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Some notation

X is a (compact) subset of RY.
Kernel K is a function K : X x X — R.
M is the set of finite signed measures p on X.

Mi={peM: p(Xx)=1}.

Energy: ®(u // (x, XY u(dx)p(dx"), p € M.

Minimal energy: ®* = inf,caq, O(1).
Capacity of X' (with respect to K): C* = 1/0*.
Minimizing (equilibrium) measure (may not exist):

= min ¢
I = arg min (1) -

—®(p) is also known as Quadratic Rao’s Entropy of w.



Kernel K in ®(u) = [ [ K(x,x")pu(dx)p(dx’)

PD: positive definite: Ky = ||K (XHX_[)H ij=12= >0,Vxy,....,xy €X
CPD: conditionally positive definite: Ky > 0, Z,Zl xi =10

SPD: strictly positive definite: Ky >0 (x; # x/)

CSPD: conditionally strictly positive definite

SPD = PD; (S)PD = C(S)PD

Other classes of kernels (possibly unbounded)

IPD: integrally positive definite: ®(u) >0, Vu € M

ISPD: integrally strictly positive definite: ®(u) > 0, Vu #0
CI(S)PD: ®(u) > 0, Y € M, pu(X) =0

CI(S)PD of order k: ®(u) >0,V : [ Pi(x)p(dx) =0
ISPD = IPD; I(S)PD = CI(S)PD

K is CI(S)PD = & is (strictly) convex on {u € My : ®(u) < oo}



Proof of convexity (C.R.Rao, early 1980th)

(1 -« u+a1/)
= // X, XN(1 = a)p + av](dx) - [(1 — a)p + av](dx’)

K(
- a- a)%( )+ a?(v) + 2a(1 - a)o(u, v)
= (1)) +ad() - a(l — a)d(u 1)
< (<) (1—a)o(n) +ad(v).

:// XX, (dx)v dX/'

O(u—v) = // x5 ) — () - [ — v)(d)
= () + D(v) — 26(1,)

Here



Kernel (maximum mean) discrepancy

If K is CISPD (= ‘characteristic’) then

Yk (psv) =/ P(p —v)

defines a proper distance (metric) on the space P of probability
measures.

It appears that ®(u — v) is Bregman divergence associated with ®.
If K is bounded and hence defines RKHS # then C-S inequality:

[ reautan) - [ rioma

for all f € H and u,v € P (Koksma-Hlawka type inequality).

<l - i (s v)

Ref: Sriperumbudur et al. (2010); Sejdinovic et al. (2013)



Example of the kernel discrepancy: distance covariance

K x) = IxI° + IX1° = x =x'1°, 0 <o <2.

This kernel is CISPD. The corresponding energy and discrepancy
was studied in many papers by Székely and Székely & Rizzo. All
proofs are direct and very technical.

The main case is § = 1, where the squared kernel discrepancy
v%(u,v) is called distance covariance and Brownian distance
covariance.

Székely & Rizzo considered many statistical applications of this
discrepancy.

The fact that the theory of the distance covariance by Székely and
Székely & Rizzo can be generalized to general kernels was
understood by R. Lyons, AoP (2013) (partial generalization) and
Sejdinovic et al., AoS (2013).



Correlation kernels

In probability, K is usually assumed to be classically PD (bounded).

Random processes and fields with singular correlation kernels
appear, for example, in models of quantum gravity.

(C)SPD does not imply I(C)SPD.
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An example is the sinc squared

e 8 > 0.
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Kernels K(x, x") = k(x — x')

Let K(x,x") = k(x — x") with k bounded, continuous PD function
and A(w) be the spectral measure of k:

k(x) = /R ) e Y dA(w).

Then K is CISPD if and only if the support of A coincides with
RY, see Sejdinovic et al., AoS (2013), Th. 9. In this case,

) = 001 =) = [ lgu(w) ~ pulw)PdN)

where ¢, (w) and ¢, (w) are characteristic functions of probability
measures 1 and v.

For the squared sinc kernel K(x,x') = sin?(8(x — x'))/(x — x")?,
the support of A(w) = max{0,1 — |w|/B} is [, B].



