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Reduction in size

Wei Zheng Incomplete U-Statistics



bg=whiteMotivation Literature Review A simple idea

Definition of U-statistics

Suppose X1, X2, ..., Xn
iid∼ F ∈ F , where F could be any set of

distribution defined on R.

We are interested in estimating θ = θ(F ) = Eg(X1, ..., Xk), where
g : Rk → R is a symmetric kernel function of order k.

Let S0 = {i = (i1, i2, ..., ik) : 1 ≤ i1 < i2 < ... < ik ≤ n} be the
collection of all size k subset of {1, 2, ..., n}.
The regular U-statistics is defined as

U0 =

(
n

k

)−1 ∑
i∈S0

gi

gi = g(Xi1 , Xi2 , ..., Xik)

It is well known that U0 has the smallest variance among all
unbiased estimators of θ for any given F .

One big issue: Its computational complexity is O(nk).
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Incomplete U-statistics

Imagine the data size as n = 1000 and the order of kernel as
k = 3, the total number of terms to be averaged is already(
1000
3

)
≈ 166 millions. (roughly 6 mins on a daily desktop)

Adding a zero to n:
(
10000

3

)
≈ 166 billion. (100 hours)

Due to the computational burden even for moderate size of data,
we need to approximate U0 by an incomplete U-statistics

U = m−1
∑
i∈S

gi

where S is a sample of elements from S0 with or without
replacement and |S| = m <<

(
n
k

)
.
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Random sampling: case 1

m/
(
n
k

)
efficiency (%)

0.2 ' 100
0.1 99.54
0.04 95.80
0.02 80.77
0.01 53.22
0.006 23.01

Table 1: The performance of incomplete U-statistics when S is a random
sample of the elements in S0 with replacement at the setting of n = 1000,
k = 2, and g(X1, X2) = (X1 −X2)2/2, where Xi ∼ N(0, 1).
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Random sampling: case 2

m/
(
n
k

)
time efficiency (%)

1× 10−3 0.35 sec ' 100
5× 10−4 0.03 sec 99.88
4× 10−4 0.023 sec 95.81
3× 10−4 0.017 sec 94.13
2× 10−4 0.012 sec 85.00
1× 10−4 3.3 µsec 81.82
6× 10−5 1.9 µsec 26.52

Table 2: The performance of incomplete U-statistics when S is a random
sample of the elements in S0 with replacement at the setting of n = 1000,
k = 3, and g(X1, X2, X3) = 1

3
(sign(2X1 −X2 −X3) + sign(2X2 −X1 −X3)

+sign(2X3 −X1 −X2)). The computation of the complete U-statistics
takes around 6 minutes.
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Insights on random sampling

The random sample is drawn from the combination pool S0

instead of the original data {1, 2, .., n}.
Blom (1976): The variance of the incomplete U-statistic based on
the random sampling scheme is

V (URND) =
σ2
g

m
+ (1− 1

m
)V (U0)

where σ2
g = V (g(X1, ..., Xk)) > V (U0).

For non-degenerated case, V (U0) � 1/n, so softly speaking

If m/n→ 0, we have V (URND) ≈ σ2
g/m.

If m/n→ α ∈ (0,∞), we have V (URND) ≈ V (U0) + α−1σ2
g/n.

If m/n→∞, V (URND) ≈ V (U0).

The takeaway: Instead of computing the complete U-statistics at
the computational cost of O(nk), the random incomplete
U-statistic with m � n shall achieve the same variance
asymptotically.
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Literature Review

Incomplete U-statistic: Blom (1976).

Reduced U-statistic: Brown and Kildea (1978).

Constructions: Lee (1982), Rempala and Wesolowski (2003),
Rempala and Srivastav (2004).

Statistical properties: Lee (1979), Janson (1984).

Multi-sample and machine learning: Clemencon et al (2016),
Colin (2016).

High dimensional case: Chen (2017), Chen and Kato (2017).
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Some basics of the regular U-statistics

For 1 ≤ c ≤ k, let gc(x1, ..., xc) = Eg(x1, ..., xc, Xc+1, ..., Xk).

Define the projections h(1)(x1) = g1(x1)− θ and

hc(x1, ..., xc) = gc(x1, ..., xc)−
c−1∑
j=1

∑
(c,j)

hj(xi1 , ..., xij )− θ

Hoeffding decomposition (1948):

U0 = θ +

k∑
c=1

(
k

c

)
Hc,

where Hc is a U-statistics defined on the kernel function hc.

