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Some notation

X is a (compact) subset of Rd .
Kernel K is a function K : X × X → R.
M is the set of finite signed measures µ on X .
M1 = {µ ∈M : µ(X ) = 1}.

Energy: Φ(µ) =

∫
X

∫
X
K (x , x ′)µ(dx)µ(dx ′), µ ∈M.

Minimal energy: Φ∗ = infµ∈M1 Φ(µ).
Capacity of X (with respect to K ): C ∗ = 1/Φ∗.
Minimizing (equilibrium) measure (may not exist):

µ∗ = arg min
µ∈M1

Φ(µ) .

−Φ(µ) is also known as Quadratic Rao’s Entropy of µ.



Kernel K in Φ(µ) =
∫ ∫

K (x , x ′)µ(dx)µ(dx ′)

PD: positive definite: KN = ‖K (xi , xj)‖Ni ,j=1 ≥ 0, ∀x1, . . . , xN ∈ X
CPD: conditionally positive definite: KN ≥ 0,

∑N
i=1 xi = 0

SPD: strictly positive definite: KN > 0 (xi 6= xj)
CSPD: conditionally strictly positive definite
SPD ⇒ PD; (S)PD ⇒ C(S)PD

Other classes of kernels (possibly unbounded)
IPD: integrally positive definite: Φ(µ) ≥ 0, ∀µ ∈M
ISPD: integrally strictly positive definite: Φ(µ) > 0, ∀µ 6= 0
CI(S)PD: Φ(µ) ≥ 0, ∀µ ∈M, µ(X ) = 0
CI(S)PD of order k : Φ(µ) ≥ 0, ∀µ :

∫
Pk(x)µ(dx) = 0

ISPD ⇒ IPD; I(S)PD ⇒ CI(S)PD

K is CI(S)PD ⇒ Φ is (strictly) convex on {µ ∈M1 : Φ(µ) <∞}



Proof of convexity (C.R.Rao, early 1980th)

Φ((1− α)µ+ αν) =

=

∫ ∫
K (x , x ′)[(1− α)µ+ αν](dx) · [(1− α)µ+ αν](dx ′)

= (1− α)2Φ(µ) + α2Φ(ν) + 2α(1− α)φ(µ, ν)

= (1− α)Φ(µ) + αΦ(ν)− α(1− α)Φ(µ− ν)

≤ (<) (1− α)Φ(µ) + αΦ(ν) .

Here

φ(µ, ν) =

∫ ∫
K (x , x ′)µ(dx)ν(dx ′) ;

Φ(µ− ν) =

∫ ∫
K (x , x ′)[µ− ν](dx) · [µ− ν](dx ′)

= Φ(µ) + Φ(ν)− 2φ(µ, ν)



Kernel (maximum mean) discrepancy

If K is CISPD (= ‘characteristic’) then

γK (µ, ν) =
√

Φ(µ− ν)

defines a proper distance (metric) on the space P of probability
measures.
It appears that Φ(µ− ν) is Bregman divergence associated with Φ.
If K is bounded and hence defines RKHS H then C-S inequality:∣∣∣∣∫ f (x)µ(dx)−

∫
f (x)ν(dx)

∣∣∣∣ ≤ ‖f ‖H · γK (µ, ν)

for all f ∈ H and µ, ν ∈ P (Koksma-Hlawka type inequality).

Ref: Sriperumbudur et al. (2010); Sejdinovic et al. (2013)



Example of the kernel discrepancy: distance covariance

K (x , x ′) = ‖x‖δ + ‖x ′‖δ − ‖x − x ′‖δ , 0 < δ < 2 .

This kernel is CISPD. The corresponding energy and discrepancy
was studied in many papers by Székely and Székely & Rizzo. All
proofs are direct and very technical.
The main case is δ = 1, where the squared kernel discrepancy
γ2K (µ, ν) is called distance covariance and Brownian distance
covariance.
Székely & Rizzo considered many statistical applications of this
discrepancy.
The fact that the theory of the distance covariance by Székely and
Székely & Rizzo can be generalized to general kernels was
understood by R. Lyons, AoP (2013) (partial generalization) and
Sejdinovic et al., AoS (2013).



Correlation kernels
In probability, K is usually assumed to be classically PD (bounded).

Random processes and fields with singular correlation kernels
appear, for example, in models of quantum gravity.

(C)SPD does not imply I(C)SPD. An example is the sinc squared
kernel

K (x , x ′) =
sin2(β(x − x ′))

(x − x ′)2
; β > 0.



Kernels K (x , x ′) = k(x − x ′)

Let K (x , x ′) = k(x − x ′) with k bounded, continuous PD function
and Λ(ω) be the spectral measure of k:

k(x) =

∫
Rd

e−ix
Tω dΛ(ω) .

