Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Design admissibility, invariance and optimality in multiresponse linear models

Rong-Xian Yue

Shanghai Normal University, Shanghai Joint work with Dr. Xin Liu Donghua University, Shanghai

Design of Experiments: New Challenges CIRM, Marseille, May 3, 2018

Introduction

Multirespons model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

1 Introduction

- **2** Multiresponse model
- 3 Admissibility of designs
- 4 Invariance of designs
- 5 Elfving's theorem for D-optimality
- 6 Concluding remarks

7 References

Contents

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Multiresponse model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

1. Introduction

Motivation:

- The considerations on admissibility and invariance of designs are key to reduction of complicated design problems.
- These concepts are addressed in detail and applied successfully for finding optimal designs in single-response models

$$y_i = \eta(x_i, \theta) + \varepsilon, \quad i = 1, 2, ..., n.$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Introduction

Multiresponse model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks

References

1. Introduction

Motivation:

- The considerations on admissibility and invariance of designs are key to reduction of complicated design problems.
- These concepts are addressed in detail and applied successfully for finding optimal designs in single-response models

$$y_i = \eta(x_i, \theta) + \varepsilon, \quad i = 1, 2, ..., n.$$

Introduction

- Multirespons model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

• For example,

- Kiefer (1959),
- Gaffke (1987),
- Heiligers (1992),
- Pukelsheim (1993),
- Yang and Stufken (2009),
- Yang (2010),
- Dette and Melas (2011),
- Yang and Stufken (2012),
- Dette and Schorning (2013),

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• • • • • • •

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Purpose of the present study:

To extend the considerations on admissibility and invariance to multiresponse designs.

Multiresponse experiments:

- In a multiresponse situation, several responses are considered simultaneously, which are usually correlated.
- Data on more than one response variable is recorded from the same experimental unit through application of same treatment.
- They occur in, e.g., engineering, pharmaceutical, biomedical, environmental research.

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Purpose of the present study:

To extend the considerations on admissibility and invariance to multiresponse designs.

Multiresponse experiments:

- In a multiresponse situation, several responses are considered simultaneously, which are usually correlated.
- Data on more than one response variable is recorded from the same experimental unit through application of same treatment.
- They occur in, e.g., engineering, pharmaceutical, biomedical, environmental research.

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

2. Multiresponse model

Suppose that we have a system of r response variables,

 y_1, y_2, \cdots, y_r

each of which depends on the same set of q input variables denoted by

 x_1, x_2, \cdots, x_q

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with an experimental region $\mathcal{X} \subset \mathbb{R}^q$.

Introduction

Multiresponse model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Multiresponse linear model:

$$Y(x) = F(x)\theta + \varepsilon$$
 (2.1)

•
$$Y(x) = (y_1(x), ..., y_r(x))^T$$

• $x = (x_1, \cdots, x_q) \in \mathcal{X} \subset \mathbb{R}^q$
• $F(x) = (f_1(x), \cdots, f_r(x))^T \in \mathbb{R}^{r \times p}$

- heta : a vector of unknown parameters in \mathbb{R}^p
- ε : an *r*-dim vector of random errors

$$E(\varepsilon) = 0, \quad Cov(\varepsilon) = \Sigma = (\sigma_{ij})_{r \times r} > 0$$

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Design and Information matrix:

• An approximate design ξ : a probability measure with finite supports on \mathcal{X}

$$\xi = \left\{ \begin{matrix} x_1 & \cdots & x_n \\ w_1 & \cdots & w_n \end{matrix} \right\}, \ w_i \ge 0, \ \sum_{i=1}^n w_i = 1.$$

- Ξ : the set of all approximate designs.
- The information matrix of ξ on \mathcal{X} :

$$M(\xi) = \int_{\mathcal{X}} F^{T}(x) \Sigma^{-1} F(x) \ d\xi(x).$$

 $\mathcal{M}(\Xi)$: the set of all information matrices on Ξ .

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Design and Information matrix:

• An approximate design ξ : a probability measure with finite supports on \mathcal{X}

$$\xi = \left\{egin{array}{ccc} x_1 & \cdots & x_n \ w_1 & \cdots & w_n \end{array}
ight\}$$
 , $w_i \geq 0$, $\sum\limits_{i=1}^n w_i = 1$.