By the projection property, we have

V (U0) =

k∑
c=1

(
k

c

)2(
n

c

)−1
δ2c (1)

where δ2c = V (hc(X1, ..., Xc)).
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Variance of an incomplete U-stat

Lee (1982): the variance of U = m−1
∑

i∈S gi is

V (U) =

k∑
c=1

ηcδ
2
c

ηc = m−2
∑
(n,c)

λ(i1, ..., ic)
2

where λ(i1, ..., ic) = #{i ∈ S : {i1, ..., ic} ⊂ i} is the number of
k-tuples (blocks) in S containing the c-tuple (i1, ..., ic).

Since
∑

(n,c) λ(i1, ..., ic) = m
(
k
c

)
, the quantity ηc is minimized

when λ(i1, ..., ic) differs from each other by 1 or 0 all c-tuples.

For given m, an equal replicate design minimizes η1

For given m, A BIBD minimizes η1 and η2.

PBIBD with two associate classes (λ1 = 1 and λ0 = 0).
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BIBD

When k = 3, a BIBD minimizes the variance of incomplete
U-statistics among all designs with the same m.

When k ≥ 4, a BIBD with λ = 1 minimizes the variance of
incomplete U-statistics among all designs with the same m.

We will see later that the above statements of optimality is only
conditionally true.

Raghavarao (1971): For each integer t, there exist a BIBD for
n = 6t+ 3 (data size), m = (3t+ 1)(2t+ 1).

However, m is forced to be at the scale of m � n2.

Recall random sampling only require m � n.

In Example 2 with n = 1000, we have m = 166, 167 for the BIBD.
This makes the ratio m/

(
1000
3

)
= 0.001, where the random

sampling reaches the efficiency of nearly 100%.

Similar observations for PBIBD.
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Permanent design

Introduced by Rempala and Wesolowski (2003).

Suppose n is divisible by k and denote t = n/k.

Randomly split {1, 2..., n} into k disjoint sets M1,...,Mk, each of
size t.

Form tk distinct k-tuples by selecting one element from each of
M1,...,Mk. Let S be the set of all k-tuples such formed.

Define the incomplete U-statistic by

U = t−k
∑
i∈S

gi

We have m = O(nk) for this algorithm, so not attractive
considering BIBD already yields the efficiency close to 1.
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Rectangular design

Introduced by Rempala and Srivastav (2004).

Arrange the data by a k × t array

X1,1, . . . , X1,t

X2,1, . . . , X2,t

· · ·
Xk,1, . . . , Xk,t

Definition of Rectangular scheme

S consists of k-tuples with one element from each row:
{X1,i1 , . . . , Xk,ik}.
It contains all 2-subsets of the form {Xi,j , Xk,l} where i 6= k and
j 6= l.

It is essentially a subset of permanent design with 2-dimensional
projection property.

Like BIBD, it also enforces m � n2
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Rectangular design vs BIBD

Method time efficiency (%) m

Rectangular design 0.32 sec ' 100 117306*
BIBD 0.44 sec ' 100 166167*

Random sampling 0.35 sec ' 100 166167

Table 3: Comparison of the three methods in Example 2: n = 1000, k = 3,
and g(X1, X2, X3) = 1

3
(sign(2X1 −X2 −X3) +sign(2X2 −X1 −X3)

+sign(2X3 −X1 −X2)). *For rectangular design and BIBD, m is fixed for
given n and k, and is forced to have the scale of m � n2.
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Stratified random sampling

Given a partition S0 = ∪Jj=1Sj , we approximate the U-statistics as
follows

Independently draw a random sample Tj from Sj (with

replacement), 1 ≤ j ≤ J , so that
∑J

j=1 |Tj | = m.

Approximate the U-statistics by

Ustr =

J∑
j=1

wjUj

where wj = |Sj |/|S0| and Uj = |Tj |−1
∑

i∈Tj
gi.

Theorem 1

Under the proportional sampling scheme, |Tj | ∝ |Sj |, we have

Var(Ustr) ≤ Var(URND).
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A simple but important observation

Consider the data

i 1 2 3 4 5 6
Xi 10 11 12 10 11 12

For a kernel function g of order 3, obviously we have
g(X1, X2, X3) = g(X4, X5, X6).

To our best knowledge, there has been no method incorporating
this information.

To utilize this information, we shall divide the original data into
homogeneous groups.

In multi-dimensional case it is called clustering.
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OA based stratification: Definition

For simplicity, suppose there is a positive integer, say L, which
divides n.

Arrange the data in ascending order X(1), . . . , X(n) and divide
them into L groups, G1, . . . , GL each of equal size.