Then K is CISPD if and only if the support of Λ coincides with
Rd , see Sejdinovic et al., AoS (2013), Th. 9. In this case,

γ2K (µ, ν) = Φ(µ− ν) =

∫
Rd

|ϕµ(ω)− ϕν(ω)|2dΛ(ω)

where ϕµ(ω) and ϕν(ω) are characteristic functions of probability
measures µ and ν.
For the squared sinc kernel K (x , x ′) = sin2(β(x − x ′))/(x − x ′)2,
the support of Λ(ω) = max{0, 1− |ω|/β} is [−β, β].



Directional derivative and potential

Directional derivative of Φ at µ in the direction ν:

F (µ; ν) = lim
α→0+

Φ[(1− α)µ+ αν]− ΦK (µ)

α

= 2

[∫ ∫
K (x , x ′) dµ(x ′)dν(x)− Φ(µ)

]
= 2

[∫
Pµ(x)dν(x)− Φ(µ)

]
where

Pµ(x) =

∫
K (x , x ′) dµ(x ′)

is the potential of µ at x .



Optimality theorems

Assume K is CISPD and Pµ(x) =
∫
K (x , x ′) dµ(x ′).

(i) µ∗ is the minimum-energy probability measure if and only if

Pµ∗(x) ≥ Φ(µ∗) , ∀ x ∈ X ;

we also have Pµ∗(x) = Φ(µ∗) on the support of µ∗.

(ii) µ∗ ∈M1 is the minimum-energy signed measure with total
mass 1 if and only if

Pµ∗(x) = Φ(µ∗) , ∀ x ∈ X .

Hajek (1956): if d = 1, K (x , x ′) = k(x − x ′), k convex then the
minimizing signed measure is necessarily a probability measure.
LP has noticed that this fact is true in a much more general case
when k is subharmonic (any d). Does not require proof but is
based on deep results of general potential theory.



Regression with correlated errors, BLUE

Consider a linear regression model:

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x) = θT f (x) + ε(x) ,

where x ∈ X ⊂ Rd , f (x) = (f1(x), . . . , fm(x))T ,
θ = (θ1, . . . , θm)T , E [ε(x)] = 0, K (x , x ′) = E[ε(x)ε(x ′)].
For observations at {x1, . . . , xN}, the BLUE is

θ̂BLUE = (XTΣ−1X)−1XTΣ−1Y,

where X = (fi (xj))i=1,...,m
j=1,...,N and Σ = (K (xi , xj))i ,j=1,...,N .



The BLUE, continuous version

General linear estimator which uses y(x):

θ̂ζ =

∫
y(x)ζ(dx) ,

where ζ(dx) is a signed vector-measure.

Th. If ζ is a vector-measure such that
∫
f (x)ζT (dx) = Im (the

unbiasedness condition) and there exists matrix D such that

Pζ(x) =

∫
K (x , x ′)ζ(dx ′) = Df (x), ∀x ∈ X ,

then ζ defines the BLUE; its covariance matrix is D.

Corollary. Set m = 1, f (x) = 1 (location-scale model), then the
unbiasedness condition becomes

∫
ζ(dx) = 1 and the optimality

condition for a signed measure ζ is Pζ(x) = const, ∀x ∈ X .



Differentiable kernels (joint work with Holger and Andrey)

If K is differentiable then y(x) is differentiable and the general
linear estimator uses derivatives, e.g.

θ̂ζ =

∫
y(x)ζ0(dx) +

∫
y ′(x)ζ1(dx) .

In this case (m = 1, f (x) = 1) the BLUE optimality condition
becomes∫

K (x , x ′)ζ0(dx ′) +

∫
∂K (x , x ′)

∂x
ζ1(dx ′) = const, ∀x ∈ X ,

Corollary: If ζ1 6= 0 (for all optimal measures) then the BLUE,
which uses y(x) only, does not exist.



Which functions (e.g. 1) belong to the RKHS?

If K is bounded then potentials

Pµ(x) =

∫
K (x ′, x)µ(dx ′)

belong to the RKHS, a space containing all functions∑
i aiK (x , xi ) and their limits. What about functions∫

K (x ′, x)µ0(dx ′) +

∫
K (1)(x ′, x)µ1(dx ′) + . . . ?

Here

K (i)(x , x ′) =
∂ iK (x , x ′)

∂x i
.

Standard explanation: ‘functions in RKHS are as smooth as the
kernel’ could be misleading. For example, 1 does not belong to the
RKHS of the Gaussian kernel K (x , x ′) = exp{−‖x − x ′‖2}.



1 /∈ RKHS for K (x , x ′) = exp{−|x − x ′|2};
Implications for computer experiments.
(Based on discussions with Holger)

I.Steinwart, A. Christmann. SVM (2008), Corollary 4.44 (thanks to
Bertrand for finding this).
This also follows from the results of W.Hu & M.Stein (2017), who
studied the behaviour of XT

N W−1
N XN for WN = (K (i/N, j/N))Ni ,j=1

and XN = (f (i/N))Ni=1, f (x) = xp, x ∈ [0, 1].