- Ξ : the set of all approximate designs.
- The information matrix of ξ on \mathcal{X} :

$$M(\xi) = \int_{\mathcal{X}} F^{T}(x) \Sigma^{-1} F(x) \ d\xi(x).$$

 $\mathcal{M}(\Xi)$: the set of all information matrices on Ξ .

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Reformulation for (2.1) :

• Let $g(x) = (g_1(x), \cdots, g_k(x))^T$ be the *k*-dimensional vector consisting of all different elements in F(x).

• $f_i(x)$ in (2.1) can be expressed as

$$f_i(x) = V_i^T U_i g(x),$$

 U_i , V_i are full row-rank matrices satisfying $f_i^T(x)\theta = g^T(x)U_i^TV_i\theta$, $i = 1, 2, \cdots, r$.

Introduction

Multiresponse model

Admissibility of designs

- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Reformulation for (2.1) :

Let
$$g(x) = (g_1(x), \dots, g_k(x))^T$$
 be the
k-dimensional vector consisting of all
different elements in $F(x)$.

• $f_i(x)$ in (2.1) can be expressed as

$$f_i(x) = V_i^T U_i g(x),$$

 U_i , V_i are full row-rank matrices satisfying $f_i^T(x)\theta = g^T(x)U_i^TV_i\theta$, $i = 1, 2, \cdots, r$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

• F(x) in (2.1) can be rewritten as

$$F(x) = (f_1(x), \cdots, f_r(x))^T$$

$$= \begin{pmatrix} g^T(x) & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & g^T(x) \end{pmatrix} \begin{pmatrix} U_1^T V_1 \\ \vdots \\ U_r^T V_r \end{pmatrix}$$

$$= [I_r \otimes g^T(x)] L_{UV} \qquad (2.2)$$

• Model (2.1) can be rewritten as $Y(x) = [I_r \otimes g^T(x)]L_{UV}\theta + \varepsilon,$ $E(\varepsilon) = 0, \quad Cov(\varepsilon) = \Sigma.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

• F(x) in (2.1) can be rewritten as

$$F(x) = (f_1(x), \cdots, f_r(x))^T$$

$$= \begin{pmatrix} g^T(x) & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & g^T(x) \end{pmatrix} \begin{pmatrix} U_1^T V_1 \\ \vdots \\ U_r^T V_r \end{pmatrix}$$

$$= [I_r \otimes g^T(x)] L_{UV} \qquad (2.2)$$

• Model (2.1) can be rewritten as $Y(x) = [I_r \otimes g^T(x)]L_{UV}\theta + \varepsilon,$ $E(\varepsilon) = 0, \quad Cov(\varepsilon) = \Sigma.$ (2.3)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

• The information matrix of ξ is expressed by $M(\xi) = L_{UV}^T [\Sigma^{-1} \otimes M_g(\xi)] L_{UV}, \quad (2.4)$

where

$$M_g(\xi) = \int_{\mathcal{X}} g(x)g^T(x)d\xi(x) \qquad (2.5)$$

is the information matrix of ξ under the following single-response linear model with homoscedastic errors

$$y(x) = g^{T}(x)\beta + e,$$

 $E(e) = 0, \quad Cov(e) = \sigma^{2}.$ (2.6)

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Example 1. Linear and Quadratic reg. Krafft and Schaefer (1992)

$$\begin{cases} y_1 = \theta_{10} + \theta_{11}x + \varepsilon_1 \\ y_2 = \theta_{20} + \theta_{21}x + \theta_{22}x^2 + \varepsilon_2 \end{cases}$$
(2.7)
$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$
(2.8)
where $x \in \mathcal{X} = [-1, 1], \ |\rho| < 1.$
$$f_1(x) = (1, x, 0, 0, 0)^T \\ f_2(x) = (0, 0, 1, x, x^2)^T \\ \theta = (\theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{22})^T \end{cases}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Example 1. Linear and Quadratic reg. Krafft and Schaefer (1992)

$$\begin{cases} y_1 = \theta_{10} + \theta_{11}x + \varepsilon_1 \\ y_2 = \theta_{20} + \theta_{21}x + \theta_{22}x^2 + \varepsilon_2 \end{cases}$$
(2.7)
$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$
(2.8)
where $x \in \mathcal{X} = [-1, 1], \ |\rho| < 1.$
$$f_1(x) = (1, x, 0, 0, 0)^T \\ f_2(x) = (0, 0, 1, x, x^2)^T \\ \theta = (\theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{22})^T \end{cases}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Reformulation:
$$g(x) = (1, x, x^2)^T$$

