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The basic model

Trait value = genetic
︸ ︷︷ ︸

Z

+ non-genetic
︸ ︷︷ ︸

E

For today’s purposes we ignore environmental component E.

Genetic component normally distributed; mean average of values in
parents;

Z ∼ N
(
z1 + z2

2
, V0

)

In a large outcrossing population, V0 = constant, otherwise
decreases in proportion to relatedness.



The simplest case

Large outcrossing population. Z ∼ N
(
z1+z2

2 , V0
)

.

With purely random mating (neutral trait), the population as a
whole rapidly converges to a Gaussian with variance 2V0 (Bulmer).

If variance in parental population is V1, that of offspring is

V1

2
+ V0,

At equilibrium, this is V1, so V1 = 2V0.

Half variance is within families, half between.



IN GENERAL THE INFINITESIMAL MODEL ONLY SAYS THAT
THE GENETIC COMPONENTS WITHIN FAMILIES ARE
NORMALLY DISTRIBUTED. THE DISTRIBUTION ACROSS
THE WHOLE POPULATION MAY BE FAR FROM NORMAL.



Pedigrees

Each individual has two parents in the previous generation.

No descendants Ancestral to whole
population

Present

Selfing

21 3 4 5



An aside on common ancestors

Theorem (Chang 1999)
Let τN be time to MRCA of population size N evolving according
to diploid Wright-Fisher model (fixed population size, parents
picked uniformly at random with replacement).

τN
log2 N

P−→ 1 as N → ∞.

Theorem (Chang 1999)
Let UN be time until all ancestors are either common to whole
population or have no surviving progeny.

UN

1.77 log2N
P−→ 1 as N → ∞.

There are many routes through the pedigree from ancestor to
present.



The pedigree as matrices

Pedigree spanning t generations ⇔ random matrices M0, . . . ,Mt−1.

The ith row of Mt specifies parents of individual labelled i in
generation t before the present.

Present

21 3 4 5

No need for constant population size
M0 =

⎛

⎜
⎜
⎜
⎜
⎝

1
2 0 1

2 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
0 0 1

2 0 1
2

0 0 0 1
2

1
2

⎞

⎟
⎟
⎟
⎟
⎠



Selfing

. . . or when there is selfing

21 3 4 5

t=3

No descendantsSelfing

M3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1
2 0 1

2 0 0
1
2 0 1

2 0 0
0 0 1

2
1
2 0

0 0 0 1
2

1
2

⎞

⎟
⎟
⎟
⎟
⎠



The probability of identity

Write Fij(t) for probability homologous genes in individuals
labelled i, j in generation t descend from the same ancestral gene.

! Haploid case

Fij(t) =
∑

k,l

Mik(t)Mjl(t)Fkl(t− 1),

! Diploid case

Fij(t) =
∑

k,l

Mik(t)Mjl(t)F
∗

kl(t),

F ∗

kl = Fkl if k ̸= l, F ∗

kk =
1

2
(1 + Fkk) .



The infinitesimal model

Let

1. P(t) denote the pedigree relationships between all individuals
up to and including generation t;

2. Z(t) denote the traits of all individuals in the pedigree up to
and including the tth generation.

The distribution of trait values in generation t, conditional on
knowing P(t) and Z(t−1), is multivariate normal.

THIS IS A STATEMENT ABOUT DISTRIBUTION WITHIN
FAMILIES, NOT ACROSS THE WHOLE POPULATION

The population need not be neutral. The pedigree captures
selection, population structure etc.



Why might it be a reasonable model?

Additive traits in haploids (no mutation)
M = number of (unlinked) loci affecting trait.

! Trait value in individual j:

Zj = z̄0 +
M
∑

l=1

1√
M
ηjl,

where z̄0 = average value in ancestral population.



Why might it be a reasonable model?

Additive traits in haploids (no mutation)
M = number of (unlinked) loci affecting trait.

! Trait value in individual j:

Zj = z̄0 +
M
∑

l=1

1√
M
ηjl,

where z̄0 = average value in ancestral population.

