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Multisymplectic geometry and covariant formalism for mechanical 
systems with a Lie group as configuration space: application to the 
Reissner beam

Joël Bensoam, Florie-Anne Baugé

Many physically important mechanical systems may be described with a 
Lie group G as configuration space. According to the well-known 
Noether's theorem, underlying symmetries of the Lie group may be 
used to considerably reduce the complexity of the problems. However, 
these reduction techniques, used without care for general problems 
(waves, field theory), may lead to uncomfortable infinite 
dimensional spaces. As an alternative, the \emph{covariant} 
formulation allows to consider a finite dimensional configuration 
space by increasing the number of independent variables. But the 
geometric elements needed for reduction, adapted to the specificity 
of covariant problems which admit Lie groups as configuration space, 
are difficult to apprehend in the literature (some are even missing 
to our knowledge). To fill this gap, this article reconsiders the 
historical geometric construction made by E. Cartan in this 
particular "covariant Lie group" context. Thus, and it is the main 
interest of this work, the Poincar\'e-Cartan and multi-symplectic 
forms are obtained for a principal G bundle. It allows to formulate 
the \emph{Euler-Poincar\'e equations} of motion and leads to a 
Noether's current form defined in the dual Lie algebra.

https://arxiv.org/abs/1708.01469



Computationnal aspects of equivariant
bifurcation theory

Pascal Chossat
Laboratoire J-A Dieudonné

Université Côte d’Azur - CNRS
Parc Valrose F - 06108 Nice

Abstract

Bifurcation theory is intimately linked with symmetry in physics
as well as in many other areas of science. Bifurcation analysis aims
at computing branching of solutions of a parameter dependent sys-
tem in a neighborhood of a singular point (bifurcation point). When
the system is invariant under the action of a symmetry group this
induces additional algebraic structures in the problem, which need to
be taken into account in order to describe the set of solutions and
their dynamical properties. In this talk I will introduce basic notions
about bifurcation with symmetry (so-called ”equivariant bifurcation
theory”) and about the algebraic/geometrical tools which have been
developed to carry out the computations. Examples will illustrate the
methods.
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Orthogonal Polynomials and Integrable Systems

Peter Clarkson
School of Mathematics, Statistics and Actuarial Science,

University of Kent, Canterbury, CT2 7FS, UK
Email: P.A.Clarkson@kent.ac.uk

Abstract

In this talk I will discuss the relationship between orthogonal polynomials with respect to semi-
classical weights, which are generalisations of the classical weights and arise in applications such as
random matrices, and integrable systems, in particular the Painlevé equations and discrete Painlevé
equations. It is well-known that orthogonal polynomials satisfy a three-term recurrence relation. I will
show that for some semi-classical weights the coefficients in the recurrence relation can be expressed
in terms of Hankel determinants, which are Wronskians, that also arise in the description of special
function solutions of Painlevé equations. The determinants arise as partition functions in random
matrix models and the recurrence coefficients satisfy a discrete Painlevé equation.

References
[1] P. A. Clarkson, On Airy solutions of the second Painlevé equation, Stud. Appl. Math., 137 (2016)

93–109.
[2] P. A. Clarkson and K. Jordaan, The relationship between semiclassical Laguerre polynomials and

the fourth Painlevé equation, Constr. Approx., 39 (2014) 223–254.
[3] P. A. Clarkson and K. Jordaan, Properties of generalized Freud polynomials, arXiv:1606.06026.
[4] P. A. Clarkson, K. Jordaan and A. Kelil, A generalized Freud weight, Stud. Appl. Math., 136 (2016)
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Symbolic interpretation of the generating function in invariant theory
Guillaume Dhont, Boris Zhilinskií

Laboratoire de Physico–Chimie de l’Atmosphère,
Bât. MREI2, Université du Littoral Côte d’Opale,

189A avenue Maurice Schumann, 59140 Dunkerque, France
Email: guillaume.dhont@univ-littoral.fr

A lot of molecules have a non–trivial symmetry point group G at their equilib-
rium configuration. The study of these systems leads to the problem of building
objects belonging to an irreducible representation Γ2 of G from elementary vari-
ables belonging to a representation Γ1, reducible in general. The generated objects
are often expressed in a polynomial form. The problem here is to find and charac-
terize the set of polynomials that can appear in this polynomial expansion [1].

The generating function of Molien [2] is the right tool for this work. It can
be directly computed from the matrix representation of the group action on the
elementary objects and the character of the irreducible representation Γ2. The
coefficient of degree n in the series expansion of this function gives the number of
linearly independent polynomials of degree n that transform according to Γ2.

We are interested in discussing the symbolic interpretation of the generating
function in terms of an integrity basis. We will begin with the well–known case of
invariants of finite groups forming a free module and end with the case of covari-
ants forming a non–free module, illustrated with the SO(2) group. In this case a
symbolic interpretation of the generating function is possible if it is written as a
sum of rational functions with different denominators [3, 4].

References
[1] P. Cassam-Chenaï, G. Dhont, and F. Patras. A fast algorithm for the construc-

tion of integrity bases associated to symmetry–adapted polynomial representa-
tions: application to tetrahedral XY4 molecules. J. Math. Chem., pages 1–28,
2014.

[2] L. Michel and B.I. Zhilinskií. Symmetry, invariants, topology. Basic tools. Phys.
Rep., 341(1):11–84, 2001.

[3] G. Dhont and B. I. Zhilinskií. The action of the orthogonal group on pla-
nar vectors: invariants, covariants and syzygies. J. Phys. A: Math. Theor.,
46(45):455202 (27 pages), 2013.