 $U_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, U_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$
 $V_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix},$
 $V_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Rong-Xian Yue

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Introduction

Multiresponse model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Example 2. Berman's model on an arc Berman (1983)

$$\begin{cases} y_1(t) = \theta_1 + \theta_3 \cos t - \theta_4 \sin t + \varepsilon_1, \\ y_2(t) = \theta_2 + \theta_3 \sin t + \theta_4 \cos t + \varepsilon_2, \end{cases} (2.9) \\ \Sigma = \sigma^2 I_2, \\ t \in \mathcal{X} = [-\alpha/2, \alpha/2], \quad \alpha \in [0, 2\pi] \\ f_1(t) = (1, 0, \cos t, -\sin t)^T \\ f_2(t) = (0, 1, \sin t, \cos t)^T \end{cases}$$

・ロット 4回ッ 4回ッ 4回ッ 4日ッ

Introduction

Multiresponse model

- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

Example 2. Berman's model on an arc Berman (1983)

$$\begin{cases} y_1(t) = \theta_1 + \theta_3 \cos t - \theta_4 \sin t + \varepsilon_1, \\ y_2(t) = \theta_2 + \theta_3 \sin t + \theta_4 \cos t + \varepsilon_2, \end{cases} (2.9) \\ \Sigma = \sigma^2 I_2, \\ t \in \mathcal{X} = [-\alpha/2, \alpha/2], \quad \alpha \in [0, 2\pi] \\ f_1(t) = (1, 0, \cos t, -\sin t)^T \\ f_2(t) = (0, 1, \sin t, \cos t)^T \\ \theta = (\theta_1, \theta_2, \theta_3, \theta_4)^T \end{cases}$$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Reformulation:
$$g(t) = (1, \cos t, \sin t)^T$$
,
 $U_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $U_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,
 $V_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

٠

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

w

Concluding remarks

References

Example 3. Parallel linear model

Huang, Chen, Lin and Wong (2006)

$$\begin{cases} y_1(x) = \theta_{01} + \theta_1 x_1 + \varepsilon_1, \\ y_2(x) = \theta_{02} + \theta_1 x_2 + \varepsilon_2, \end{cases} \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$
(2.10)
here $x = (x_1, x_2) \in \mathcal{X} = [-1, 1] \times [-1, 1]$.

 $f_1(x) = (1, 0, x_1)^T$ $f_2(x) = (0, 1, x_2)^T$ $\theta = (\theta_{01}, \theta_{02}, \theta_1)^T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Example 3. Parallel linear model

Huang, Chen, Lin and Wong (2006)

$$\begin{cases} y_1(x) = \theta_{01} + \theta_1 x_1 + \varepsilon_1, \\ y_2(x) = \theta_{02} + \theta_1 x_2 + \varepsilon_2, \end{cases} \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$
(2.10)
where $x = (x_1, x_2) \in \mathcal{X} = [-1, 1] \times [-1, 1]$.
 $f_1(x) = (1, 0, x_1)^T$
 $f_2(x) = (0, 1, x_2)^T$
 $\theta = (\theta_{01}, \theta_{02}, \theta_1)^T$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Reformulation: $g(x) = (1, x_1, x_2)^T$, $U_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $U_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $V_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

イロト 不得 トイヨト イヨト

э

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

- Elfving's theorem for D-optimality
- Concluding remarks

References

3. Admissibility of designs Definition of Admissibility

Pukelsheim (1993)

- An information matrix $M \in \mathcal{M}(\Xi)$ is called admissible in $\mathcal{M}(\Xi)$ when every competing information matrix $A \in \mathcal{M}(\Xi)$ with $A \ge M$ is actually equal to M.
- A design ξ is called admissible in Ξ when its information matrix M(ξ) is admissible in M(Ξ).