Computer experiments: Under the assumption that f is a
realization of a random field with covariance kernel σ2K (x , x ′), the
MLE of σ2 is

σ̂2 =
1

N
XT
N W−1

N XN =
1

N · variance of discrete BLUE

This can tend to 0, a constant or ∞ depending on the rate of
convergence of XT

N W−1
N XN to 0 as N →∞.



K (x , x ′) = exp{−|x − x ′|2}, X = [0, 1], N = 100.

Figure: Left: log10 λi for the eigenvalues the matrix (K (i/N, j/N))Ni,j=1

for K (x , x ′) = exp{−|x − x ′|2}, X = [0, 1], N = 100. Right: sign times
decimal logarithm for the optimal BLUE weights for approximation of 1



K (x , x ′) = exp{−|x − x ′|ρ}, X = [0, 1], N = 100, ρ < 2.

Figure: Eigenvalues of the matrix (K (i/N, j/N))Ni,j=1 for different values
of ρ. Left: decimal logarithm of λmin (ρ ∈ [0.5, 1.999]). Right:
normalised eigenvalues (λi/λmin)−1/ρ: ρ =0.5 (black), ρ =1 (blue),
ρ =1.5 (green), ρ =1.9999 (red)

Note log10(λmin) ' −125 for ρ = 2 and N = 100.



Riesz kernel, potential theory

K (x , x ′) =

{
1/‖x − x ′‖s , 0 < s < d (ISPD)
− log ‖x − x ′‖ , s = 0 (CISPD)

Standard advice (see e.g. Sriperumbudur et al, 2010) is to
approximate it with the ‘inverse multiquadratic’ kernel (s > 0)

K (x , x ′) =
1

(‖x − x ′‖2 + ε)s/2
(ISPD)



Riesz kernel: two different approximations

Figure: Left: Brown: 1/
√
x ; blue: multiquadratic 1/

√
x2 + 0.005; x > 0.

Right: BLUE weights for multiquadratic approximation (red) and (scaled)
true weights



Completely monotone & Bernstein functions

f : (0,∞)→ R is CM if (−1)k f (k)(t) > 0, ∀t > 0, k = 0, 1, . . .
g : (0,∞)→ R is BF if g(0) = 0 and g ′ is CM
f is CM ⇒ Kernel K (x , x ′) = f (‖x − x ′‖) is PD
g is BF ⇒ Kernel K (x , x ′) = g(‖x − x ′‖) is CPD
If we take k derivatives, we get CPD of order k .
CM functions may have singularity at 0: f (t) = t−α, 0 < α < 1.
A long list of BFs is contained in R.Schilling et all, Bernstein
Functions (2010).

Assume g is BF and f = g ′ is singular at 0. Then ∀ε > 0,

fε(t) =
g(t + ε)− g(t)

ε
(fε(0) = g(ε)/ε <∞)

is CM, bounded and can be used as an approximation of f .



Relation between PD and CPD: Schoenberg theorem

Assume the kernel is K (x , x ′) = k(x − x ′).
For bounded functions (kernels) we have:
Th. (Schoenberg) A function k : Rd → R is CPD if and only if
for all β ∈ (0, β0) the functions eβk(·) are PD.

Tomos Phillips has extended this theorem to the case of (possibly
unbounded) IPD functions, see his poster.

Example: if k(x) = − log(‖x‖) then eβk(x) = ‖x‖−β.



Eigenvalues of differentiable kernels; Mercer theorem

H. Weyl (1912), J.Reade (1979, 1983-86), C.-W. Ha (1986),
J.Cochran (1976-88), etc:
Roughly: if K ∈ C k then λn � n−k−1 as n→∞.

Minimizing measure and the Mercer theorem. Let φ1, φ2, . . . be
the eigenfunctions of the integral operator h→

∫
K (t, ·)h(x)dx

and f is in the RKHS. Then f (x) =
∑∞

i=1 qiφi (x) for some {qi},
‖f ‖2 =

∑∞
i=1 λ

−1
i q2i , and the BLUE measure is

µ∗(dx) = ‖f ‖−2
∞∑
i=1

λ−1i qiφi (x)dx ,

if the sum converges for all x ∈ X .



Kernel herding

This is the problem of approximating a given measure µ by a
sequence of N-point (nested) measures {µN} so that

γK (µ, µN) =
√

Φ(µ− µN)

is small for all N. Some standard algorithms for construction of
optimal designs (like the vertex exchange and some other discussed
by Radoslav) can be applied.
Reduced kernel:

K̃ (x , x ′) = K (x , x ′)− Pµ(x)− Pµ(x ′) + Φ(µ)

For this kernel, µ is the minimizing measure and Φ̃(µ) = 0; the
kernel herding can be thought of as a problem of constructing a
sequence of N-point measures {µN} with small values of Φ̃(µN).



Thank you for listening