Directional derivative and potential

Directional derivative of ® at w in the direction v:

Fuv) = lim CD[(l—a),u—i-aV]— k(p)

a—0t+

_ [// (5, x) da(x)d(x) — ¢(M)}
= 2| [ Pt - o)

&Mz/k&MMMﬂ

is the potential of u at x.

where



Optimality theorems

Assume K is CISPD and P,(x) = [ K(x,x") du(x').

(i) px is the minimum-energy probablllty measure if and only if
Puy(x)>®(p"), Vxe X,

we also have P,«(x) = ®(u*) on the support of p*.

(ii) ps € My is the minimum-energy signed measure with total
mass 1 if and only if

Puy(x)=®(p"), VxeX.

Hajek (1956): if d =1, K(x,x") = k(x — x"), k convex then the
minimizing signed measure is necessarily a probability measure.
LP has noticed that this fact is true in a much more general case
when k is subharmonic (any d). Does not require proof but is
based on deep results of general potential theory.



Regression with correlated errors, BLUE

Consider a linear regression model:
y(X) = 01A(x) + ... + Omfin(x) + e(x) = 0T f(x) + e(x) ,
where x € X C RY, f(x) = (A(x),..., fm(x))7,
0= (01,...,0m)7, E[s(x)] =0, K(x,x") = E[g(x)e(x')].
For observations at {xi,...,xy}, the BLUE is
Oprue = (XTEIX)IXTE 1y,

where X = (fi(x))i 2y and E = (K(xi,%))ij1....n-



The BLUE, continuous version

General linear estimator which uses y(x):

b — / Y(x)C(d)

where ((dx) is a signed vector-measure.

Th. If{ is a vector-measure such that [ f(x)(T(dx) = Iy (the
unbiasedness condition) and there exists matrix D such that

Pe(x) = / K(x,x')¢(dx") = Df(x), V¥x € X,
then { defines the BLUE; its covariance matrix is D.
Corollary. Set m =1, f(x) = 1 (location-scale model), then the

unbiasedness condition becomes [ ((dx) =1 and the optimality
condition for a signed measure ( is P¢(x) = const, Vx € X



Differentiable kernels (joint work with Holger and Andrey)

If K is differentiable then y(x) is differentiable and the general
linear estimator uses derivatives, e.g.

% :/Y(X)Co(dx)+/y’(x)§1(dx).

In this case (m =1, f(x) = 1) the BLUE optimality condition
becomes

/K(X,X’)Co(dxl) + / 8Kg;’x,)§1(dx') = const, Vx € X,

Corollary: If (1 # 0 (for all optimal measures) then the BLUE,
which uses y(x) only, does not exist.



Which functions (e.g. 1) belong to the RKHS?

If K is bounded then potentials

Pux) = [ KO3 ()

belong to the RKHS, a space containing all functions
>;aiK(x, x;) and their limits. What about functions

/K(x’,x),uo(dx') + / KO (X, x) g (dX') + ... 7

Here .
J'K(x,x")

oxi
Standard explanation: ‘functions in RKHS are as smooth as the
kernel’ could be misleading. For example, 1 does not belong to the
RKHS of the Gaussian kernel K(x,x") = exp{—||x — x'||?}.

KD (x,x') =



1 ¢ RKHS for K(x, x') = exp{—|x — x|}
Implications for computer experiments.
(Based on discussions with Holger)

|.Steinwart, A. Christmann. SVM (2008), Corollary 4.44 (thanks to
Bertrand for finding this).

This also follows from the results of W.Hu & M.Stein (2017), who
studied the behaviour of X, Wy Xy for Wy = (K(i/N,j/N))f\L-:1
and Xy = (F(i/N))V,, f(x) = xP, x € [0,1].

Computer experiments: Under the assumption that f is a
realization of a random field with covariance kernel 02K (x, x'), the
MLE of 0% is
1
N

1
N - variance of discrete BLUE

Xy Wyt Xy =

02 =

This can tend to 0, a constant or co depending on the rate of
convergence of Xy Wy ' Xy to 0 as N — oo.