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

- Elfving's theorem for D-optimality
- Concluding remarks

References

3. Admissibility of designs Definition of Admissibility

Pukelsheim (1993)

- An information matrix $M \in \mathcal{M}(\Xi)$ is called admissible in $\mathcal{M}(\Xi)$ when every competing information matrix $A \in \mathcal{M}(\Xi)$ with $A \ge M$ is actually equal to M.
- A design ξ is called admissible in Ξ when its information matrix $M(\xi)$ is admissible in $\mathcal{M}(\Xi)$.

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Definition of an optimality criterion:

A criterion is a nonnegative function $\phi:\mathsf{NND}(s)\to\mathbb{R}$

that is isotonic relative to the Loewner ordering, positively homogeneous and superadditive.

• Isotonic relative to the Loewner ordering: $A \ge B > 0 \quad \rightarrow \quad \phi(A) \ge \phi(B).$

• Positive homogeneity:

 $\phi(\delta A) = \delta \phi(A) \quad \forall \delta > 0, \; \forall A \in \mathsf{NND}(s).$

• Superadditivity:

 $\phi(A+B) \ge \phi(A) + \phi(B) \quad \forall A, B \in \mathsf{NND}(s).$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Definition of an optimality criterion:

A criterion is a nonnegative function $\phi:\mathsf{NND}(s)\to\mathbb{R}$

that is isotonic relative to the Loewner ordering, positively homogeneous and superadditive.

- Isotonic relative to the Loewner ordering: $A \ge B > 0 \quad \rightarrow \quad \phi(A) \ge \phi(B).$
- Positive homogeneity:

 $\phi(\delta A)=\delta\phi(A)\quad \forall \delta>0, \; \forall A\in\mathsf{NND}(s).$

• Superadditivity:

 $\phi(A+B) \ge \phi(A) + \phi(B) \quad \forall A, B \in \mathsf{NND}(s).$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

The Elfving set:

• The Elfving set is defined by

 $\mathcal{R}_g = \operatorname{conv} \left(\{ g(x) | x \in \mathcal{X} \} \cup \{ -g(x) | x \in \mathcal{X} \} \right)$ (3.1)
where $\operatorname{conv}(P)$ denotes the convex hull of
the set P of points in \mathbb{R}^k .

- \mathcal{R}_g is a symmetric compact convex subset of \mathbb{R}^k that contains the origin in its relative interior.
- In order to find optimal support points, we need only to search the "extreme points" of the set \mathcal{R}_g .

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

The Elfving set:

• The Elfving set is defined by

 $\mathcal{R}_{g} = \operatorname{conv}\left(\{g(x)|x \in \mathcal{X}\} \cup \{-g(x)|x \in \mathcal{X}\}\right)$ (3.1)
where $\operatorname{conv}(P)$ denotes the convex hull of

where conv(P) denotes the convex hull of the set P of points in \mathbb{R}^k .

- \mathcal{R}_g is a symmetric compact convex subset of \mathbb{R}^k that contains the origin in its relative interior.
- In order to find optimal support points, we need only to search the "extreme points" of the set \mathcal{R}_g .

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

The Elfving set:

• The Elfving set is defined by

 $\mathcal{R}_{g} = \operatorname{conv}\left(\{g(x)|x \in \mathcal{X}\} \cup \{-g(x)|x \in \mathcal{X}\}\right)$ (3.1)
where $\operatorname{conv}(P)$ denotes the convex hull of

where conv(P) denotes the convex hull of the set P of points in \mathbb{R}^k .

- \mathcal{R}_g is a symmetric compact convex subset of \mathbb{R}^k that contains the origin in its relative interior.
- In order to find optimal support points, we need only to search the "extreme points" of the set \mathcal{R}_g .