[4] G. Dhont, F. Patras, and B. I Zhilinskií. The action of the special orthogonal
group on planar vectors: integrity bases via a generalization of the symbolic
interpretation of Molien functions. J. Phys. A: Math. Theor., 48(3):035201 (19
pages), 2015.
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TORIC REPARAMETRIZATION OF LINEAR
COMPARTMENT MODELS

EMILIE DUFRESNE

Abstract. For ODE models with time series data, structural
identifiability concerns determining if the parameters of a model
are completely determined by continuous time series data given an
input, or equivalently, from its input-output data. Linear compart-
ment models are linear ODE models used in systems biology and
pharmacokinetics and encoded in a labelled directed graph. Many
such models are unidentifiable: parameters can take on an infinite
number of values and yet yield the same time series or input-output
data. In this work, we generalise the work of Meshkat and Sulli-
vant using techniques of Hubert and Labahn. For a certain class of
unidentifiable linear compartmental models, we show how an iden-
tifiable reparametrization can be found using scaling symmetries.
More generally, even when an identifiable reparametrization is not
possible, using scaling symmetries leads to reparametrizations that
are one step closer to being identifiable.
(Joint with Nikki Meshkat)

E-mail address: emilie.dufresne@nottingham.ac.uk

School of Mathematical Sciences, University of Nottingham, , Uni-
versity Park, Nottingham, NG7 2RD, UK
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MAGNUS EXPANSION AND LIE GROUP INTEGRATORS

KURUSCH EBRAHIMI-FARD

Abstract. W. Magnus introduced a differential equation characterising the logarithm of
the solution of linear initial value problems. The solution of this differential equation leads
to a Lie series known as the Magnus expansion. It involves Bernoulli numbers, iterated Lie
brackets and integrals. In this talk we discuss Magnus’ expansion in the light of pre- and
post-Lie algebras. The latter are examples of algebraic combinatorial structures which arise
naturally from the geometry of linear connections. The interplay between algebraic and
geometric aspects permits a refined comparison of Magnus methods with certain RKMK
schemes in the context of Lie group integrators. The talk is based on joint work with
Charles Curry (NTNU) and Brynjulf Owren (NTNU).

Department of Mathematical Sciences, Norwegian University of Science and Technology
(NTNU), 7491 Trondheim, Norway.

Date: March 1, 2018.
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Simple bespoke finite difference methods that
preserve conservation laws

G. Frasca Caccia, P. E. Hydon.

School of Mathematics, Statistics and Actuarial Science
University of Kent, Canterbury, UK

Conservation laws are among the most fundamental geometric properties
of a given partial differential equation. However, standard finite difference
approximations rarely preserve more than a single conservation law. The fact
that divergences belong to the kernel of the Euler operator can be used to
construct schemes that preserve multiple conservation laws. This approach,
which was introduced in [1], is limited by the complexity of the symbolic
computations used to construct such schemes. We present a simpler, more
efficient strategy and use it to find bespoke finite-difference schemes that
preserve multiple discrete conservation laws for a nonlinear wave equation.
These schemes compare well with existing methods.

[1] Grant, T. J., Hydon, P. E., 2013, Characteristics of conservation laws for
difference equations. Found. Comput. Math. 13: 667–692.
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Continuous and Discrete Homotopy Operators with Applications

Willy Hereman
Department of Applied Mathematics and Statistics

Colorado School of Mines, Golden, CO 80401-1887, USA

Abstract
As shown in [1], the homotopy operator can be used to invert the total divergence (i.e., carry

out integration by parts on jet spaces) by reducing an integration in multiple dimensions
to a standard one-dimensional integration with respect to the variable that parameterizes
a homotopic path. Typically, the homotopy formula is expressed in terms of (coordinate
independent) differential forms and involves higher-order Euler operators [1].

We present a calculus-based formula for the continuous homotopy operator without re-
ference to higher-order Euler operators [2, 3, 4]. This makes the homotopy operator more
efficient when implemented in computer algebra systems such as Mathematica or Maple.

Likewise, the discrete homotopy operator [5, 6] allows one to invert the forward difference
operator, i.e., carry out summation by parts on discrete jet spaces. Using the analogy with
the continuous case [2, 7], a formula for the discrete homotopy operator will be presented
without use of discrete higher-order Euler operators [2, 3].

One area of application [3, 4, 8] is the symbolic computation of conservation laws of multi-
dimensional nonlinear PDEs and nonlinear differential-difference equations. Using the short
pulse equation, the Boussinesq and Zakharov-Kuznetsov equations, and the Toda lattice as
examples, it will be shown how homotopy operators are used to compute conserved fluxes.

References
[1] P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd. ed., Grad. Texts in

Math. 107, Springer Verlag, New York (1993).

[2] W. Hereman, B. Deconinck, and L. D. Poole, Continuous and discrete homotopy operators:
A theoretical approach made concrete, Math. Comput. Simulat. 74(4-5), 352–360 (2007).

[3] W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman, and B. M. Herbst, Direct Methods
and Symbolic Software for Conservation Laws of Nonlinear Equations. In: Advances of
Nonlinear Waves and Symbolic Computation, Z. Yan (ed.), Nova Science Publ., New
York, 19–79 (2009).

[4] D. Poole and W. Hereman, The homotopy operator method for symbolic integration by
parts and inversion of divergences with applications, Appl. Analysis 89(4), 433–455 (2010).

[5] E. L. Mansfield and P. E. Hydon, On a variational complex for difference equations. In:
The Geometrical Study of Differential Equations, J. A. Leslie and T. P. Robart (eds.),
Proc. NSF-CBMS Conf., Comtemp. Math. 285, 121–129, AMS, Providence, R. I. (2001).

[6] P. E. Hydon and E. L. Mansfield, A variational complex for difference equations, Found.
Comput. Math. 4, 187–217 (2004).

[7] W. Hereman, J. A. Sanders, J. Sayers, and J. P. Wang, Symbolic computation of poly-
nomial conserved densities, generalized symmetries, and recursion operators for nonlinear
differential-difference equations. In: Group Theory and Numerical Analysis, P. Winternitz
et al. (eds.), CRM Proc. & Lect. Ser. 39, 133–148, AMS, Providence, Rhode Island (2005).

[8] D. Poole and W. Hereman, Symbolic computation of conservation laws for nonlinear partial
differential equations in multiple space dimensions, J. Symbolic Comput. 46(12), 1355–
1377 (2011).



Invariants of ternary forms under the orthogonal group.

The even degree case.

Evelyne Hubert
Inria Méditerranée, France

Classical invariant theory has essentially addressed the action of the general linear group on
homogeneous polynomials. Yet the orthogonal group arises in applications as the relevant
group of transformations, especially in 3 dimensional space. Having a complete set of invari-
ants for its action on ternary quartics, i.e. degree 4 homogeneous polynomials in 3 variables,
is, for instance, relevant in determining biomarkers for white matter from diffusion MRI.

We characterize a generating set of rational invariants of the orthogonal group acting on even
degree forms by their restriction on a slice. These restrictions are invariant under the octa-
hedral group and their explicit formulae are given compactly in terms of equivariant maps.
The invariants of the orthogonal group can then be obtained in an explicit way, but their
numerical evaluation can be achieved more robustly using their restrictions. The exhibited
set of generators futhermore allows us to solve the inverse problem and the rewriting.

Central in obtaining the invariants for higher degree forms is the preliminary construction,
with explicit formulae, for a basis of harmonic polynomials with octahedral symmetry, dif-
ferent, though related, to cubic harmonics.