K(x,x") = exp{—|x — X'|?}, X =[0,1], N = 100.

Figure: Left: logig Ai for the eigenvalues the matrix (K(i/N,j'/N))f\”J-:1
for K(x,x") = exp{—|x — x'|*}, X =[0,1], N = 100. Right: sign times
decimal logarithm for the optimal BLUE weights for approximation of 1



K(x,x") = exp{—|x — X'|’}, X =[0,1], N =100, p < 2.

E] o ] [ 160

Figure: Eigenvalues of the matrix (K(i/N,J’/N)),l\fj:1 for different values
of p. Left: decimal logarithm of Amin (p € [0.5,1.999]). Right:
normalised eigenvalues (\;/Amin)~Y/?: p =0.5 (black), p =1 (blue),

p =1.5 (green), p =1.9999 (red)

Note log;o(Amin) =~ —125 for p = 2 and N = 100.



Riesz kernel, potential theory

W [ 1lx—x|*, 0<s<d (ISPD)
K(X’X)—{ —log |x = X||, s=0 (CISPD)

Standard advice (see e.g. Sriperumbudur et al, 2010) is to
approximate it with the ‘inverse multiquadratic’ kernel (s > 0)

1
(Ix = x| + )/

K(x,x") = (ISPD)



Riesz kernel: two different approximations

Figure: Left: Brown: 1/4/x; blue: multiquadratic 1/4/x2 + 0.005; x > 0.
Right: BLUE weights for multiquadratic approximation (red) and (scaled)
true weights



Completely monotone & Bernstein functions

f:(0,00) = Ris CM if (=1)kf()(t) >0, Vt >0, k=0,1,...
g:(0,00) =+ R is BF if g(0) =0 and g’ is CM

fis CM = Kernel K(x,x") = f(||lx — x'||) is PD

g is BF = Kernel K(x,x') = g(||x — X||) is CPD

If we take k derivatives, we get CPD of order k.

CM functions may have singularity at 0: f(t) =t7*,0 < a < 1.
A long list of BFs is contained in R.Schilling et all, Bernstein
Functions (2010).

Assume g is BF and f = g’ is singular at 0. Then Ve > 0,

£ = EEED=8E () gy < o)

is CM, bounded and can be used as an approximation of f.



Relation between PD and CPD: Schoenberg theorem

Assume the kernel is K(x,x") = k(x — x).

For bounded functions (kernels) we have:

Th. (Schoenberg) A function k : RY — R is CPD if and only if
for all 8 € (0, o) the functions e?*() are PD.

Tomos Phillips has extended this theorem to the case of (possibly
unbounded) IPD functions, see his poster.

Example: if k(x) = —log(||x||) then e®k(x) = ||x||=7.



Eigenvalues of differentiable kernels; Mercer theorem

H. Weyl (1912), J.Reade (1979, 1983-86), C.-W. Ha (1986),
J.Cochran (1976-88), etc:
Roughly: if K € CK then A, < n=%"1 as n — oo.

Minimizing measure and the Mercer theorem. Let ¢1, @2, ... be
the eigenfunctions of the integral operator h — [ K(t,-)h(x)dx

and f is in the RKHS. Then f(x) = >_72; gi¢i(x) for some {g;},
|f]|2 = 3%, A7 1q?, and the BLUE measure is

() = IF172 )0 A Haidilx)dx,
i=1

if the sum converges for all x € X.



Kernel herding

This is the problem of approximating a given measure u by a
sequence of N-point (nested) measures {uy} so that

Y (1, piv) = v/ (1 — pin)

is small for all N. Some standard algorithms for construction of
optimal designs (like the vertex exchange and some other discussed
by Radoslav) can be applied.

Reduced kernel:

R(x,x/) = K(x,x") = Pu(x) — P,(X) + ®(u)

For this kernel, y is the minimizing measure and &J(u) = 0; the
kernel herding can be thought of as a problem of constructing a
sequence of N-point measures {py} with small values of ®(uy).



Thank you for listening