Let A = (ajk) be an OA(J, k, L, t), and ajk be the element in the
jth run and kth factor of A.

For 1 ≤ j ≤ J , draw a random sample of size m/J from
Gai1

×Gaj2
× · · · ×Gajk

, and calculate Uj as the average of g
evaluated across the drawn sample.

Approximate the U-statistics by

Uoa =
1

J

J∑
j=1

Uj

When t = k, we have J = Lk.
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Corollary 1

For any distribution of X and kernel function g, we have

Var(Uoa) ≤ Var(URND)
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Var(URND) = Var(U0) +m−1(σ2
g − V (U0)).

σ2
g =

k∑
c=1

(
k

c

)
δ2c

Theorem 2

Suppose g is Lipschitz continuous and X is bounded, with t being the
strength of OA, we have

Var(Uoa) = Var(U0) +m−1
∑

k≥c>t

(
k

c

)
δ2c +O(m−1L−2),

For given m, with the constraint of Lt = J � m, we have the
trade-off in selecting the values of L and t.

The optimal choice of the strength t and hence L depend on the
comparison between δc, c > t, and the change occurred to L−2

when we change t.
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Corollary 2

Suppose g is Lipschitz continuous and X is bounded, the U-statistic
based on the OA of strength k has the following property

Var(Uoa) = Var(U0) +O(m−1L−2),

Given strength k, under the constraint of Lk = J ≤ m, the
optimal choice for L will be m1/k.
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OA-stratification vs random sampling

Eff(U) = Var(U0)/Var(U).

Recall both rectangular design and BIBD enforces m � n2. We
have argued that the random sampling performs equivalently well
in this case. We shall use random sampling as the benchmark to
evaluate the OA method.

When m � n, both OA and random sampling methods are
asymptotically efficient.

With t = k, Eff(Uoa) converges to 1 faster than Eff(URND)

1− Eff(Uoa)

1− Eff(URND)
= O(L−2)→ 0, as m,L→∞

When m � n or m ≺ n , URND is no longer efficient, but Uoa

could be efficient under some circumstances.
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Simulation: Test of symmetry

For testing the symmetry of the distribution of X, we use the
U-statistics with the following kernel function of order 3

g(X1, X2, X3) = sign(2X1 −X2 −X3) + sign(2X2 −X1 −X3)

+sign(2X3 −X1 −X2)

The data is iid generated from ∼ N(0, 1).

We will compare three different incomplete U-statistics: random
sampling and OA with strengths of t = 2 and t = 3.

The simulations will be carried out for three different cases:
m � n, m � n and m ≺ n.
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Large m
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Figure 1: n = 1024, m/4096 = 1, 2, 3, 4, 5. The number of levels for OA are
L2 = 64 and L3 = 16.
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Moderate m
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Figure 2: n = 1215, m/729 = 1, 2, 3, 4, 5. The number of levels for OA are
L2 = 27 and L3 = 9.
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Small m
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Figure 3: n = 1000, m/64 = 1, 2, 3, 4, 5. The number of levels for OA are
L2 = 8 and L3 = 4. Ranking process takes substantial time for OA
methods.
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Choice of OA strength

Even though the kernel function is non-degenerate, OA(t=2) is
still dominated by OA(t=3). Why?

Because the variance of the high order projection term does not
decay fast: δ21 = 0.0028, δ22 = 0.00724, δ23 = 0.081.

From previous results, we have

V (Uoa(t=3)) = n−10.00252 +O(m−1L−23 )

V (Uoa(t=2)) = n−10.00252 +m−10.081 +O(m−1L−22 )

V (URND) = n−10.00252 +m−10.1111

where L2
2 = L3

3 = J .

OA(t=2) allows us to divide the original data into finer grids, but
it loses the uniformity in 3-dimensional space.
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When OA(t=2) is better
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Figure 4: n = 1215, m/729 = 1, 2, 3, 4, 5;
g(X1, X2, X3) = 1

6
((X1 −X2)2 + (X2 −X3)2 + (X3 −X1)2);

δ21 = 2/9, δ22 = 2/9, δ23 = 0.
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Divide and conquer does not work well

Proposed by Lin and Xi (2010).

Randomly split the data into K parts and calculate U-statistics
on each part and take the aggregate average.

The computational complexity is O(K(n/K)k).