This is joint work with Paul Görlach (now at MPI Leipzig), in a joint project with Téo
Papadopoulo (Inria Méditerranée)

Görlach, P. Hubert, E. and Papadopoulo, T., Rational invariants of ternary forms under the
orthogonal group. To appear in Foundation of Computational Mathematics.
Already available on https://hal.inria.fr/hal-01570853 and Arxiv (2017).

1



Geometric structures for difference equations  

Peter Hydon, University of Kent 

 

Many useful differential equations have Lie symmetries, conservation laws, (multi-)symplectic 

structures and other geometric features. Recently, these ideas have been shown to apply also to 

difference equations. For instance, there are difference analogues of Noether’s two theorems on 

variational symmetries, together with a new intermediate result. An important application is to 

determine which finite difference approximations retain conservation laws, Bianchi identities and 

other essential structures. 

In this talk, I will describe aspects of the basic theory, including symbolic and numerical 

computation, and show how the resulting techniques are used in practice.  

 



“Skew-symmetry and computation”

Arieh Iserles

Centre for Mathematical Sciences
University of Cambridge

Abstract A most welcome feature of orthogonal bases employed in spectral
methods is that their differentiation matrix is skew-symmetric, since this en-
sures conservation of energy in time-evolving problems: familiar examples are a
Fourier basis in [−1, 1] and a basis of Hermite functions on (−∞,∞).

In this talk, which represents joint work with Marcus Webb (Leuven), we
characterise all such bases on (−∞,∞) and on the Paley–Wiener space of a
symmetric subinterval of (−∞,∞). Essentially, we prove that for every Borel
measure dµ which is anti-symmetric with respect to the origin there exists such a
basis and it lives on (−∞,∞) if this is the support of dµ, otherwise in a suitable
Paley–Wiener space. We also present a constructive algorithm for generating
such bases, as well as a number of examples, corresponding e.g. to Freud and
Konoplev measures.
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Invariants and covariants in Solid Mechanics

Boris Kolev∗

Symmetry & Computation
April 3, 2018 – April 7, 2018

Abstract

In solids mechanics when the matter is slightly deformed, the local
state of strain is modelled, at each material point, by a second-order
symmetric tensor ε (the strain). The local stress resulting from the
imposed strain is classically described by another second-order symme-
tric tensor, the Cauchy stress σ. The way stress and strain are related
is defined by a constitutive law. Among them, linear elasticity is one
of the simplest model. It supposes a linear relationship between the
strain and the stress tensor at each material point, σ = Cε, in which
C is a fourth-order tensor, and an element of a 21-dimensional vector
space Ela. From a physical point of view, this relation, which is the
3D extension of Hooke’s law for a linear spring, F = k∆x, encodes the
elastic properties of a body in the small perturbation hypothesis.

Working with elastic materials implies the need to identify and dis-
tinguish them. A natural question is “How to give different names to
different homogeneous elastic materials ?”. Despite its apparent sim-
plicity, this question formulated for 3D elastic media is a rather hard
problem to solve. An elasticity tensor C represents a homogeneous
material in a specific orientation and a rotation of the body results in
another elasticity tensor C representing the same material. From a
mathematical point of view, classifying anisotropic homogeneous ma-
terials amounts to describing the orbits of the action of the rotation
group SO(3,R) on Ela. This can be achieved by determining a finite
system of invariants which separates the orbits.

I will present some recent progresses on this problem. A minimal
integrity basis of 297 invariants of this tensor has been produced re-
cently (2017) and “coordinate-free” characterization of the symmetry
classes of this tensor have been formulated (2018) using polynomial
covariants. I will explain the main steps and the mathematical tools
which lead to these results.

This is a joint work with Nicolas Auffray, Boris Desmorat, Rodrigue
Desmorat, Marc Olive and Michel Petitot.

∗Boris Kolev, LMT, ENS Cachan, CNRS, Université Paris Saclay, France.
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Coordinate-independent criteria for Hopf bifurcations

N. Kruff, Sebastian Walcher

RWTH Aachen University, Germany, Lehrstuhl A für Mathematik

We discuss the occurrence of Poincaré-Andronov-Hopf bifurcations in parameter
dependent ordinary differential equations, with no a priori assumptions on spe-
cial coordinates. The first problem is to determine critical parameter values from
which such bifurcations may emanate, a solution for this problem was given by
W.-M. Liu. We add a few observations from a different perspective. Then we turn
to the second problem, viz., to compute the relevant coefficients which determine
the nature of the Hopf bifurcation. As shown by J. Scheurle and co-authors, this
can be reduced to the computation of Poincaré-Dulac normal forms (in arbitrary
coordinates) and subsequent reduction, but feasibility problems quickly arise. We
present a streamlined and less computationally involved approach to the computa-
tions. The efficiency and usefulness of the method is illustrated by examples.

see: https://arxiv.org/abs/1708.06545
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The Hopf algebra of Lie group integrators and
planarly branched rough paths

Dominique Manchon

The Hopf algebra of Lie group integrators has been introduced by 
H.Munthe-Kaas and W.Wright as a tool to handle Runge-Kutta numerical 
methods on homogeneous spaces. It is spanned by planar rooted 
forests, possibly decorated. Planarly branched rough paths are 
characters of this Hopf algebra subject to Hölder-type estimates. We 
will show how these are used in resolving singular differential 
equations on homogeneous spaces.

Joint work with Charles Curry (NTNU Trondheim), 
Kurusch Ebrahimi-Fard (NTNU) and Hans Z. munthe-Kaas (Univ. Bergen).



Noether’s Theorem, then and now

E. L. Mansfield

It is now 100 years since Emmy Noether published her celebrated paper, proving that
Lie group symmetries of an action functional give rise to conservation laws, such as the
conservation of energy, linear and angular momentum. The proof of the result consists of
a process to construct the laws from the Lie group action. Simpler versions of the result
were rediscovered many times, but Noether did have the most general result for a very
long time.

