviations principle. For example,

∂tu
ε(t , x ) =

1

ε

∫
Rd

[uε(t , x + εz )− uε(t , x )] K (z )dz +
1

ε
uε(t , x )R (x , vεt ) ,

where K : Rd → R+ satisfies∫
Rd

zK (z )dz = 0 and

∫
Rd

ea|z |2K (z )dz <∞, ∀a > 0.

The rate function is

It(ϕ) =

∫ t

0

∫
Rd

(
eϕ̇sz − 1

)
K (z )dz ds

In this case, the Hamilton-Jacobi limit was obtained in the chemostat
example for any number of resources in C., Jabin (2011).
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Discrete model

Finite phenotype space

We consider a finite trait space E , and for all ε > 0, the system of
ODEs: for all i ∈ E ,

u̇ε(t , i) =
∑
j∈E

[
e−T(i,j )/εuε(t , j )− e−T(j ,i)/εuε(t , i)

]
+

1

ε
uε(t , i)R(i , vεt ),

with

uε(0, i) = exp−hε(i)

ε
, vk ,ε

t =
∑
j∈E

uε(t , j )ηk (j ), ∀1 ≤ k ≤ r .

Exponentially small rate of mutation exp

(
−T (i , j )

ε

)
from state j to

i , with T (i , j ) > 0.
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Probabilistic interpretation and Varadhan’s lemma

Feynman-Kac representation

We make appear the generator of a Markov process:

u̇ε(t , i) =
∑
j∈E

e−
T(i,j)

ε (uε(t , j )− uε(t , i)) +
1

ε
uε(t , i)Rε(i , vεt ),

where
Rε(i , v) = R(i , v) + ε

(
e−T(i,j )/ε − e−T(j ,i)/ε

)
.

We have

uε(t , i) = Ei

[
exp

(
−hε(X

ε
t )

ε
+

1

ε

∫ t

0

Rε(X
ε
s , v

ε
t−s)ds

)]
,

where X ε
t is a Markov jump process with X ε

0 = i and jump rate

e−
T(i,j)

ε from i to j .
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Probabilistic interpretation and Varadhan’s lemma

Feynman-Kac representation and LDP

The processes (X ε)ε>0 satisfy a LDP with rate function

It : D([0, t ],E ) → R+

ϕ 7→
∑
s≤t

T (ϕs−, ϕs),

where we assume T (i , i) = 0 for all i ∈ E .

Difficulty: the rate function does not have compact level sets
 Varadhan’s lemma requires some work.
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Probabilistic interpretation and Varadhan’s lemma

Variational problem

Theorem

Assuming T (i , j ) > 0, ∀i 6= j , T (i , j ) + T (j , k) > T (i , k), for all
i ∈ E and t ≥ 0,

V (t , i) := lim
k→∞

εk log uεk (t , x )

= sup
ϕ s.t. ϕ0=i

−h(ϕt) +

∫ t

0

∫
Rr

R(ϕs , y)Ms(dy)ds −
∑
s≤t

T (ϕs−, ϕs)

 .

Well-posedness of this variational problem and the associates HJ
equation are accessible in this simpler model.
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Uniqueness

Further assumptions

For all A ⊂ E , we define the restricted dynamical system without
mutations:

(SA) u̇i(t) = ui(t)Ri

∑
j∈A

ηk (j )uj (t), 1 ≤ k ≤ r

 , ∀i ∈ A.

We assume that, for all A,

• All eq. of (SA) are hyperbolic, and (SA) admits a unique eq. u∗A,

satisfying Ri

(∑
j∈A ηk (j )uj (t)

)
< 0 for all i ∈ A s.t. u∗A,i = 0;

• (SA) admits a strict Lyapunov function LA, i.e. dLA(u(t))
dt < 0 for

all t ≥ 0 such that u(t) is not an equilibrium.

These assumptions are satisfied in the chemostat example. General
conditions for which this is true are also known for competitive
Lotka-Volterra systems (C., Jabin, Raoul, 2010).
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Uniqueness

A key consequence

Lemma

For all A ⊂ E and all ρ > 0 small enough, the first hitting time
t∗A(u(0), ρ) of the ρ-neighborhood of u∗A by a solution u(t) to (SA)
satisfies

t∗A(u(0), ρ) ≤ C ∗ρ (1 + sup
i∈A
− log ui(0)).

This implies

Proposition

For all t ≥ 0, there exists δt > 0 such that, for all s ∈ (t , t + δt),

Ms = δF({V (t,·)=0}), where F (A) =

∑
j∈A

ηk (j )u∗A,j


1≤k≤r

, ∀A ⊂ E

and t 7→ F ({V (t , ·) = 0}) is right-continuous.
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Uniqueness

Main result in the finite case

Theorem

There exists a unique solution to V (0, i) = −h(i) and

V (t , i) = sup
ϕ s.t. ϕ0=i

{
−h(ϕt) +

∫ t

0

R(ϕs ,F ({V (t , ·) = 0}))ds − It(ϕ)

}
such that t 7→ F ({V (t , ·) = 0}) is right-continuous, and this is also
the unique solution to V (0, i) = −h(i) and

V̇ (t , i) = sup
{

Rj (F ({V (t , ·) = 0}))

for j ∈ E s.t. V (t , j )− T (j , i) = V (t , i)
}

such that t 7→ F ({V (t , ·) = 0}) is right-continuous.
In particular, (ε log uε(t , i))ε>0 converges to this unique V (t , i).
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Conclusion

We have proved

• the convergence of ε log uε to the variational problem associated
to the Hamilton-Jacobi equation with constraints, for any
number of resources;

• the well-posedness of the Hamilton-Jacobi and variational
problems in the case of finite trait space.

This opens the way to

• well-posedness in continuous trait spaces;

• study of evolutionary branching;

• numerical approximations of the Hamilton-Jacobi equation.
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