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Introduction

Example: Wright-Fisher model (Sewall Wright, Ronald Fisher, 1930ies)

A (haploid) population of N individuals per generation,

assign to each individual (gene) in the present generation a ‘parent’
at random from the previous generation (i.i.d. picks),

past

present

The most “basic” (and popular) model in mathematical population
genetics, allows in particular to model genealogies of samples

∃ very many extensions
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Introduction

The n-coalescent

past

present

Robust limit model of genealogies of
sample in (haploid) exchangeable
population models as population size
N →∞

Mathematically, a partition-valued
random process, each pair of blocks
(=ancestral lines) merges at rate 1

Many extensions, in particular also for
diploid organisms

4



Introduction

Wakeley et al’s concern

John Wakeley, Léandra King, Bobbi S. Low and Sohini Ramachandran
(Genetics 2012) write:

“We address a conceptual flaw in the backward-time approach to
population genetics called coalescent theory as it is applied to diploid
biparental organisms. Specifically, the way random models of reproduction
are used in coalescent theory is not justified. Instead, the population
pedigree for diploid organisms – that is, the set of all family relationships
among members of the population – although unknown, should be treated
as a fixed parameter, not as a random quantity.”
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Introduction

Wakeley et al’s concern, remarks

Wakeley et al 2012 consider (simulated) genetic data/gene
genealogies in fixed (simulated) pedigrees and observe that for several
models, when N is reasonably large

I various tests (Tajima’s D based on independent loci, a test if the
pairwise coalescence time is exponential) do not reject the null
hypothesis of a standard Kingman coalescent

I pair coalescence probabilities for genes become ‘flat’ (as in classical
haploid models) after a short initial period

Similar findings even in the presence of historic demographic events
(if not too severe, J. Wakeley, L. King, P.R. Wilton 2016)

or of population substructure (if sufficient migration occurs,
P.R. Wilton, P. Baduel, M.M. Landon, J. Wakeley 2017)
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Introduction

Wakeley et al’s concern, remarks 2

Relation between pedigree ancestry and genetic ancestry has received
some attention in the literature, e.g. Chang (1999) and discussion;
Derrida, Manrubia & Zanette (1999,2000); Matsen & Evans (2008);
Barton & Etheridge (2011), ...

Note: different time scales relevant:

≈ logN (pedigree) vs. ≈ N (gene genealogy)

Apparently, so far the issue raised by Wakeley et al has only been
considered in ‘rigorous’ form by Blath, Kadow & Ortgiese (2015),
who studied the ‘cyclical Wright-Fisher model.’

This talk (nutshell version): A limit theorem for the conditional
distribution of the gene genealogy given the pedigree that
corroborates/confirms Wakeley et al’s observations in the N →∞
limit (for a relatively general class of diploid biparental population
models).
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A diploid Cannings model

A diploid Cannings model

(a very small extension of the model from Möhle & Sagitov, J. Math. Biol., 2003)

fixed-size, panmictic population, diploid

N females, N males per generation

consider one (neutral, autosomal) locus

each individual has two gene copies (one inherited from each parent),
Mendelian inheritance

ν
(r)
ij . . . no. of offspring of female i and male j (in generation r), i.i.d.

over generations∑N
i ,j=1 νij = 2N (drop superscript (r) for ‘generic’ case),

exchangeability condition: (νi ,j)i ,j=1,...,N =d(νσ(i),σ′(j))i ,j=1,...,N

for any permutations σ, σ′ ∈ SN
random sex assignment (i.e., out of the 2N children pick N w.o.

replacement to be the daughters, the remaining N are the sons)

Examples: diploid two-sex Wright-Fisher model,
Möhle & Sagitov’s N couples Cannings model

8



A diploid Cannings model

A diploid Cannings model, bookkeeping

Pedigree:

enumerate ind.s in each generation randomly
(give females numbers 1, . . . ,N, males N + 1, . . . , 2N, say)

(k, r) . . . ind. no. k in gen. r

Φmo(k, r) . . . no. of (k , r)’s mother,
Φfa(k , r) . . . no. of (k, r)’s father,
(assigned at random in accordance with offspring numbers (ν

(r−1)
ij )ij)

i.e. (k , r) is a descendant of
(
Φmo(k , r), r − 1

)
and

(
Φfa(k , r), r − 1

)
Φ(N) =

(
(Φmo(k , r),Φfa(k , r); k = 1, . . . , 2N, r ∈ Z

)
is the (population) pedigree (or ‘parentship graph’)
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A diploid Cannings model

