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Introduction : how fast species interact ?

Functional responses quantify the interactions between populations
and provide a mortality or natality rate in population dynamics

y'(t) = ay(t) +y()R(x(1), y(1))
in various contexts :
@ predation
R(x,y) = bx; bx/(1+cx); bx?/(1+cx?); b/(x+cy)..
@ epidemiology
R(x,y) = bx; b/(x+Y)...
@ mutualism, mating, horizontal genetic transfer, etc ...

They may take into account additional ressources or interactions :
R(x,y,z) ...
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Introduction : how fast species interact ?

When counting interactions for a given population, functional
responses are mostly based on phenomenological approaches (rather
than individual traits)

“[...]they must be considered phenomenological. That is, although they
correctly reproduce the shape of natural functional responses, they are not
able to explain the underlving mechanism.” (Jeschke et.al. 2002)
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Introduction : how fast species interact ?

When counting interactions for a given population, functional
responses are mostly based on phenomenological approaches (rather
than individual traits)

“[...]they must be considered phenomenological. That is, although they
correctly reproduce the shape of natural functional responses, they are not
able to explain the underlving mechanism.” (Jeschke et.al. 2002)

They arise at a macroscopic level in population dynamics via

@ slow fast interactions in Michaelis Menten response : bx/(1 + ¢x),
and more generally chemical reactions [Kurtz et al...], see also
[Dawes and Souza] for prey predators.

@ "hunger level" structured population in steady state [Jeschke et
al...]
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Intro on : how fast species interact ?

Is the form of R important ?
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Introduction : how fast species interact ?

Is the form of R important ?
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They may give different qualitative and quantitative predictions...

Vincent Bansaye (E. polytechnique) 27 june, Marseille, Cirm

4/21



Intro

on : how fast species

terac

How does it look like from individual(s) ?

Batzli and al, 1981
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Introduction : how fast species interact ?

How does it look like from individual(s) ?

Batzli and al, 1981
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-> Large fluctuations ; affects inference and population dynamics ?
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Introduction : how fast species interact ?

Objectives

@ General approach of the functional form (from modeling individual
behavior)

@ Describe their fluctuations and develop inference tools
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Introduction : how fast species interact ?

Objectives

@ General approach of the functional form (from modeling individual
behavior)

@ Describe their fluctuations and develop inference tools

@ Large population approximation for population dynamics
@ Genealogies?
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A first simple approach via renewal theory

The successive interaction events between two species are
independent (and identically) distributed as the r.v.

T(n)

which depends on the population sizes n = (nq, no, ...).
The number of interactions until time t is given by

Ni(n) = #{k: Sk(n) < t}

where
Sk(n) =Ty(n) +...+ Tx(n)

and (T;j(n) :i>1) are i.i.d. under regeneration assumption (¢ has to be
small compared to n).
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Example for prey predators

Each interaction may be decomposed in successive times, with
success probability, different ressources or interactions.

Typically for prey predators, n = (nq, no) = (#preys, #predators) and
for one predator

T(n)=Ts(m)+ Ty
where
@ Tg (searching time) may involve foraging strategy

@ Ty (handling time) may include relapse, satiety, with a low
variance and may include more density dependences.
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Example for prey predators

Each interaction may be decomposed in successive times, with
success probability, different ressources or interactions.

Typically for prey predators, n = (nq, no) = (#preys, #predators) and
for one predator

T(n)=Ts(m)+ Ty
where
@ Tg (searching time) may involve foraging strategy

@ Ty (handling time) may include relapse, satiety, with a low
variance and may include more density dependences.

But also (sheep, partridge,...)
n = (ny,np, n3) = (#food for preys, #preys, #predators),

T(n) = Ts(ny) + Tvigitance(N3) + Ty
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A first simple approach via renewal theory

Central limit theorem (renewal theory)

Under second moment assumption,

\/fN(O Var(T(n)))

M (T

t
CE(T(n))

inlaw as t — oo.
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A first simple approach via renewal theory

A key example : Holling Il, Monod functional response

For each predator, the time for interaction

T(x)=Ts(x)+ Th

with
E(Ts(x)) = a/x
yields
1
Ni(X) ~iooo T
Hx) a/x +E( Thanding)

a.s. ie the classical function response with saturation

X
a-+ X.E( Th)
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A first simple approach via renewal theory