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Elfving set corresponding to model (2.7):

$$g(x) = (1, x, x^2)^T, \quad \mathcal{X} = [-1, 1]$$

 $\mathcal{R}_1 = \operatorname{conv}\left(\{g(x) \mid x \in \mathcal{X}\} \cup \{-g(x) \mid x \in \mathcal{X}\}\right)$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Location of the support points of admissible designs:

Theorem 1. Let $\widetilde{\mathcal{R}}_g$ be the set consisting of extreme points of the Elfving set \mathcal{R}_g , which do not lie on a straight line connecting any other two distinct points of the Elfving set \mathcal{R}_g . Then for any $\eta \in \Xi$ with support not included in $\widetilde{\mathcal{R}}_g$, there exists a design $\xi \in \Xi$ with support included in $\widetilde{\mathcal{R}}_g$ such that

$$M(\xi) \stackrel{\geq}{\neq} M(\eta).$$

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Bound for the support size:

Theorem 2. Let ϕ be an optimality criterion. If there is a ϕ -optimal information matrix M_g for the k-dimensional parameter vector β in the single-response model (2.6), then there exists a ϕ -optimal design ξ for θ in the multiresponse model (2.1) such that its support size, $\sharp \operatorname{supp}(\xi)$, is bounded according to

$$p/r \leq \sharp \operatorname{supp}(\xi) \leq \min\left(\frac{k(k+1)}{2}, \frac{p(p+1)}{2}\right)$$

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Admissible designs:

Theorem 3. Suppose $k \le p$. If the *p*-dim unit vectors

$$e_{sk+1}, \cdots, e_{(s+1)k} \in \mathsf{Range}(L_{UV})$$

for some $s \ge 0$, then:

 ξ is admissible for the multiresponse (2.1)

 $\Leftrightarrow \xi$ is admissible for the single-response (2.6).

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Linear and Quadratic model (2.7):

- The Elfving set: \mathcal{R}_1
- Need to consider designs supported on the "extreme points" of \mathcal{R}_1 only.
- The support size is not more than 6 (Th2).
- Note that $e_{sk+1}, \cdots, e_{(s+1)k} \in \text{Range}(L_{UV})$ for s = 1 (k = 3).

Corollary 1. A design $\xi \in \Xi$ is admissible in model (2.7) on $[-1,1] \Leftrightarrow \xi$ has at most one support in the open interval (-1,1).

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

4. Invariance of designs

Definition of Q**-invariant:**

The design problem for θ in $\mathcal{M}(\Xi)$ is said to be \mathcal{Q} -invariant when \mathcal{Q} is a subgroup of the general linear group of order p, GL(p), and all transformations $Q \in \mathcal{Q}$ fulfill

$$Q\mathcal{M}(\Xi)Q^T = \mathcal{M}(\Xi).$$
(4.1)

GL(p) is the set of $p \times p$ invertible matrices, together with the operation of ordinary matrix multiplication.

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Definition of \mathcal{H} **-invariant:**

An optimality criterion ϕ on NND(p) is called \mathcal{H} -invariant when \mathcal{H} is a subgroup of GL(p) and all transformations $H \in \mathcal{H}$ fulfill

 $\phi(C) = \phi(HCH^T) \quad \forall \ C \in \mathsf{NND}(p).$ (4.2)

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Definition of Equivariance:

Let $L: \text{NND}(s) \rightarrow \text{Sym}(p)$ be the mapping $L(B) = L^T B L$, where L has full column rank p. Assume Q to be a subgroup of GL(s) and there exists a group homomorphism H from Q into GL(p) so that

$$L(QBQ^{T}) = H(Q)L(B)H(Q)^{T},$$

$$\forall B \in \mathsf{NND}(s), \ Q \in \mathcal{Q}$$

holds for the matrix H(Q) in the image group $\mathcal{H}_{Q} = \{H(Q) | Q \in Q\}$. Then the mapping L is said to be $Q - \mathcal{H}_{Q}$ -equivariant.