A diploid Cannings model, bookkeeping 2

Chromosomes and Mendelian randomness:

Individual (k , r) has chromosomes

(k, 1, r) [inherited from the mother, (Φmo(k, r), r − 1)] and

(k, 2, r) [inherited from the father, (Φfa(k , r), r − 1)]

Mk,c,r i.i.d., P(Mk,c,r = 1) = 1
2 = P(Mk,c,r = 2), k = 1, . . . , 2N;

c = 1, 2; r ∈ Z

(k, c , r) descends from

{(
Φmo(k, r),Mk,1,r , r − 1

)
, c = 1,(

Φfa(k , r),Mk,2,r , r − 1
)
, c = 2.

Note: Two levels of randomness in this model

Random pedigree Φ(N), ‘Mendelian randomness’ (Mk,c,r )
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A diploid Cannings model

A diploid Cannings model, notation/bookkeeping 3

n-sample:

pick n chromosomes at random from generation 0
(We may think of n chromosomes from n distinct randomly chosen individuals or both
chromosomes from n/2 individuals or s.th. in-between; this will not matter in the limit.)

For 1 ≤ i , j ≤ n, t ∈ 0, 1, 2, . . . write i ∼t j
if sampled chromosomes i and j descend from the same chromosome in
generation −t

and R
(N,n)
t := {equivalence classes under ∼t}.

(R
(N,n)
t )t∈N0 is a stochastic process with values in En, the set of partitions

of {1, . . . , n},
R
(N,n)
0 =

{
{1}, {2}, . . . , {n}

}
.
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A diploid Cannings model Jointly averaged limit

(Averaged) coalescent limit, preliminaries

Put νfi =
N∑
j=1

νij , νmj =
N∑
i=1

νij

(
∑N

i=1 ν
f
i = 2N =

∑N
j=1 ν

f
j and (νf1, . . . , ν

f
N), (νm1 , . . . , ν

m
N ) are jointly

exchangeable in the sense that(
(νf1, . . . , ν

f
N), (νm1 , . . . , ν

m
N )
)

=d
(
(νfσ(1), . . . , ν

f
σ(N)), (νmσ′(1), . . . , ν

m
σ′(N))

)
for any

permutations σ, σ′ ∈ SN .)

Let
cN = 1

16(2N−1)E[νf1(νf1 − 1)] + 1
16(2N−1)E[νm1 (νm1 − 1)]

be the pair coalescence probability (over one generation for two randomly

chosen chromosomes from different individuals),

dN =
E[νf1(νf1 − 1)(νf1 − 2)]

64(2N − 1)(2N − 2)
+

E[νm1 (νm1 − 1)(νm1 − 2)]

64(2N − 1)(2N − 2)

the triple coalescence probability.
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A diploid Cannings model Jointly averaged limit

(Averaged) coalescent limit

Lemma (a tiny variation on Möhle & Sagitov 2003).
If 0 < cN → 0 and dN/cN → 0,

L
(
(R

(N,n)
bt/cNc)t≥0

)
=⇒ K (n) as N →∞

(convergence in distribution on D([0,∞), En)), where K (n) is (the law of)

Kingman’s n-coalescent.

Note:

Distributional convergence refers to averaging over both levels of
randomness, the random pedigree Φ(N) and the ‘Mendelian randomness’
(Mk,c,r ).
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A diploid Cannings model Jointly averaged limit

(Averaged) coalescent limit, remarks on the proof

(R
(N,n)
bt/cNc)t≥0 =⇒

N→∞
K (n)

R(N,n) is not a Markov chain

but a suitably enriched version R̃(N,n) – which keeps track of the
grouping of blocks (=̂ancestral chromosomes) into diploid individuals
– is

R̃(N,n) has state space
Ẽn = {partitions of {1, . . . , n}, possibly grouped into ordered pairs},
which canonically ‘contains’ En
separation of time scales: breaking up diploid grouping takes O(1),
non-trivial coalescences takes Θ(1/cN)� O(1)

then use e.g. Möhle’s (1998) lemma
(A, BN (m ×m-)matrices such that P := limr→∞ Ar , G := limN→∞ PBNP

exist. Then limN→∞(A + cNBN)bt/cNc = PetG .)
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit

Theorem.
If 0 < cN → 0 and dN/cN → 0,

L
(
(R

(N,n)
bt/cNc)t≥0

∣∣Φ(N)
)

=⇒ K (n) as N →∞ in distribution

(convergence in distribution on M1

(
D([0,∞), En)

)
)

where K (n) is (the law of) Kingman’s n-coalescent.