! Ancestral population. η̂jl i.i.d (for different j), say.



Reproduction

[1] and [2] refer to the first and second parents of an individual.

! ηjl[1] is the scaled allelic effect at locus l in the first parent of
the jth individual. Similarly, Zj [1] will denote the trait value
of the first parent of individual j.

! Write Xjl = 1 if the allelic type at locus l in the jth individual
is inherited from the ‘first parent’ of that individual; otherwise
it is zero. P[Xjl = 1] = 1/2 = P[Xjl = 0].

Zj = z̄0 +
1√
M

M
∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} .



Conditioning

We would like to derive the distribution of trait values in
generation t conditional on knowing P(t) and Z(t−1).

Zj = z̄0 +
1√
M

M
∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} .

Key: Need to be able to calculate the distribution of ηjl[1]
conditional on Z(t−1) and show that it is almost unaffected by the
conditioning.

Then E[(η[1]jl − η[2]jl )
2] ≈ 2(1 − F[1][2])var(η̂l) ❀ variance among

offspring reduced proportional to probability of identity.



A toy example

Suppose ηl are i.i.d. with ηl = ±1 with equal probability, z̄0 = 0.

P[η1 = 1|Z = k/
√
M ] =

P

[
∑M

l=1 ηl = k
∣
∣
∣ η1 = 1

]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
P

[
∑M

l=2 ηl = (k − 1)
]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
1

2M−1

1
2M

( M−1
(M+k−2)/2

)

( M
(M+k)/2

) P [η1 = 1]

=

(

1 +
k

M

)

P [η1 = 1] .



Toy example continued

If scaled allelic effects are i.i.d. Bernoulli,

P

[

η1 = 1
∣
∣
∣Z =

k√
M

]

=

(

1 +
k

M

)

P [η1 = 1] .

For a ‘typical’ trait value, k/M = O(1/
√
M).

For extreme values (k = ±M), the trait gives complete
information about the allelic effect at each locus.

For ‘typical’ k, the distribution of η1 is almost unchanged because
there are so many different configurations of allelic effects that
correspond to the same trait value.



The infinitesimal model

Conditional on P(t) and Z(t−1),
(

Zj −
Zj [1] + Zj[2]

2

)

j=1,...,Nt

converges (in distribution) to mean zero multivariate normal with
diagonal covariance matrix Σt.

(Σt)jj = segregation variance among offspring of the parents of
individual j.



OVER TO NICK



Can	a	popula4on	establish	in	a	new	habitat	?	

	-	migra4on	from	a	source	popula4on	

	 	-	evolu4onary	rescue/sympatric	specia4on	

	-	growth	requires	adapta4on	

	-	chance	that	a	single	migrant	establishes	

	-	4me	to	establishment	with	steady	migra4on	

	-	sta4onary	distribu4on	of	trait	&	N	

Use	the	infinitesimal	model	

Barton,	Etheridge	&	Véber,	Theor.	Pop.	Biol.	2018	

Barton	&	Etheridge,	Theor.	Pop.	Biol.	2018	



Can	a	popula4on	establish	in	a	new	habitat	?	

	-	growth	rate	depends	on	a	trait,	z		

	-	Poisson	#	of	offspring,	mean	eβz		

	-	under	the	infinitesimal	model,	
	 	offspring	have	mean	~	midparent	

	 	 	 	 	 	 	variance	~	V(1	-	F)	

	-	large	source	popula4on	has	variance	2V,	F=0	

	

Haploid	parents	i,j:	V(1	–	Fi,j)	

Diploid	parents	i,j:	V(1	–	(Fi,i+Fj,j)/2)	

	

	



What	is	the	chance	that	one	individual	establishes?	

	
-  Random	ma4ng,	including	selfing	

	 	-	ignore	inbreeding	depression	

Variance	in	source	is	2V	=	1	

Source	mean	is	z0	=	-2,	β	=	0.25;	e-βz	=	0.61		



What	is	the	chance	that	one	individual	establishes?	

