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1. Introduction

Motivation:

The considerations on admissibility and
invariance of designs are key to reduction of
complicated design problems.

These concepts are addressed in detail and
applied successfully for finding optimal
designs in single-response models

yi = η(xi, θ) + ε, i = 1, 2, ..., n.



Rong-Xian Yue

Introduction

Multiresponse
model

Admissibility of
designs

Invariance of
designs

Elfving’s theorem
for D-optimality

Concluding
remarks

References

1. Introduction

Motivation:

The considerations on admissibility and
invariance of designs are key to reduction of
complicated design problems.

These concepts are addressed in detail and
applied successfully for finding optimal
designs in single-response models

yi = η(xi, θ) + ε, i = 1, 2, ..., n.



Rong-Xian Yue

Introduction

Multiresponse
model

Admissibility of
designs

Invariance of
designs

Elfving’s theorem
for D-optimality

Concluding
remarks

References

For example,

Kiefer (1959),

Gaffke (1987),

Heiligers (1992),

Pukelsheim (1993),

Yang and Stufken (2009),

Yang (2010),

Dette and Melas (2011),
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Purpose of the present study:

To extend the considerations on admissibility
and invariance to multiresponse designs.

Multiresponse experiments:

In a multiresponse situation, several
responses are considered simultaneously,
which are usually correlated.

Data on more than one response variable is
recorded from the same experimental unit
through application of same treatment.

They occur in, e.g., engineering,
pharmaceutical, biomedical, environmental
research.
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2. Multiresponse
model

Suppose that we have a system of r response
variables,

y1, y2, · · · , yr

each of which depends on the same set of q
input variables denoted by

x1, x2, · · · , xq

with an experimental region X ⊂ Rq.
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Multiresponse linear model:

Y(x) = F(x)θ + ε (2.1)

Y(x) = (y1(x), ..., yr(x))T

x = (x1, · · · , xq) ∈ X ⊂ Rq

F(x) = (f1(x), · · · , fr(x))T ∈ Rr×p

θ : a vector of unknown parameters in Rp

ε : an r-dim vector of random errors

E(ε) = 0, Cov(ε) = Σ = (σij)r×r > 0
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Design and Information matrix:

An approximate design ξ: a probability
measure with finite supports on X

ξ =

{
x1 · · · xn

w1 · · · wn

}
, wi ≥ 0,

n

∑
i=1

wi = 1.

Ξ: the set of all approximate designs.

The information matrix of ξ on X :

M(ξ) =
∫
X

FT(x)Σ−1F(x) dξ(x).

M(Ξ): the set of all information matrices
on Ξ.
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Reformulation for (2.1) :

Let g(x) = (g1(x), · · · , gk(x))T be the
k-dimensional vector consisting of all
different elements in F(x).

fi(x) in (2.1) can be expressed as

fi(x) = VT
i Ui g(x),

Ui, Vi are full row-rank matrices satisfying

f T
i (x)θ = gT(x)UT

i Vi θ, i = 1, 2, · · · , r.
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F(x) in (2.1) can be rewritten as

F(x) = (f1(x), · · · , fr(x))T

=


gT(x) 0 · · · 0

...
... · · · ...

0 0 · · · gT(x)




UT
1 V1
...

UT
r Vr


= [Ir⊗ gT(x)]LUV (2.2)

Model (2.1) can be rewritten as

Y(x) = [Ir⊗ gT(x)]LUVθ + ε,

E(ε) = 0, Cov(ε) = Σ.
(2.3)
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The information matrix of ξ is expressed by

M(ξ) = LT
UV[Σ

−1⊗Mg(ξ)]LUV, (2.4)

where

Mg(ξ) =
∫
X

g(x)gT(x)dξ(x) (2.5)

is the information matrix of ξ under the
following single-response linear model with
homoscedastic errors

y(x) = gT(x)β + e,

E(e) = 0, Cov(e) = σ2.
(2.6)
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Example 1. Linear and Quadratic reg.