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Lemma 1. Let

$$L_T: \operatorname{NND}(k) \to \operatorname{Sym}(p)$$

 $L_T(A) = L^T(T \otimes A)L$

for a given $rk \times p$ matrix L with rank(L) = p, and a positive definite matrix T of order r. Assume Q to be a subgroup of GL(k). Define $N_Q = I_r \otimes Q$ and

$$\mathcal{N}_{\mathcal{Q}} = \{ N_Q \mid Q \in \mathcal{Q} \}.$$

We then have the following claims:

Introduction

Multirespons model

Admissibility o designs

Invariance of designs

Elfving's theorem for D-optimality

Concludin remarks

References

a. (Equivariance) There exists a group homomorphism $H: \mathcal{Q} \to GL(k)$ such that L_T is equivariant under H,

$$L_T(QAQ^T) = H(Q)L_T(A)H(Q)^T,$$

$$\forall A \in \mathsf{NND}(k), \ Q \in \mathcal{Q},$$

if and only if the range of L is invariant under each transformation $N_O \in \mathcal{N}_Q$,

 $\operatorname{Range}(N_Q^T L) = \operatorname{Range}(L), \quad \forall N_Q \in \mathcal{N}_Q.$

Introduction

Multirespons model

Admissibility o designs

Invariance of designs

Elfving's theorem for D-optimality

Concludin remarks

References

b. (Uniqueness) Suppose L_T is equivariant under the group homomorphism $H : \mathcal{Q} \rightarrow$ GL(p). Then H(Q) or -H(Q) is the unique nonsingular $p \times p$ matrix H that satisfies $N_Q^T L = LH$ for all $N_Q \in \mathcal{N}_Q$.

c. (Orthogonal transformation) Suppose L_T is equivariant under the group homomorphism $H: \mathcal{Q} \to GL(p)$. If matrix L fulfills $L^TL = I_p$ and $\mathcal{Q} \in \mathcal{Q}$ is an orthogonal matrix of order k, then $H(\mathcal{Q}) = \pm L^T N_Q^T L$ is an orthogonal matrix of order p.

Introduction

Multirespons model

Admissibility o designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

The set

$$\mathcal{H}_{\mathcal{Q}} = \left\{ H \in \mathsf{GL}(p) \mid N_{Q}^{T}L = LH \\ \text{for some } N_{Q} \in \mathcal{N}_{\mathcal{Q}} \right\}$$

is called the *equivariance group* that is induced by the $\mathcal{N}_{\mathcal{Q}}$ -invariance of the design problem for θ in $\mathcal{M}(\Xi)$.

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Theorem 4. Let \mathcal{Q} be a subgroup of GL(k)and $\mathcal{N}_{\mathcal{Q}}$ the set $\{N_{\mathcal{Q}} = I_r \otimes \mathcal{Q} \mid \mathcal{Q} \in \mathcal{Q}\}$. If all $\mathcal{Q} \in \mathcal{Q}$ fulfill

$$Q\mathcal{M}_g(\Xi)Q^T = \mathcal{M}_g(\Xi)$$

and

 $\mathsf{Range}(N_Q^T L_{UV}) = \mathsf{Range}(L_{UV}), \quad \forall \ N_Q \in \mathcal{N}_Q,$

then the design problem for the multiresponse model (2.1) in $\mathcal{M}(\Xi)$ is $\mathcal{H}_{\mathcal{Q}}$ -invariant.

Introduction

Multiresponse model

Admissibility of designs w

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Linear and Quadratic model (2.7):

$$\begin{cases} y_1 = \theta_{10} + \theta_{11}x + \varepsilon_1, \\ y_2 = \theta_{20} + \theta_{21}x + \theta_{22}x^2 + \varepsilon_2, \end{cases} \Sigma = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}, \\ \text{here } x \in \mathcal{X} = [-1, 1], \ |\rho| < 1. \end{cases}$$

Consider the reflection transformation acting on \mathcal{X} : R(x) = -x.

$$g(-x) = (1, -x, x^2)^T = Q_R g(x),$$

 $Q_R = \text{diag}(1, -1, 1).$

Then R(x) = -x together with the identity transformation induce a group of order 2: $Q = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} \subset GL(3).$

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Since

L_{UV}					$(I_2 \otimes Q_R) L_{UV}$								
	(1	0	0	0	0			(1	0	0	0	0 \
	0	1	0	0	0	,	=		0	-1	0	0	0
	0	0	0	0	0				0	0	0	0	0
	0	0	1	0	0				0	0	1	0	0
	0	0	0	1	0				0	0	0	-1	0
	0	0	0	0	1 /			ĺ	0	0	0	0	1 /

this implies that L_{UV} and $(I_2 \otimes Q_R)L_{UV}$ have the same range. By Th4, this means that the design problem for model (2.7) is $\mathcal{H}_{\mathcal{Q}}$ -invariant.