In this talk I will give an Introduction to the Theorem, and will indicate progress
since then, both for the understanding of the smooth laws themselves and for various
discrete versions. For smooth systems, we have general formulae which allow the laws to
be written down for arbitrary order Lagrangians [1] by symbolic software, such as Maple’s
DifferentialGeometry package. Advances using moving frames have allowed us to to
see the structure of the laws, in terms of invariants and an equivariant frame [2, 3]. The
laws have been written down for various cases of the finite difference Lagrangians by many
authors, the most general result differential-difference Lagrangians is proved in [5], and
for Finite Element Lagrangians in [6]. Noether’s second theorem, where the Lie group
depends on arbitrary smooth functions, has been generalised and adapted to difference
systems [4].
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Evolutions of polygons and Soliton equations

Gloria Maŕı Beffa, University of Wisconsin-Madison∗

Annalisa Calini, College of Charleston

March 1, 2018

Abstract

The relation between the discrete geometry of surfaces and completely inte-
grable systems has been well stablished in the last few decades, through work
of Bobenko, Suris and many others. The recent introduction of discrete moving
frames by Mansfield, Mari-Beffa and Wang, and the study of the pentagram
map by Richard Schwartz and many others, has produced a flurry of work con-
necting the discrete geometry of polygons to some completely integrable systems
in any dimension, including connections to Combinatorics and the study of the
role that the background geometry has in the generation of algebraic structures
that often describe integrability. In this talk I will review definitions and back-
ground, and will describe recent advances in the proof of the integrability of
discretizations of Adler-Gelfand-Dikii systems (generalized KdV), aided by the
use of the geometry of polygons in RPm.

∗speaker
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ABOUT GORDAN’S ALGORITHM ON BINARY FORMS

MARC OLIVE

Classical invariant theory springs from the works of Boole and Gauss, and was then developed by
Clebsch, Gordan, Sylvester, Cayler, etc in the 19th century.

Cayley first made a significant achievement in the field by introducing what is now known as the Cayley
Omega operator. For about fifteen years (until Cayley’s seventh memoir [4] in 1861), the English school
of invariant theory, mainly led by Cayley and Sylvester, developed important tools to compute invariant
generators of binary forms. Calculation was the backbone of this initial approach in invariant theory.

Meanwhile, a German school principally conducted by Clebsch, Aronhold and Gordan, developed their
own approach, using the symbolic method (also present with slight differences in the English school). In
1868, Gordan, the so-called “king of invariant theory”, presented a first proof that covariant algebras
of binary forms are finitely generated [6]. This result was moreover endowed with a constructive proof:
the English and the German schools were both preoccupied by explicit calculations of invariants and
covariants.

From 1868 to 1875, Gordan’s constructive approach led to several new explicit results. First, Gordan [7]
computed covariant bases for the quintic and the sextic. Then, Von Gall, completing some partial results
from Gordan, produced a complete covariant basis for the septimic [12] and for the octic [11].

In 1890, Hilbert made a critical advance in the field. Using a totally new approach [8], which is the
cornerstone of today’s algebraic geometry, he proved a finiteness theorem in the general case of linear
reductive groups [5]. However, his first proof [8] was criticized at the time as not being constructive.
Facing these critics, Hilbert produced later a second proof [8]. This second more effective approach is
nowadays widely used to obtain a finite set of generators for invariant algebras [2, 3].

Methods to compute generating sets of invariants for binary forms are not limited to Hilbert. For a
single binary form, Olver [10] suggested another constructive approach, which was later generalized to
a single 𝑛-ary form and also specified with a “running bound” by Brini–Regonati–Creolis [1]. We could
also cite Kung–Rota [9] but the combinatorial approach developed there becomes increasingly complex
for non-trivial examples.

We will illustrate here the second version of Gordan’s algorithm, developing background material in
classical invariant theory like the Cayley operator, the polarization operator and transvectants. Then
we define molecules and molecular covariants, which correspond to graphical representations of SL(2,C)
equivariant homomorphisms build up from the Cayley and the polarization operators. Finally, Gordan’s
algorithm for joint covariants is explained, being deeply connected to some linear diophantine equations.
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Computation with moving frames

Peter J. Olver

University of Minnesota, Minneapolis, MN, USA
olver@umn.edu

http://www.math.umn.edu/∼olver

The equivariant method of moving frames, for both finite-dimensional
Lie group actions and infinite-dimensional Lie pseudo-groups, provides a
practical tool for systematically computing invariant objects, including dif-
ferential invariants, joint invariants, joint differential invariants, invariant
differential operators, invariant differential forms, invariant variational prob-
lems, invariant numerical schemes, etc. The powerful recurrence formulas
provide a symbolic calculus for understanding the underlying structure of
these objects. I will cover the basics, and include some new developments
and new applications.

1



Representation theory of the symmetric group, numerically.

Sheehan Olver

Department of Mathematics

Imperial College, London

United Kingdom

s.olver@imperial.ac.uk

In a narrow sense, the representation theory of the symmetric group Sn concerns the study of

sets of matrices viewed as operators acting on the vector space Cm who have the group structure

of the symmetric group. A basic computational question we address is the following: given matrix

representations of the generators of Sn, calculate the reduction of the group to a direct sum of irre-

ducible representations. In linear algebra terms, we wish to find a change-of-basis that simultaneously

block-diagonalises the generators of the group. We investigate this question by combing basic tools

of numerical linear algebra with concepts from representation theory, such as Young–Jucys–Murphy

elements (which span a maximal commutative subalgebra of C[Sn], namely, the Gelfand–Tsetlin

algebra).

The motivation for this work arose from connections with the eigenvalues of random matrices, via

known results from integrable probability (Borodin, Okounkov, and Olshanski) and free probability

(Biane). The algorithm is also used to give a numerical answer to the open question of calculating

Kronecker coefficients of the symmetric group.

Joint work with Oded Yacobi (U. Sydney).
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Symmetries of Differential-Difference Equations

and Noether’s Conservation Laws

Linyu Peng

Department of Applied Mechanics and Aerospace Engineering, Waseda University,
Tokyo 169-8555, Japan

E-mail: l.peng@aoni.waseda.jp

In this talk, we mainly consider continuous symmetries and conservation laws
of differential-difference equations. Spotting the incommutability of shift operators
and differential operators acted by a group action, prolongations of continuous sym-
metries are investigated; their characteristic form immediately yields a differential-
difference version of the Noether’s theorem, connecting symmetries of variational
problems and conservation laws of Euler-Lagrange equations. Illustrative examples
of differential-difference equations are studied.
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SEPARATING INVARIANTS OF FINITE GROUPS

FABIAN REIMERS
(TU MUNICH)

abstract. Let G be a finite group and let X be an affine variety
(over an algebraically closed field K) on which G acts through automor-
phisms. The invariant ring K[X]G is a finitely generated subalgebra of
the ring K[X] of polynomial functions on X. A subset or a subalgebra
S ⊆ K[X]G is called separating if for all x, y ∈ X with different orbits
Gx 6= Gy there exists an invariant f ∈ S with f(x) 6= f(y). Sub-
sets that generate K[X]G as a K-algebra are always separating, but
separating sets can be much smaller than generating sets.