Krafft and Schaefer (1992){
y1 = θ10 + θ11x + ε1

y2 = θ20 + θ21x + θ22x2 + ε2
(2.7)

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
(2.8)

where x ∈ X = [−1, 1], |ρ| < 1.

f1(x) = (1, x, 0, 0, 0)T

f2(x) = (0, 0, 1, x, x2)T

θ = (θ10, θ11, θ20, θ21, θ22)T
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Reformulation: g(x) = (1, x, x2)T

U1 =

(
1 0 0

0 1 0

)
, U2 =

 1 0 0

0 1 0

0 0 1

 ,

V1 =

(
1 0 0 0 0

0 1 0 0 0

)
,

V2 =

 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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Example 2. Berman’s model on an arc

Berman (1983)

{
y1(t) = θ1 + θ3 cos t− θ4 sin t + ε1,

y2(t) = θ2 + θ3 sin t + θ4 cos t + ε2,
(2.9)

Σ = σ2I2,

t ∈ X = [−α/2, α/2], α ∈ [0, 2π]

f1(t) = (1, 0, cos t,− sin t)T

f2(t) = (0, 1, sin t, cos t)T

θ = (θ1, θ2, θ3, θ4)T
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Reformulation: g(t) = (1, cos t, sin t)T,

U1 =

 1 0 0

0 1 0

0 0 −1

 , U2 =

 1 0 0

0 0 1

0 1 0

 ,

V1 =

 1 0 0 0

0 0 1 0

0 0 0 1

 , V2 =

 0 1 0 0

0 0 1 0

0 0 0 1

 .
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Example 3. Parallel linear model

Huang, Chen, Lin and Wong (2006){
y1(x) = θ01 + θ1x1 + ε1,

y2(x) = θ02 + θ1x2 + ε2,
Σ =

(
1 ρ

ρ 1

)
(2.10)

where x = (x1, x2) ∈ X = [−1, 1]× [−1, 1] .

f1(x) = (1, 0, x1)T

f2(x) = (0, 1, x2)T

θ = (θ01, θ02, θ1)T
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3. Admissibility of
designs

Definition of Admissibility

Pukelsheim (1993)

An information matrix M ∈ M(Ξ) is
called admissible in M(Ξ) when every
competing information matrix A ∈ M(Ξ)
with A ≥ M is actually equal to M.

A design ξ is called admissible in Ξ when
its information matrix M(ξ) is admissible in
M(Ξ).
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Definition of an optimality criterion:

A criterion is a nonnegative function

φ : NND(s)→ R

that is isotonic relative to the Loewner ordering,
positively homogeneous and superadditive.

Isotonic relative to the Loewner ordering:

A ≥ B > 0 → φ(A) ≥ φ(B).

Positive homogeneity:

φ(δA) = δφ(A) ∀δ > 0, ∀A ∈ NND(s).

Superadditivity:

φ(A+B) ≥ φ(A)+φ(B) ∀A, B ∈ NND(s).
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The Elfving set:

The Elfving set is defined by

Rg = conv ({g(x)|x ∈ X} ∪ {−g(x)|x ∈ X}) ,
(3.1)

where conv(P) denotes the convex hull of
the set P of points in Rk.

Rg is a symmetric compact convex subset
of Rk that contains the origin in its relative
interior.