Method efficiency (%) m time

OA 98.81 20480 0.044 sec
Divide and 76.09 35840 0.22 sec

conquer 92.80 158720 1.26 sec
Random sampling ' 100 166167 0.35 sec

Table 4: n = 103, k = 3, g(X1, X2, X3) = 1
3
(sign(2X1 −X2 −X3)

+sign(2X2 −X1 −X3) +sign(2X3 −X1 −X2)).
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Simulation: Wilcoxon Signed Rank Test

The Wilcoxon Signed Rank Test is a nonparametric method to
test the equality of the means of two matched up samples.

The testing statistic can be represented as a summation of two
simple U-statistics

W+
n =

∑
1≤i≤n

I(Zi > 0) +
∑

1≤i<j≤n

I(Zi + Zj > 0)

We will compare two different incomplete U-statistics: random
sampling and OA with k = t = 2.

The simulations will be carried out for three different cases:
m � n, m � n and m ≺ n.
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Large m
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Figure 5: n = 1000, m/2500 = 1, 2, 3, 4, 5.

Wei Zheng Incomplete U-Statistics



bg=whiteMotivation Literature Review A simple idea

Moderate m
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Figure 6: n = 1000, m/400 = 1, 2, 3, 4.
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Small m
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Figure 7: n = 1000, m/100 = 1, 2, 3, 4, 5.
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Notice in Figure 6, the OA based U-statistic is still highly
efficient even when m ≤ n/2.

Recall V (Uoa) = V (U0) +O(m−1L−2).

Under the constraint of L2 ≤ m, we could choose L �
√
m so

that we have V (Uoa) = V (U0) +O(m−2).

This means the OA based U-statistic shall be asymptotically
efficient as long as m �

√
n.
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Degenerated case

Recall the variances for URND and Uoa.

V (URND) = Var(U0) +m−1(σ2
g − V (U0))

V (Uoa) = V (U0) +O(m−1L−2)

Suppose g is degenerate of order d, we have V (U0) = O(nd+1).

To be asymptotically efficient: RND requires m � nd+1.

For OA method, we choose L � m1/k, which result in
V (Uoa) = V (U0) +O(m−(1+2/k))

OA based U-stat will be asymptotically efficient if m � n
d+1

1+2/k .

When k = 2, we have mOA �
√
mRND

Actually, for large enough m, we still have

1− Eff(Uoa)

1− Eff(URND)
= O(L−2)→ 0
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k = 3 and d = 2

Method efficiency (%) m

OA 0.8 166000
Rectangular design 0.06 117306*

BIBD 0.1 166167*
Random sampling 0.0026 166167

Table 5: n = 1000; g(X1, X2, X3) = X1X2X3; Xi ∼ N(0, 1); δ21 = δ22 = 0
and δ23 = 1. *For rectangular design and BIBD, m is fixed for given n and
k, and is forced to have the scale of m � n2.

We have claimed BIBD to be optimal. Why is it inferior to the
new method (OA) now?

OA stratification is playing a different game.
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k = 2 and d = 1

Method efficiency (%) m

OA 82.17 250000
26.84 40000
4.167 10000

random 0.506 250000
sampling 0.076 40000

0.021 10000

Table 6: n = 104; g(X1, X2) = X1X2; Xi ∼ N(0, 1); δ21 = 0 and δ22 = 1.
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Discussions

It is computational rewarding to replace the original U-statistic
by incomplete U-statistic.

The random sampling method perform so well (m � n for 100%
efficiency) that there was not much gain by using existing design
methods or the so called “divide and conquer”.

We proposed a simple idea of grouping which made significant
improvement against random sampling. e.g. mOA =

√
mRND for

k = 2.

Some possible extensions.

Multi-dimensional input

Multi-dimensional output

Multi-sample case

Hodges-Lehmann estimator

Machine learning applications
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Welcome to U.S. series of DAE 2019

The purpose of the Design and Analysis of Experiments (DAE)
conference series is to provide support and encouragement to
junior researchers in the field of design and analysis of
experiments, and to stimulate interest in topics of practical
relevance to science and industry.

The meetings also attract top notch senior researchers, primarily
from North America and Europe, and emphasize interaction
between junior and senior researchers.

It has been held at Columbus, OH (2000), Vancouver, BC (2002),
Chicago, IL (2003), Santa Fe, NM (2005), Memphis, TN (2007),
Columbia, MO (2009), Athens, GA (2012), Cary, NC (2015), and
Los Angels, CA (2017). DAE 2019 is the tenth event to be held
in Knoxville, TN.

Wei Zheng Incomplete U-Statistics



bg=whiteMotivation Literature Review A simple idea

University of Tennessee
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Smoky Mountain
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