If γsep denotes the smallest size of a separating set, then we always
have n ≤ γsep ≤ 2n+ 1 where n is the transcendence degree of K[X]G,
i.e., since G is finite, the dimension of X.

In the case of linear actions on vector spaces several results, proved
by Serre, Dufresne, Kac-Watanabe and Gordeev, and Jeffries and Du-
fresne exist that relate properties of the invariant ring or a separating
subalgebra to properties of the group action. In this talk we present
generalizations of these results to the case of (possibly) non-linear ac-
tions on affine varieties.

Under mild assumptions on the variety and the group action we
show that γsep = n can only occur if G is generated by reflections,
while γsep = n + 1 (or more generally, the existence of a separating
subalgebra which is a complete intersection) can only occur if G is
generated by bireflections.
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Computing the homology of symmetric
semi-algebraic sets

Cordian Riener, UiT – The Arctic University of Norway

Let R be a real closed field, S ⊂ Rk be a semi-algebraic set and con-
sider the rational (co-)homology groups of S. It is a fundamental problem in
computational real algebraic geometry to compute the dimensions of these
rational vector spaces. We consider the special case, when the semi-algebraic
set is defined by symmetric polynomials of fixed degree. The action of the
symmetric group Sk on Rk gives these groups then the structure of a Sk-
module. We study the associated isotypic decomposition and show bounds
on the multiplicities of the irreducible representation appearing in this de-
composition. In particular, we study the trivial representation, which is
naturally isomorphic to the equivariant Homology groups, and given an al-
gorithm with polynomially bounded (in k) complexity for computing these
equivariant Betti numbers. We then discuss how this algorithm can be ex-
tended to an algorithm to compute the (ordinary) Betti numbers of S.
(joint work with Saugata Basu)
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Discrete moving frames, evolution of curvature invariants and

discrete integrability.

A. Rojo-Echeburúa
School of Mathematics, Statistics and Actuarial Science. University of Kent. Canterbury, CT2 7FS, U.K.

arer2@kent.ac.uk

in collaboration with

E.L. Mansfield and J.P. Wang

Abstract

Discrete moving frames have been proven useful for the study of discrete integrable systems,
which arise as analogues of curvature flows for polygon evolutions in homogeneous spaces [3].
In [4] a method that provides the evolution equation for the curvature invariants of a curve is
presented. It is shown that it derives from a syzygy between sets of invariants. The study in
[4] further makes a comparison between the symmetry condition of the curve evolutions and
the curvature evolutions.

In this talk, I will introduce a brief discrete moving frame formalisation and I will compare
the evolutions in the Lie algebra and the evolutions in the Lie Group in the continuous and in
the discrete case. I will also derive the analogue of the compatibility condition in the discrete
case to the one given in [4] in order to answer when a symmetry of the curvature evolution
gives rise to a symmetry of the discrete curve evolution. I will present a few examples in order
to illustrate the theorems and relate them with discrete integrable systems.
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Shape analysis on homogeneous spaces

A. Schmeding (TU Berlin)∗

November 15, 2017

Shape analysis methods have in the past few years become very popular, both for
theoretical exploration as well as from an application point of view. Originally developed
for planar curves, these methods have been expanded to higher dimensional curves,
surfaces, activities, character motions and many other objects. Here by shape we mean
an unparametrized curve evolving on a vector space, a Lie group or on a manifold.
Spaces of these curves, the so called Shape spaces are studied using infinite dimensional
Riemannian geometry to compare and analyse shapes.

We are concerned with one particular approach to shape analysis, based on the Square
Root Velocity Transform (SRVT) [SKJJ11]. Originally developed for vector spaces, the
SRVT maps parametrised curves to appropriately scaled tangent vector fields along
them. The transformed curves are compared computing geodesics in the L2 metric.
In our work, we have generalised the SRVT to Shape spaces with values in Lie groups
and homogeneous manifolds. Key to our approach is the idea to use the transitive Lie
group action available on these spaces. This additional geometric information provided
by the group action enabled us (see [CES16, CES17]) to construct structure preserving
numerical algorithms. The use of group actions is an alternative to what was earlier
proposed in [SKKS14, Le 16] on Riemannian manifolds.

It turns out that for reductive homogeneous manifolds, there is an explicit way to
construct these algorithms and we present some results concerning the realisation of
our methods on reductive homogeneous spaces. In particular, we have applied these
methods to several concrete problems from computer vision and motion capturing. For
example in [CES16], our methods yield a curve closing algorithm allowing one to remove
discontinuities from motion capturing data while preserving the general structure of the
movement. (see Figure 1)

Our results on shape spaces with values in homogeneous manifolds (cf. [CES17, CEES17]
are visualised by considering quotients of real (matrix) Lie groups (where the subgroups
arise by canonically embedding the smaller Lie groups). To illustrate the performance
of the proposed approach we compute geodesics between curves on the 2-sphere, see
Figure 2 for an example.

∗joint with E. Celledoni and S. Eidnes (NTNU Trondheim)
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Applications of Cumulative Distance Histograms in Diagnosing Breast 
Cancer   
 
 
In this talk we build on the Euclidean-invariant distance histogram function 
for curves originally introduced by Brinkman, D., and Olver. 
Based on this cumulative histogram methodology we consider three 
specialized histograms centroid distance, curvature, and derivative of 
curvature and one specialized noncumulative histogram centroid distance.   
We will review a change in concavity point grading algorithm that has been 
shown to be effective in analyzing cumulative and noncumulative centroid 
distance histograms. We extend our methodology to calculate the area 
under cumulative curvature and derivative of curvature histograms and will 
discuss an application of this methodology to demonstrate that there is a 
statistically significant difference between the cumulative histogram of 
benign and malignant tumors in breast cancer. 
 
  
  



Symmetry constraints for the modeling and numerical simulation of
turbulent flows

Maurits H. Silvis∗ and Roel Verstappen
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen,

Nijenborgh 9, 9747 AG Groningen, The Netherlands

January 12, 2018

Symmetry and Computations
Centre International de Rencontres Mathématiques

Marseille, France
April 3–7, 2018

Abstract It is well known that the governing equations of fluid dynamics, the Navier–Stokes
equations, are invariant under certain transformations, such as instantaneous rotations of the coordinate
system and the Galilean transformation. These transformations, also referred to as symmetries of the
equations, play an important physical role because they ensure that the description of fluids is the
same in all inertial frames of reference. Furthermore, they relate to conservation and scaling laws. It
has since long been realized that it is desirable that these symmetries are also satisfied in large-eddy
simulations [1, 4].