In order to find optimal support points, we
need only to search the “extreme points” of
the set Rg.
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Elfving set corresponding to model (2.7):

g(x) = (1, x, x2)T, X = [−1, 1]

R1 = conv ({g(x) | x ∈ X} ∪ {−g(x) | x ∈ X})
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Location of the support points of
admissible designs:

Theorem 1. Let R̃g be the set consisting of
extreme points of the Elfving set Rg, which do
not lie on a straight line connecting any other
two distinct points of the Elfving set Rg. Then

for any η ∈ Ξ with support not included in R̃g,
there exists a design ξ ∈ Ξ with support
included in R̃g such that

M(ξ)
≥
6=M(η).
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Bound for the support size:

Theorem 2. Let φ be an optimality criterion.
If there is a φ-optimal information matrix Mg

for the k-dimensional parameter vector β in the
single-response model (2.6), then there exists a
φ-optimal design ξ for θ in the multiresponse
model (2.1) such that its support size,
] supp(ξ), is bounded according to

p/r ≤ ] supp(ξ) ≤ min
(k(k + 1)

2
,

p(p + 1)
2

)
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Admissible designs:

Theorem 3. Suppose k ≤ p. If the p-dim unit
vectors

esk+1, · · · , e(s+1)k ∈ Range(LUV)

for some s ≥ 0, then:

ξ is admissible for the multiresponse (2.1)

⇔ ξ is admissible for the single-response (2.6).
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Linear and Quadratic model (2.7):

The Elfving set: R1

Need to consider designs supported on the
”extreme points” of R1 only.

The support size is not more than 6 (Th2).

Note that esk+1, · · · , e(s+1)k ∈ Range(LUV)
for s = 1 (k = 3).

Corollary 1. A design ξ ∈ Ξ is admissible in
model (2.7) on [−1, 1] ⇔ ξ has at most one
support in the open interval (−1, 1).
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4. Invariance of
designs

Definition of Q-invariant:

The design problem for θ in M(Ξ) is said to
be Q-invariant when Q is a subgroup of the
general linear group of order p, GL(p), and all
transformations Q ∈ Q fulfill

QM(Ξ)QT =M(Ξ). (4.1)

GL(p) is the set of p× p invertible matrices, together

with the operation of ordinary matrix multiplication.
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Definition of H-invariant:

An optimality criterion φ on NND(p) is called
H-invariant when H is a subgroup of GL(p)
and all transformations H ∈ H fulfill

φ(C) = φ(HCHT) ∀ C ∈ NND(p). (4.2)
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Definition of Equivariance:

Let L: NND(s)→ Sym(p) be the mapping
L(B) = LTBL, where L has full column rank p.
Assume Q to be a subgroup of GL(s) and there
exists a group homomorphism H from Q into
GL(p) so that

L(QBQT) = H(Q)L(B)H(Q)T,

∀B ∈ NND(s), Q ∈ Q

holds for the matrix H(Q) in the image group
HQ = {H(Q)|Q ∈ Q}. Then the mapping L
is said to be Q−HQ-equivariant.
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Lemma 1. Let

LT : NND(k)→ Sym(p)
LT(A) = LT(T⊗A)L

for a given rk× p matrix L with rank(L) = p,
and a positive definite matrix T of order r.
Assume Q to be a subgroup of GL(k). Define
NQ = Ir⊗Q and

NQ = {NQ | Q ∈ Q}.

We then have the following claims:
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a. (Equivariance) There exists a group
homomorphism H : Q → GL(k) such that
LT is equivariant under H,

LT(QAQT) = H(Q)LT(A)H(Q)T,

∀A ∈ NND(k), Q ∈ Q,

if and only if the range of L is invariant
under each transformation NQ ∈ NQ,

Range(NT
QL) = Range(L), ∀NQ ∈ NQ.
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b. (Uniqueness) Suppose LT is equivariant
under the group homomorphism H : Q →
GL(p). Then H(Q) or −H(Q) is the
unique nonsingular p× p matrix H that
satisfies NT

QL = LH for all NQ ∈ NQ.

c. (Orthogonal transformation) Suppose LT is
equivariant under the group homomorphism
H : Q → GL(p). If matrix L fulfills
LTL = Ip and Q ∈ Q is an orthogonal
matrix of order k, then H(Q) = ±LTNT

QL
is an orthogonal matrix of order p.
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The set