Introduction

Multirespons model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Here the equivariance group $\mathcal{H}_{\mathcal{Q}}$ is of order 2 as is \mathcal{Q} , containing the identity I_5 as well as H=diag (1, -1, 1, -1, 1).

Together with Corollary 1, we obtain a complete class Ξ_{com} with minimum support size for model (2.7), which is composed of the following designs:

$$\xi = \begin{cases} -1 & 0 & 1 \\ w & 1 - 2w & w \end{cases}, \quad w \in [0, \frac{1}{2}].$$
(4.3)

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

5. Elfving's theorem for D-optimality

Elfving set:

Elfving set for multiresponse (2.1) is $\mathcal{R}_p =$ $\operatorname{conv}\left\{F^T(x)\Sigma^{-1/2}K | x \in \mathcal{X}, K \in \mathbb{R}^{r \times p}, \|K\| = 1\right\}$ $\subseteq \mathbb{R}^{p \times p},$

where conv(B) denotes the convex hull of matrices $B \subseteq \mathbb{R}^{p \times p}$, and ||K|| is the Frobenius norm of the matrix K, i.e.,

$$\|K\|^2 = \operatorname{tr}(K^T K).$$

Introduction

Multiresponse model

Admissibility of designs

Invariance of designs

Elfving's theorem for D-optimality

Concluding remarks

References

Theorem 5. A design

$$\xi = \left\{ \begin{array}{ccc} x_1 & x_2 & \cdots & x_s \\ w_1 & w_2 & \cdots & w_s \end{array} \right\}$$

is *D*-optimal for the multiresponse model (2.1) if and only if $(pM(\xi))^{-1/2} \in \mathbb{R}^{p \times p}$ is a supporting hyperplane of the Elfving set \mathcal{R}_p with supports

$$F^{T}(x_{i})\Sigma^{-1/2}K_{i}, \quad i=1,\cdots,s$$

where $K_{i}=(p\Sigma)^{-1/2}F(x_{i})M^{-1/2}(\xi).$

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks

References

D-optimal design for model (2.10):

$$\begin{cases} y_1(x) = \theta_{01} + \theta_1 x_1 + \varepsilon_1, \\ y_2(x) = \theta_{02} + \theta_1 x_2 + \varepsilon_2, \end{cases} \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

where $x = (x_1, x_2) \in \mathcal{X} = [-1, 1] \times [-1, 1]$.

$$\xi^* = \begin{cases} (-1,1) & (1,-1) \\ 1/2 & 1/2 \end{cases} \quad \text{if } \rho > 0,$$

and

$$\xi^* = \begin{cases} (-1,-1) & (1,1) \\ 1/2 & 1/2 \end{cases} \quad \text{if } \rho < 0,$$

which can be verified by Theorem 5.

ъ

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality

Concluding remarks

References

6. Concluding remarks

- We obtained the necessary and sufficient conditions for a design to be admissible and invariant for multiresponse linear models.
- We established an Elfving's theorem for *D*-optimality which can be used for the characterization of D-optimal designs.
- A further study: Liu X., Yue R.-X. and Wong W.-K. (2018). D-optimal design for the heteroscedastic Berman's model on an arc. Submitted to *J. Multi. Anal.*, revised.

Introduction

- Multirespons model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

References

- Atkinson, A. C. and Bogacka, B. (2002). Compound and other optimum designs for systems of nonlinear differential equations arising in chemical kinetics. *Chemometr. Intell. Lab. Syst.* **61**, 17-33.
- Berman, M. (1983). Estimating the parameters of a circle when angular differences are known. *J. Roy. Statist. Soc. Ser. C* **32**, 1-6.
- Dette, H. (1993). Elfving's theorem for D-optimality. Ann. Statist. 21, 753-766.
- Dette, H. and Studden, W. J. (1993). Geometry of E-optimality. Ann. Statist. 21, 416-433.