Using large-eddy simulations one aims to predict the large-scale behavior of turbulent flows. This is
done through numerical solution of the Navier–Stokes equations, on grids that are too coarse to resolve
all the relevant physical details. An extra forcing term called a turbulence, or subgrid-scale, model
is introduced to represent the effects of the (unresolved) small scales on the (resolved) large-scale
motions.

We present a framework of constraints for the creation and assessment of subgrid-scale models
for large-eddy simulation [2, 3], based on the idea that it is desirable that subgrid-scale models are
consistent with the symmetries, as well as with other mathematical and physical properties of the
Navier–Stokes equations. We further discuss issues of numerical implementation, including that of
conservation of energy in simulations [5], and we show results of large-eddy simulations of turbulence,
obtained using a new subgrid-scale model with built-in desirable properties.
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Walks, Groups, and Difference Equations

Michael F. Singer
Department of Mathematics

North Carolina State University
Raleigh, NC 27510

Many questions in combinatorics, probability and statistical mechanics
can be reduced to counting lattice paths (walks) in regions of the plane. A
standard approach to counting problems is to consider properties of the asso-
ciated generating function. These functions have long been well understood
for walks in the full plane and in a half plane. Recently much attention has
focused on walks in the first quadrant of the plane and has now resulted in
a complete characterization of those walks whose generating functions are
algebraic, holonomic (solutions of linear differential equations) or at least
differentially algebraic (solutions of algebraic differential equations).

I will give an introduction to this topic, discuss previous work of Bousquet-
Melou, Kauers, Mishna, and others and then present recent work by Dreyfus,
Hardouin, Roques and myself applying the theory of QRT maps and Galois
theory of difference equations to determine which generating functions satisfy
differential equations and which do not.



HYBRID FINITE ELEMENT METHODS PRESERVING
LOCAL SYMMETRIES AND CONSERVATION LAWS

ARI STERN

Abstract. Many PDEs arising in physical systems have symme-
tries and conservation laws that are local in space. However, classical
finite element methods are described in terms of spaces of global
functions, so it is difficult even to make sense of such local proper-
ties. In this talk, I will describe how hybrid finite element methods,
based on non-overlapping domain decomposition, provide a way
around this local-vs.-global obstacle. Specifically, I will discuss
joint work with Robert McLachlan on multisymplectic hybridizable
discontinuous Galerkin methods for Hamiltonian PDEs, as well as
joint work with Yakov Berchenko-Kogan on symmetry-preserving
hybrid finite element methods for gauge theory.

Department of Mathematics, Washington University in St. Louis
E-mail address: stern@wustl.edu



Multivariate Symmetric Interpolation,
Subresultants and Jacobi Polynomials

Agnes Szanto

North Carolina State University
aszanto@ncsu.edu

March 5, 2018

Abstract

The theory of symmetric multivariate Lagrange interpolation is a
beautiful but rather unknown tool that has many applications. In this
talk I first describe how to derive from it an Exchange Lemma that
allows to explain in a simple and natural way the full description of
the double sum expressions introduced by Sylvester in 1853 in terms
of subresultants and their Bézout coefficients. I will also report on
generalizations to symmetric multivariate Hermite interpolation, and
applications to get closed formulae for the subresultants in the case of
root multiplicities. Finally I will describe the extremal case when the
polynomials have only one root, and show the connection to Jacobi
polynomials. This talk is based on my collaboration with Alin Bostan,
Carlos D’Andrea, Teresa Krick and Marcelo Valdettaro.
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Symmetries in Numerical Analysis
Olivier Verdier

Department of Computing, Mathematics and Physics, Western Norway University of Applied
Sciences, Bergen, Norway

Department of Mathematics, KTH, Stockholm, Sweden

Symmetries have always played a fundamental, but somewhat underesti-
mated, role in numerical analysis. The goal of this talk is to review some of
the manifestations of symmetries such as

• equivariance, natural transformations
• weak natural transformations (a generalisation of equivariance)
• prolongation of actions

to numerical analysis. We will focus mostly on the affine group, but also on
the rotation and unitary groups. The numerical algorithms that we will look
at include

• Runge–Kutta methods and B-Series
• Symplectic integrators on projective spaces
• Polynomial interpolation

1



Sebastian Walcher

Mathematik A, RWTH Aachen, 52056 Aachen, Germany
walcher@matha.rwth-aachen.de

Dimension reduction for chemical reaction equations

We consider parameter-dependent polynomial (or rational) systems of ordi-
nary differential equations, with an emphasis on equations derived from chem-
ical reaction networks with mass-action kinetics. Such systems may be high-
dimensional but frequently model assumptions or intuition suggest reduction
to small dimension, for which there exist various methods and heuristics. The
work outlined in the talk, done jointly with Alexandra Goeke, Eva Zerz and
other co-authors, provides a systematic and mathematically sound approach
to reduction methods, based on Tikhonov’s and Fenichel’s classical theorems
on singular perturbation theory. The work (necessarily) relies on results and
methods from algorithmic algebra.

Reduction with no a priori separation of slow and fast variables: Tikhonov’s
and Fenichel’s theorems assume a separation of variables in two sets (“slow”
and “fast”). While reaction equations frequently exhibit slow-fast phenomena,
no slow and fast variables are generally known a priori. We obtain coordinate-
independent criteria and a coordinate-independent reduction: If the system is
cast in the form

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + · · ·
with a small parameter ε > 0 then a Tikhonov-Fenichel reduction exists if and
only if h(0) satisfies a number of requirements, the most important of which is
the existence of non-isolated stationary points. The reduced equation itself is
defined on an algebraic variety.

Finding “small parameters” in parameter-dependent systems: The reduction
above requires a priori knowledge of a “small parameter” ε in a given parameter
dependent system, or rather knowledge of so-called Tikhonov-Fenichel parame-
ter values from which singular perturbations emanate. Thus, starting with an
ODE

ẋ = H(x, p)

which depends on parameters p ∈ Rm, the first task is to identify parameter
values p∗ so that a small perturbation (along a curve in parameter space) will
lead to the setting of Tikhonov’s and Fenichel’s theorems. (Loosely speaking,
p∗ corresponds to ε = 0.) This problem is amenable to algorithmic algebra; in
particular the existence of non-isolated stationary points at p = p∗ naturally
brings elimination ideals into play. From a theoretical perspective, a complete
characterization of Tikhonov-Fenichel parameter values can be given. As for
applications, this allows to determine systematically all Tikhonov-Fenichel pa-
rameter values for standard systems from biochemstry.