	
-  Random	ma4ng,	including	selfing	

	 	-	ignore	inbreeding	depression	

β	=	0.125,	0.25,…,	1,	2	
(bobom	to	top)	

β  =	0.25,	2	(bobom	to	top)	

Solid	curves	at	right:	homozygous	

Solid	curve	(dobed):	individual,	z	

Dashed	curve:	random	draw,	mean	z	

Grey	dashed:	random	draw,	mean	z,		

	 	 	 	 	homozygous	



Time	to	establishment	with	migra4on	rate	M	

	β	=	0.25,	zs	=	-1,	-1.5,	…,	-3.5	(bobom	to	top)	

		

	

For	zs	<	-1.57,	migra4on	pulls	the	sink	popl’n	back		

	



Recap of Nick’s model

Large source population, trait values ∼ N (z̄s, 2V ).

M (unrelated) migrants enter population in each generation.

N(t) population size in generation t, z(t) mean trait value.

Before migrants arrive, number in next generation Poisson with
expectation N(t)W , where W mean fitness across offspring of
random matings.



Nick’s model continued

Offspring of individuals i, j, have mean trait value given by the
midparent value, variance:

! haploid parents Vij = V (1− Fij),

! diploid parents Vij = V (1− (Fii + Fjj)/2).

Fitness if trait value z is eβz, so

N(t)W =
1

N(t)

∑

i,j

exp

(

β
(zi + zj)

2
+
β2

2
Vij

)

.



A ‘deterministic’ model

Assume that the trait distribution across the whole population is
Gaussian. NOT a consequence of using the infinitesimal model.

First approximation: suppose population size and trait
mean/variance evolve deterministically.

Each diploid migrant carrries half of the genetic variance in the
source population, so modest rates of migration into a small ‘sink’
population can maintain high genetic variance.

Denote within family variance by V ∗, assumed constant irrespective
of origin of parents. (i.e. Assume F = 0, but can be a bit more
sophisticated. Recall variance across population will then be 2V ∗.)



A recursion

The distribution of traits across the population ∼ N (z̄, 2V ∗), so

W = exp
(

βz̄ + β2V ∗
)

,

After reproduction and the subsequent migration,

N(t+ 1) = M +N(t) exp
(

βz̄(t) + β2V ∗
)

;

z̄(t+ 1) =
1

N(t+ 1)

(

Mz̄s +N(t)E[zeβz ]
)

,

(expectation is w.r.t. distribution of trait among offspring before
selection, calculated by differentiating W w.r.t. β).



New coordinates

N(t+ 1) = M +N(t) exp
(

βz̄(t) + β2V ∗
)

;

z̄(t+ 1) = z̄(t) + 2βV ∗

(

1− M

N(t+ 1)

)

− M

N(t+ 1)

(

z̄(t)− z̄s
)

.

Set n = N/M , α = β
√
2V ∗ and y = (z̄ − z̄s)/

√
2V ∗.

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

Ws = exp
(

βz̄s + β2V ∗
)

(mean growth rate of the source population in the new conditions)



Critical behaviour

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

! If Ws > Ws,crit, population size and trait increase together,
regardless of M .

! If Ws < Ws,crit, two equilibria, one stable and one unstable.
Population may be unable to grow, regardless of how large is
M ; instead, it is maintained by migration as a poorly adapted
‘sink’.



The critical value

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

At equilibrium y(t) = y(t+1) = α(n− 1), i.e., ycrit = α(ncrit − 1).

Writing f(n) = 1 + nWseα
2(n−1), must solve

n = f(n), 1 = f ′(n).

Yields quadratic in n, whose positive solution is

ncrit =
α2 +

√
α4 + 4α2

2α2
=

1

2

(

1 +
√

1 + 4/α2
)

.



Back to original variables

Ncrit =
M

2

(

1 +
√

1 + 2/(β2V ∗)
)

,

Ws,crit =
ncrit − 1

ncrit
e−α2(ncrit−1) =

(

1− M

Ncrit

)

e−α2(Ncrit−M)/M ,

βz̄s,crit = −1

2
α
(√

4 + α2
)

− log

(

α+
√
4 + α2

−α+
√
4 + α2

)

.