HQ =
{

H ∈ GL(p) | NT
QL = LH

for some NQ ∈ NQ
}

is called the equivariance group that is induced
by the NQ-invariance of the design problem for
θ in M(Ξ).
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Theorem 4. Let Q be a subgroup of GL(k)
and NQ the set {NQ = Ir⊗Q | Q ∈ Q}. If all
Q ∈ Q fulfill

QMg(Ξ)QT =Mg(Ξ)

and

Range(NT
QLUV) = Range(LUV), ∀ NQ ∈ NQ,

then the design problem for the multiresponse
model (2.1) in M(Ξ) is HQ-invariant.



Rong-Xian Yue

Introduction

Multiresponse
model

Admissibility of
designs

Invariance of
designs

Elfving’s theorem
for D-optimality

Concluding
remarks

References

Linear and Quadratic model (2.7):{
y1 = θ10 + θ11x + ε1,

y2 = θ20 + θ21x + θ22x2 + ε2,
Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where x ∈ X = [−1, 1], |ρ| < 1.

Consider the reflection transformation acting on
X : R(x) = −x.

g(−x) = (1,−x, x2)T = QR g(x),

QR = diag(1,−1, 1).
Then R(x) = −x together with the identity
transformation induce a group of order 2:

Q =


 1 0 0

0 1 0

0 0 1

 ,

 1 0 0

0 −1 0

0 0 1


 ⊂ GL(3).
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Since

LUV

=



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

(I2⊗QR)LUV

=



1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1


this implies that LUV and (I2⊗QR)LUV have
the same range. By Th4, this means that the
design problem for model (2.7) is HQ-invariant.
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Here the equivariance group HQ is of order 2
as is Q, containing the identity I5 as well as
H=diag (1,−1, 1,−1, 1).

Together with Corollary 1, we obtain a
complete class Ξcom with minimum support size
for model (2.7), which is composed of the
following designs:

ξ =

{
−1 0 1
w 1− 2w w

}
, w ∈

[
0,

1
2
]
. (4.3)
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5. Elfving’s theorem
for D-optimality

Elfving set:

Elfving set for multiresponse (2.1) is

Rp =

conv
{

FT(x)Σ−1/2K
∣∣x ∈ X , K ∈ Rr×p, ‖K‖ = 1

}
⊆ Rp×p,

where conv(B) denotes the convex hull of
matrices B ⊆ Rp×p, and ‖K‖ is the Frobenius
norm of the matrix K, i.e.,

‖K‖2 = tr(KTK).
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Theorem 5. A design

ξ =

{
x1 x2 · · · xs

w1 w2 · · · ws

}
is D-optimal for the multiresponse model (2.1)
if and only if (pM(ξ))−1/2 ∈ Rp×p is a
supporting hyperplane of the Elfving set Rp

with supports

FT(xi)Σ−1/2Ki, i = 1, · · · , s

where Ki = (pΣ)−1/2F(xi)M−1/2(ξ).
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D-optimal design for model (2.10):{
y1(x) = θ01 + θ1x1 + ε1,

y2(x) = θ02 + θ1x2 + ε2,
Σ =

(
1 ρ

ρ 1

)
where x = (x1, x2) ∈ X = [−1, 1]× [−1, 1] .

ξ∗ =

{
(−1, 1) (1,−1)

1/2 1/2

}
if ρ > 0,

and

ξ∗ =

{
(−1,−1) (1, 1)

1/2 1/2

}
if ρ < 0,

which can be verified by Theorem 5.
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6. Concluding
remarks

We obtained the necessary and sufficient
conditions for a design to be admissible and
invariant for multiresponse linear models.

We established an Elfving’s theorem for
D-optimality which can be used for the
characterization of D-optimal designs.

A further study: Liu X., Yue R.-X. and
Wong W.-K. (2018). D-optimal design for
the heteroscedastic Berman’s model on an
arc. Submitted to J. Multi. Anal., revised.
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