SYMMETRY AND CUBATURE RULES

YUAN XU

Abstract

How many nodes do we need for a cubature rule of degree 2n−1 on a
domain Ω in Rd? The answer depends on the symmetry of the integral.
It is known that the Gaussian cubature rules of degree 2n − 1, which
has

(
n+d−1

d

)
nodes, exist for two family of integrals, both of which on

domains that are not centrally symmetric. More nodes are needed for
integrals on centrally symmetric domains. We discuss what is known
on the number of nodes and the structure of cubature rules that have
small number of nodes.

Department of Mathematics, University of Oregon, Eugene, OR
97403, USA

E-mail address: yuan@uoregon.edu



MOVING FRAMES AND CONSERVATION LAWS:
A LINEAR ACTION OF SU(2)

M. ZADRA1, E.L.MANSFIELD2

1,2UNIVERSITY OF KENT, SCHOOL OF MATHEMATICS, STATISTICS AND ACTUARIAL
SCIENCES, SIBSON BUILDING, CT2 7FS,

CANTERBURY, KENT, UK
1mz233@kent.ac.uk, 2E.L.Mansfield@kent.ac.uk

In the study of variational problems, it is very useful to analyse the symmetries of a
Lagrangian. We take a closer look to the case where a Lagrangian is symmetric with respect
to a linear action of SU(2) on pairs of complex curves.

A milestone in the study of variational systems is Noether’s theorem, which allows us to
derive the conservation laws. Our work takes place in the setting of the invariant calculus of
variations and we derive both invariantised Euler-Lagrange equations and conservation laws,
in a similar way as in [1] and [2]. The conservation laws involve the adjoint representation
of the moving frame, a vector of invariants (v) and a vector of constants (c). In this case
we obtain:

Ad(g)−1|framev = c

where g ∈ SU(2). If the constants and the vector of invariants are known, we show a method
that takes advantage of the geometrical setting to derive the parameters appearing in the
adjoint representation of the moving frame. Once the frame has been found, we use it to
find all the solutions to the variational problem.

[1] T.M.N. Goncalves and E.L. Mansfield. “Moving frames and conservation laws for
Euclidean invariant Lagrangians”. In: Studies in Applied Mathematics 130 (2013).

[2] T.M.N. Goncalves and E.L. Mansfield. “On moving frames and Noether’s conservation
laws”, in: Studies in Applied Mathematics 1 (2012).
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General self similar solutions and contour enhancement via
nonlinear degenerate parabolic equation

Benhamidouche Nouredine, Chouder Rafaa,2 1+
1Laboratory for Pure and Applied Mathematics, University of M’sila,

Box 166, Ichbilia, M’sila, 28000, Algeria.
Email: rafaachouder@gmail.com.

2Laboratory for Pure and Applied Mathematics, University of M’sila,
Box 166, Ichbilia, M’sila, 28000, Algeria.
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Abstract: We propose in this work to study a contour en-
hancement in image processing via the nonlinear degenerate
parabolic equation

∂φ

∂t
= φ−2(1+α)x φxx

Where φ(x, t) image intensity flux which takes values between 0
(black) and 1 (white), and α ≥ 0 is a positive constant which plays
the role of an enhancement parameter.
We seek a general self similar solutions by a formulation of free-

boundary problem describing the image intensity evolution in the bound-
ary layer. In particular we study the contour enhancement for a large
parameter enhancement.

Keywords: Nonlinear diffusion equations - General self
similar solutions - Free boundary problem
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A Newton-like Validation Method for Chebyshev Approximate
Solutions of Linear Ordinary Differential Equations

Florent Bréhard1,2,3, Nicolas Brisebarre2, and Mioara Joldes, 1

1LAAS-CNRS, Toulouse, France
2CNRS, LIP, INRIA AriC, École Normale Supérieure de Lyon, Université de Lyon, France

3CNRS, LIP, Plume, École Normale Supérieure de Lyon, Université de Lyon, France

A wide range of efficient numerical routines exist for solving function space problems (ODEs, PDEs,
optimization, etc.) when no closed form is known for the solution. While most applications prioritize
efficiency, some safety-critical tasks, as well as computer assisted mathematics, need rigorous guarantees
on the computed result. For that, rigorous numerics aims at providing numerical approximations
together with rigorous mathematical statements about them, without sacrificing (too much) efficiency
and automation.

In the spirit of Newton-like validation methods (see for example [3]), we propose a fully automated
algorithm which computes both a numerical approximate solution in Chebyshev basis and a rigorous
uniform error bound for a restricted class of differential equations, namely Linear ODEs (LODEs).
Functions are rigorously represented using Chebyshev models [2], which are a generalization of Taylor
models [4] with better convergence properties. Broadly speaking, the algorithm works in two steps: (i)
After applying an integral transform on the LODE, an infinite-dimensional linear almost-banded system
is obtained. Its truncation at a given order N is solved with the fast algorithm of [5]. (ii) This solution
is validated using a specific Newton-like fixed-point operator. This is obtained by approximating the
integral operator with a finite-dimensional truncation, whose inverse Jacobian is in turn approximated
by an almost-banded matrix, obtained with a modified version of the algorithm of [5].

As an example, we propose to validate a satellite trajectory arising in a space rendezvous problem
(a more in-depth study is led in [1]). A C library implementation is freely available online1.
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Combinatorics of involutive divisions

M.Ceria

Given a semigroup ideal J and its minimal set of generators, Janet introduced in
1920 both the notion of multiplicative variables and the connected decomposition of J
into disjoint cones, together with a procedure to produce such a decomposition. More-
over, in order to describe Riquier’s formulation of the description for the general solu-
tions of a PDE problem, Janet gave a similar decomposition also for the related escalier.

Later, from 1924, he gave a completely different decomposition (and the related al-
gorithm for computing it) which labelled as involutive and which is behind both Gerdt-
Blinkov procedure for computing Groebner bases and Seiler’s theory of involutiveness.

Assuming to have a homogeneous ideal I, within a generic frame of coordinates, he
reformulates Riquier’s completion proposing essentially a Macaulay-like construction,
iteratively computing the vector-spaces Id := { f ∈ I : deg( f ) = d} until Cartan test
grants that Castelnuovo-Mumford regularity D has been reached.

Janet explicitly demotes the role of the ideal in this construction considering the
whole set TD of terms in degree D and decomposing it in terms of disjoint cones gen-
erated by multiplicative variables.