For α = β
√
2V ∗ ≪ 1, βz̄s,crit ∼ −2α.

For α≫ 1, βz̄s,crit ≈ −α2/2− 2 log α.



A continuous time approximation

N(t+ 1) = M +N(t) exp
(

βz̄(t) + β2V ∗
)

;

z̄(t+ 1) = z̄(t) + 2βV ∗

(

1− M

N(t+ 1)

)

− M

N(t+ 1)

(

z̄(t)− z̄s
)

.

Assume βz̄ + β2V ∗ is small, and ignore second order term β2V ∗:

dN(t)

dt
= M + βz̄(t)N(t);

dz̄(t)

dt
= 2βV ∗

(

1− M

2N(t)

)

− M

N(t)
(z̄(t)− z̄s).

In fact, to accumulate an error of order at most β2(M +N) per
generation should also replace immigration rate M in the first
equation by M(1− βz̄(t)/2). With this equation the error is order
βz̄M + β2(M +N).



Demographic stochasticity/sampling drift?

Add random perturbations < ζ2N >= N ; < ζ2z̄ >= 2V ∗

N .

Introduce the potential, U :

U = M logN + β(N − M

2
)z̄ − M

4V ∗
(z̄ − z̄s)

2 .

dN

dt
= N

∂U

∂N
+ ζN = M + βz̄N + ζN ,

dz̄

dt
=

2V ∗

N

∂U

∂z̄
+ ζz̄ = 2βV ∗

(

1− M

2N

)

− M

N
(z̄ − z̄s) + ζz̄.



The ‘stationary distribution’

If there were a stationary distribution, it would satisfy

ψ ∝ e2U

N
= N2M−1 exp

(

β(2N −M)z̄ − M

2V ∗
(z̄ − z̄s)

2
)

.

Diverges for large N , z̄; should approximate the density near to a
stable ‘sink’ equilibrium, when that exists.

! N2M−1, migration that increases population size;

! eβ(2N−M)z̄ , directional selection on the trait;

! e−M(z̄−zs)
2/2V ∗

, gene flow that pulls the trait mean towards
the source.



More on the stationary distribution

For given N , the trait mean is normally distributed, with variance
V ∗/M , and mean

E [z̄] = z̄s + βV ∗(2N −M)/M ;

Deterministic equilibrium in which selection 2βV ∗(1−M/2N)
increases the trait mean, but is opposed by gene flow at rate M/N .

Integrating over z̄, distribution of N proportional to

N2M−1 exp

(

β2(2N −M)2
V ∗

2M
+ β(2N −M)z̄s

)

.

If M > 1/2 and z̄s < −2
√

V ∗(1− 1/(2M)) + βV ∗/2 ∼ −2
√
V ∗,

distribution has a peak at low density, and with z̄ < 0.
Metastable ‘sink’ population maintained by gene flow despite
maladaptation.



BACK TO NICK



Diffusion	approxima4on	for	N,	z		

	–	assuming	Gaussian	with	constant	variance	V*	

	

Sta4onary	distribu4on	for	a	sink	popula4on:	

	M=10	

zs	=	-3	

β  =	0.05	
2V*	=	1	

	



Diffusion	approxima4on	for	N,	z		

	–	density	regula4on	–γN2	

	-	stabilising	selec4on	–s(z-zopt)
2/2	

	Sta4onary	distribu4on:	

	
M=10	

zs	=	-3	

β  =	0.05	
s	=	0.02	zopt	=	5	

γ	=	0.001	

2V*	=	1-F	

	



Summary:	

	

	-	one	individual	can	establish	if	mean	>	4	s.d.	below	threshold	

	-	a	‘sink’	popula4on	may	be	trapped	if	source	mean	is	too	low	

	-	a	popula4on	can	escape,	and	adapt	to	a	new	op4mum	

	-	it	will	then	be	(partly)	reproduc4vely	isolated	

	

	-	a	model	of	specia4on,	due	to	adapta4on	despite	gene	flow	