An explicit simple model

Moreover with constant handling
Var(Ty) =0, ieTy=c

and deterministic foraging in 1D (random arrival point in a
homogeneous prey repartition on [0, L] and straightline motion)
_ Uniform[0, L/x]

Ts(x) = . , v = speed of predator

we get the second order approximation and explicit parameters

X x(Lj2v)?
Ni(x) = tL/4v rox VIV (0’ (L/2v + cx)3)

inlaw as t — oo.
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A first simple approach via renewal theory

Examples in 1D : searching, handling and potential

interference

Funetional Handling Searching Interaction Mean

Response (R(.)) time (c,) probability (p,) with e & Variance

No handling 0 1 No: z=10 yl T

2 species

(Holling Type I) 4t

With Handling >0 1 No: z=10 y(l+ r!‘,y)_l

2 species

(Holling Type II) 2P+ cpy) ®

With Handling >0 1 Yes: z >0 V(g + az) + eyy?) T

3 species c:=0,0=0

(Holling Type III) "é(f(y +az) + cyy?)~?

xP(y + az)(y + 3az)

With Handling >0 1 Yes: z==x y(l +cyy+ c.ar) !

2 species c.=cp, =0

Predators Interference 2y + ax)” I+ cyy + cpar)™3

(Beddington-DeAngelis) x (Jirf_n‘r(y + ax)? + beaxl(y + ax)
+2(y + 3ax))

With Handling >0 T No: z=10 IM+c, 07t

2 species
Predators Competition
(Ratio Dependence)

Ela(3- 2)(I+¢, )3
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An application with data for grey partridge

Eaten Seeds per Seconds

0“‘ 100 Ilv200 “300‘ ‘400
Seeds Density
Baker et al. 2010

Baker et al conclude that the vigilance has no effect on seeds
consumption, but including fluctuations lead us to the converse result.
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An application with data for grey partridge

Eaten Seeds per Seconds

0“‘ 100 ll.200 “300‘ ‘400
Seeds Density
Baker et al. 2010

Baker et al conclude that the vigilance has no effect on seeds
consumption, but including fluctuations lead us to the converse result.

-> 3 sources of randomness : intrinsic +individual variability WIP,

+measurement error.
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Multi-scale large population approximation The model

Here : two populations (ny preys and n, predators) with two size scales
K, K> and
@ natural births (rate proportional to the size of the population)
@ prey predator interaction with searching/ foraging time and
handling time :
Ts(x,y), ThH(Xx.y)
with x = ny /Ky, y = no/ K>
@ death (individual rate for predator depends on the number of preys
eaten)
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Multi-scale large population approximation First order approximation

Age structure of predators for interactions

P(t) : set of preys at time t.
Ps(t), resp. Py(t) : set of predators searching resp. handling at time t.
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Multi-scale large population approximation First order approximation

Age structure of predators for interactions

P(t) : set of preys at time t.
Ps(t), resp. Py(t) : set of predators searching resp. handling at time t.

Let a;(t) be the age (for interaction) of i € Pg(t) uPuy(t), i.e. the time to
find in the past the last change of state Searching < — > Handling for i.
The population is described by a measure valued process

(”n > a2, 5ai<r>)

fEPs(t) iEPH(t)
where ny = #preys.
Assume that Tg(x, y) and Ty(x,y) have densities (resp. fs(., x,y) and
fu(., x,y)) and introduce the rates ag(., x,y) and ay(., X, y)
fS(a7X7.y) fH(a7X7y)
fa°° fS(U,X,y)dU’ fH(U,X,y)dU
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Multi-scale large population approximation First order approximation

The transitions for interactions are given for a, € A, a, € A’ by

(n, > 6a Y, 53/)

aeA aeA’

— (n— 1, 82 —ba,, ). Oa +50) at rate ay(a., ny /Ky, no/Ko)
aeA aleA’

— (n, > 0a+00, ), 0o — 5a;) at rate ag(a,, m/Ki, ne/Kz)
aeA aeA’

plus (speed 1 for each predator),
plus individual births and deaths.