The aim of this paper is to discuss involutiveness following the approach proposed
by Janet; in particular we postpone the discussion of ideal membership and related test
only after having performed a deep reconsideration of the combinatorial properties of
involutive divisions over TD.

To do so, we apply the theory of involutive divisions, set up by Gerdt–Binklov but
we have to adapt it, talking about relative involutive divisions, and requiring that the
union of all the cones produces the ideal T≥D and that the cones are disjoint.

Then we deal with the problem of membership. In particular, we define a directed
graph with vertices in TD such that
- if a vertex h is included in the ideal and we walk against the flow, we reach all the
terms in TD that must belong to the ideal; and
- if a vertex n is included in the escalier and we follow the flow, we reach all the terms
in TD which necessarily belong to the escalier as well.
First we show that such a graph can be easily obtained, adapting Ufnarovsky graph,
for Pommaret division. However a general solution requires to build and prune a graph
constructed using the lcm’s of all the pairs of terms in TD.
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Volume of alcoved polyhedra and Mahler conjecture
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Abstract

The facet equations of a 3–dimensional alcoved polyhedron P are only of
two types (xi = cnst and xi − xj = cnst) and the f–vector of P is bounded
above by (20, 30, 12). We represent an alcoved polyhedron by a real square
matrix A of order 4 and we compute the exact volume of P: it is a polyno-
mial expression in the aij , homogeneous of degree 3 with rational coefficients.
Then we compute the volume of the polar P◦, when P is centrally symmet-
ric. Last, we show that Mahler conjecture holds in this case: the product of
the volumes of P and P◦ is no less that 43/3!, with equality only for boxes.
Our proof reduces to computing a certificate of non–negativeness of a cer-
tain polynomial (in 3 variables, of degree 6, non homogeneous) on a certain
simplex.

Keywords and phrases: volume, alcoved polyhedron, tropical semiring, normal ma-
trix, idempotent matrix, symmetric matrix, perturbation, Mahler Conjecture, poly-
nomial, certificate of non–negativeness.

Joint work with P.J. Claverı́a
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Computing Symmetric cubatures: A moment matrix approach.
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A quadrature is an approximation of the definite integral of a function by a weighted sum
of function values at specified points, or nodes, within the domain of integration. Gaussian
quadratures are constructed to yield exact results for any polynomials of degree 2r − 1 or less
by a suitable choice of r nodes and weights. Cubature is a generalization of quadrature in higher
dimension. Constructing a cubature amounts to find a linear form
Λ : R[x]→ R, p 7→∑r

j=1 aj p(ξj) from the knowledge of its restriction to R[x]≤d. The unknowns
to be determined are the weights aj and the nodes ξj .

An approach based on moment matrices was proposed in [?, ?, ?]. We give a basis-free version
in terms of the Hankel operator H associated to Λ. The existence of a cubature of degree d
with r nodes boils down to conditions of ranks and positive semidefiniteness on H. We then
recognize the nodes as the solutions of a generalized eigenvalue problem.

Standard domains of integration are symmetric under the action of a finite group. It is natural
to look for cubatures that respect this symmetry [?, ?]. They are exact for all anti-symmetric
functions beyond the degree of the cubature. Introducing adapted bases obtained from repre-
sentation theory, the symmetry constraint allows to block diagonalize the Hankel operator H.
The size of the blocks is explicitly related to the orbit types of the nodes. From the computa-
tional point of view, we then deal with smaller-sized matrices both for securing the existence of
the cubature and computing the nodes.

Joint work with Mathieu Collowald, Université Côte d’Azur & Inria Méditerranée [?].
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A procedure for resolving ambiguous planar

regions and its applications to offsets and other

morphological operations

Nelson Martins-Ferreira∗

Polytechnic Institute of Leiria, Portugal

We consider regions on the complex plane which are defined by a closed
and oriented planer curve. When the curve is simple the region is obtained
without any ambiguity, however, when the curve is not simple there might be
some ambiguity in determining the region. This is a real problem since, for
example, the offset of a simple curve is not necessarily a simple curve. And
yet, the offset of a region should again be a region. This creates the problem of
resolving ambiguities in regions which are defined as having the boundary of a
not necessarily simple curve. In this work we use the notion of a link [1] as a
model for a continuous closed and oriented planar curve. We call it a complex-
link and identify the euclidean plane with the complex numbers. The notion of
a complex-link, as a mathematical structure (consisting of an indexing set, an
endomap of indexes and a realization map into the complex numbers, see [1] for
more details) has certain desirable properties. For example, it is an efficient way
of encoding a planar curve in a clear and concise way. It is suitable for practical
computational calculations as well as to produce mathematical consistency. On
the top of the mathematical structure of a complex-link, we derive a general
procedure that assigns to every such structure a classifying map. This map
creates a partitioning of the complex plane into a family of regions indexed by
the integers. The region labeled by 0 is unlimited, a region labeled by n+1
is contained into a region labeled by n. In particular, the partition can be
transferred to the indexing sets and the ambiguity is resolved by choosing the
appropriate indexing family. For example, in the case of offsets, the resulting
region is the one whose boundary is the indexing family indexed by 0, if the
region is limited, or -1 is the complement of the region is limited. Applications
to other morphological operations are also derivable from this general procedure.
For instance, the procedure outlined in [2] is covered by this approach.
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Abstract It is well known that the governing equations of fluid dynamics, the Navier–Stokes
equations, are invariant under transformations like instantaneous rotations of the coordinate system
and the Galilean transformation. These transformations, or symmetries of the equations, play an
important physical role because they ensure that the description of fluids is the same in all inertial
frames of reference. They further relate to conservation and scaling laws [2]. It has since long been
realized that it is desirable that these symmetries are also satisfied in large-eddy simulations [1, 5].

Using large-eddy simulations one aims to predict the large-scale behavior of turbulent flows. This
is done by numerically solving the Navier–Stokes equations, on grids that are too coarse to resolve all
the relevant physical details. An extra forcing term, called a turbulence or subgrid-scale model, is
introduced to model the effects of the (unresolved) small-scale motions on the (resolved) large scales.

We present a framework of constraints for the creation and assessment of subgrid-scale models
for large-eddy simulation [3, 4], based on the idea that it is desirable that subgrid-scale models
are consistent with the symmetries, as well as with other mathematical and physical properties of
the Navier–Stokes equations. We also discuss issues of numerical implementation, including that of
conservation of energy in simulations [6]. Finally, we wonder how the symmetries of the Navier–Stokes
equations can be satisfied on the discrete level.
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