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

- Dette, H. and Holland-Letz, T. (2009). A geometric characterization of c-optimal designs for heteroscedastic regression. *Ann. Statist.* 37, 4088-4103.
- Dette, H. and Melas, V. B. (2011). A note on the de la Garza phenomenon for locally optimal designs. *Ann. Statist.* **39**, 1266-1281.
- Dette, H. and Schorning, K. (2013). Complete classes of designs for nonlinear regression models and principal representations of moment spaces. *Ann. Statist.* **41**, 1260-1267.
- Draper, N. R. and Hunter, W. G. (1966). Design of experiments for parameter estimation in multiresponse situations. *Biometrika* **53**, 525-533.

Introduction

- Multirespons model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks

References

- Elfving G. (1952). Optimum allocation in linear regression theory. *Ann. Math. Statist.* **23**, 255-262.
- Fedorov, V. V. (1972). *Theory of Optimal Experiments.* Academic Press, New York.
- Heihgers, B. (1992). Admissible experimental designs in multiple polynomial regression. *J. Statist. Plann. Inference.* **31**, 219-233.
- Holland-Letz, T., Dette, H. and Pepelyshev, A. (2011). A geometric characterization of optimal designs for regression models with correlated observations. J. Roy. Statist. Soc. Ser. B 73, 239-252.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks

References

- Huang, M.-N. L., Chen, R. B., Lin, C. S. and Wong, W. K. (2006). Optimal designs for parallel models with correlated responses. *Statist. Sinica* 16, 121-133.
- Khuri, A. I. (1990). Analysis of multiresponse experiments: A review. In S. Ghosh, ed., *Statistical Design and Analysis of Industrial Experiments*. Dekker, New York, 231-246.
- Khuri, A. I. (1996). Multiresponse Surface Methodology. In S. Ghosh and C. R. Rao, eds., *Handbook of Statistics*, Vol. 13.
- Kiefer, J. (1959). Optimum experimental designs. *J. Roy. Statist. Soc. Ser. B.* **21**, 272-304.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks

References

- Kiefer, J. and Wolfowitz, J. (1959). Optimum designs in regression problem. *Ann. Math. Statist.* 30, 271-294.
- Krafft, O. and Schaefer, M. (1992). *D*-optimal designs for a multivariate regression model. *J. Multivar. Anal.* **42**, 130-140.
- Liu, X., Yue, R.-X. and Hickernell, F. J. (2011). Optimality criteria for multiresponse linear models based on predictive ellipsoids. *Statist. Sinica* **21**, 421-432.
- Liu, X., Yue, R.-X. and Lin, Dennis K. J. (2013). Optimal design for prediction in multiresponse linear models based on rectangular confidence region. *J. Statist. Plan. Inference* **143**, 1954-1967.

Introduction

- Multirespons model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

- Pukelsheim, F. (1993). *Optimal Design of Experiments.* Wiley, New York.
- Silvey, S. D. and Titterington, D. M. (1973). A geometric approach to optimum design theory. *Biometrika* 60, 21-32.
- Smith K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. *Biometrika* **12**, 1-85.
- Soo, Y. W. and Bates, D. M. (1996). Multiresponse spline regression. *Comput. Statist. Data Anal.* 22, 619-631.

Introduction

- Multiresponse model
- Admissibility of designs
- Invariance of designs
- Elfving's theorem for D-optimality
- Concluding remarks
- References

- Uciéski, D. and Bogacka, B. (2005). T-optimum designs for discrimination between two multiresponse dynamic models. *J. Roy. Statist. Soc. Ser. B* 67, 3-18.
- Wu, H. (2002). Optimal designs for first-order trigonometric regression on a partial circle. *Statist. Sinica* **12**, 917-930.
- Yang, M. (2010). On the de la Garza phenomenon. *Ann. Statist.* **38**, 2499-2524.
- Yang, M. and Stufken, J. (2009). Support points of locally optimal designs for nonlinear models with two parameters. *Ann. Statist.* **37**, 518-541.
- Yang, M. and Stufken, J. (2012). Identifying locally optimal designs for nonlinear models: A simple extension with profound consequences. *Ann.* Statist **40**, 1665-1685