Trajectorial representation (SDE via Poisson Point Measure following
[Tran)).
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Multi-scale large population approximation First order approximation

First order approximation
Writing K = (K1 , Kg) and \g = K1/K2

#P(\kt) #Ps(Akt) + #Pr(Akt)
K K

X(1), Y¥(1) = (

and letting K» — o0, A — oo, (XX, YX) converges in law in
D([0, %), (R*)?) to the unique solution of

x'(t) = ax(t) - y(1)B(x(1), y (1))

y'(t) = by(t) -y (DF(B(x(1), y (1))

with
1 1

E(T(x,y)) E(Ts(x,y))+E(Tu(x,y))

ﬂ(Xay) =
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Multi-scale large population approximation First order approximation

An idea of the proof

Use stochastic averaging [Kurtz].

See [Kang and Kurtz 2013] for chemical reactions in finite dimension),
for the fast scale of interactions, here in infinite dimension (age
structure).
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An idea of the proof

Use stochastic averaging [Kurtz].

See [Kang and Kurtz 2013] for chemical reactions in finite dimension),
for the fast scale of interactions, here in infinite dimension (age
structure).

Consider the occupation measure

1
r%([s,t],dj,da) = — dudy (dj 84,0 (0a
(Is.1],dj. da) KZ( S i) 3 Faw(ca)

g dutd) % Gy
[s:1] iePu(Ak )

and check that its limiting point is given at time t by a the stationary

value of an age structured PDE (quasi equilibrium coming from the fast

time scale of interactions) depending only on the quantity of preys and

predators at time t.
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Multi-scale large population approximation Second order approximation

Quantifying fluctuations from renewal theorem

Considering the number of preys (and assuming here the time of
interaction for a predator is only prey dependent+fixed number of
predators), we expect that if
Ki/KZ — +o0
the process
UR(t) = VK (XR (1) - x(1))

converges in law in D([0, o), R) to the gaussian process U solution of

Ut = V) - ['8'(x(s)y()U(s)ds+ [ o(x(s)V/y(0)Bs
where B is a brownian motion and
1 1
PN = BT00) ™ B(Ts0) + B(T(0))
Var(T(x)) ~ Var(Ts(x)) + Var(Ty(x))
E(T())?  (E(Ts(x) + E(Tw(x)))3
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Multi-scale large population approximation Second order approximation

An idea of the proof in the exponential case (finite
dimensional Markov process), in progress

Follow [Kang Kurtz Popovic 2014] for fluctuations of multi scale
process (for chemical reactions), see also [Pardoux and Veretennikov
2000s].
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Multi-scale large population approximation Second order approximation

An idea of the proof in the exponential case (finite
dimensional Markov process), in progress

Follow [Kang Kurtz Popovic 2014] for fluctuations of multi scale
process (for chemical reactions), see also [Pardoux and Veretennikov

2000s].
We have
UR(t) = UR(0) + VE(t) + WK(t)
where
VKD = VR [ (B(x(s)) - BXK(5))ds +
VK f t(ﬂ(XK(S)) ~an(X¥(s)) Y& (5))ds
Wi = VK | K Tuerck VA ()an(x(s) N (duds)
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Multi-scale large population approximation Second order approximation

An idea of the proof in the exponential case (finite
dimensional Markov process), in progress

Follow [Kang Kurtz Popovic 2014] for fluctuations of multi scale
process (for chemical reactions), see also [Pardoux and Veretennikov

2000s].
We have
UR(t) = UR(0) + VE(t) + WK(t)
where
VKD = VR [ (B(x(s)) - BXK(5))ds +

VK f t(ﬂ(XK(S)) - an(X¥(s)) Y& (5))ds

WK([') = VK 0 K u<>\KK2YK(S)aH(XK(S))N(dUdS)

and consider the Poisson equation Qu(x,ys,y) = B(x) — ay(x)ys and
use a CLT for martingales.
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@ Complete the proofs, generalize (non-Markov and multiscale of
fluctuations with births and deaths of predators) and find an
alternative approach for scaling limits (using the duality with
renewal processes ?).

Obtain also an expression of large deviation times (exit of tubes
[Freindlin Wentzell]) via this duality.
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@ Complete the proofs, generalize (non-Markov and multiscale of
fluctuations with births and deaths of predators) and find an
alternative approach for scaling limits (using the duality with
renewal processes ?).

Obtain also an expression of large deviation times (exit of tubes
[Freindlin Wentzell]) via this duality.

@ Beyond regenerative assumption : how does space structure then
change functional responses ? (in progress with Geoffroy
Berthelot, Sylvain Billiard and Elizabetha Vergu)

° (ancestral linages of predators and sampling, in
project : "survivors have eaten faster"),
networks of interactions ?
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