This implies in particular (for N suff. large):

the rescaled pair coalescence time for two genes given Φ(N) is
approximately exponential

statistical tests for the Kingman coalescent as a null hypothesis
cannot reject the null hyp. based on a gene genealogy drawn from a
‘typical’ pedigree (with higher prob. than the significance level)
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit, proof idea

Encode (R
(N,n)
bt/cNc)t≥0 via jump times

0 = T
(N,n)
n < T

(N,n)
n−1 < T

(N,n)
n−2 < · · · < T

(N,n)
1

and skeleton chain
S
(N,n)
j := R

(N,n)

T
(N,n)
j

, j = n, n − 1, . . . , 1.

Want to show

E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
]

P−→
N→∞

EK (n)

[
e−λ1T

(n)
1 −···−λnT

(n)
n 1(S

(n)
1 = s1, . . . ,S

(n)
n = sn)

]
for any λ1, . . . , λn ≥ 0, s1, . . . , sn ∈ En.

We have (by the jointly averaged limit lemma)

E
[
E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
]]

P−→
N→∞

EK (n)

[
e−λ1T

(n)
1 −···−λnT

(n)
n 1(S

(n)
1 = s1, . . . ,S

(n)
n = sn)

]
.
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit, proof idea 2

To show that

Var

[
E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
]]
−→
N→∞

0

note that

E
[(

E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
])2]

= E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

× e−λ1T̂
(N,n)
1 −···−λnT̂ (N,n)

n 1(Ŝ
(N,n)
1 = s1, . . . , Ŝ

(N,n)
n = sn)

]
where T̂

(N,n)
j , Ŝ

(N,n)
j refer to a copy (R̂

(N,n)
bt/cNc)t≥0 which uses

the same pedigree Φ(N) but independent ‘Medelian coin flips’ (M̂k,c,r ).
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit, proof idea 2

a suitably enriched version of (R
(N,n)
s , R̂

(N,n)
s )s∈N0 is a Markov chain

on (a suitable enrichment of) Ẽn × Ẽn
(which keeps track of grouping into diploid individuals and also of ‘labelling’ if a

chromosome counts for R(N,n), for R̂(N,n) or for both)

joint dynamics ‘factorises’ as N →∞ (separation of time scales, and
R(N,n), R̂(N,n) interact rarely), this yields

E
[(

E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
])2]

−→
N→∞

(
E
[
E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
]])2

which gives the claim.
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit, proof idea 2

a suitably enriched version of (R
(N,n)
s , R̂

(N,n)
s )s∈N0 is a Markov chain

on (a suitable enrichment of) Ẽn × Ẽn
(which keeps track of grouping into diploid individuals and also of ‘labelling’ if a

chromosome counts for R(N,n), for R̂(N,n) or for both)

joint dynamics ‘factorises’ as N →∞ (separation of time scales, and
R(N,n), R̂(N,n) interact rarely), this yields

E
[(

E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
])2]

−→
N→∞

(
E
[
E
[
e−λ1T

(N,n)
1 −···−λnT (N,n)

n 1(S
(N,n)
1 = s1, . . . ,S

(N,n)
n = sn)

∣∣∣Φ(N)
]])2

which gives the claim.
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Conditional coalescent limit

Conditional (‘quenched’) coalescent limit

L
(
(R

(N,n)
bt/cNc)t≥0

∣∣Φ(N)
)

=⇒ K (n) as N →∞ in distribution

Remark.
One can think of the theorem as a quenched limit result for systems of
directed random walks in random environment (RWRE) on
{1, . . . , 2N} × {1, 2} × Z−.

In fact, the idea to strengthen an averaged central limit theorem to a
quenched central limit theorem by suitably controlling two copies of the
random walk in the same random medium appears in the literature on
RWRE, cf Bolthausen & Sznitman (2002), B., Černý, Depperschmidt &
Gantert (2013).
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Outlook

Outlook

Possible extensions:

local structure

unequal sex ratios

varying population sizes

(partial) selfing [coalescent limit after possibly a first ‘scattering phase’]

diplo-/haploid systems

monoecious populations

several unlinked/linked loci [a ‘quenched ARG’]

but not: highly skewed offspring laws [there is no ‘Λ-coalescent analogue’]

Question

behaviour on shorter timescales 1� t � 1/cN?
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Outlook

Thank you for your attention!
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