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The background from stochastic FE

Special grid designs are used in stochastic finite elemenst methods

They are used to build interpolators and for quadrature for
polynomials

The input variable is a ”parameter” which may eventually be random

In that case they are sometimes called polynomial chaos expansions
(PCE)

Quadrature is wrt an input measure eg Gasussian

Close link to Gaussian quadrature, in which case the gerid locations
may b e zeros of orthogonal polynomials

Nesting problem: zero of orthogonal polynomials interlace but do not
nest, whereas nesting is useful for augmentation/sequential
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The ↵-notation

A basic grid: Experimental design meets models.

↵ = (↵1,↵2) is both a design point and monomilal in a polynomial model
Design: D = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)}
Model: L = {1, x1, x2, x21 , x1x2, x22 , x31}
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Inclusion-exclusion

The grid and the model can be be written as a union of ”tensor” grids,
which in DOE we call ”full factorial” design. Schematically we can say
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Sparse grid
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Flipping the grid
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Monomial ideals and Hilbert function

Suppose we have a set of integer vectors {↵,↵ 2 S}, then we can define
the generating function of S as

GS(x) =
X

↵2S
x↵.

1 S = {0, 1, 2, . . .}
GS(x) =

1

1� x

2 S = {0, 1, 2, . . . n � 1}

GS(x) =
1� xn

1� x

3 S = {xn, xn+1, . . .}
GS(x) =

xn

1� x
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Monomials:
x↵ = x↵1

1 x↵2
2 · · · x↵d

d

Monomial ideals:
I =< x�

(1)
, . . . , x�

(m)
>

The upper orthants gives all the monomials in the corresponding monomial
ideal < x� >.
The union of upper gives all monomials in I . For two orthants we have

I =< x↵, x� >

and the generating function is

GQ(↵)[Q(�) = GQ(↵) + GQ(�) � GQ(↵^�),

where
↵ ^ � = (max(↵1,�1), . . . ,max(↵d ,�d)),

which corresponds to LCM(x↵, x�).
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Monomial ideals

An ideal: hgl(x), . . . , gm(x)i is the set of all polynomials:

s1(x)g(x) + · · · sm(x)gm(x)

A monomial ideal: all the gj(x) are monomials.
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The multigraded Hilbert series of I in terms of some resolution of I .

H =

P
(�1)i�i ,↵x↵Q
i (1� xi )

This method generalizes the classical inclusion-exclusion approach
(corresponding to Taylor resolution)

The minimal free resolution uses the multi-graded Betti numbers �i ,µ
and gives tighter bounds than for any resolution:

H =

P
(�1)i�i ,↵x↵Q
i (1� xi )
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Example contd.

j 0 1
31 2 -
46 2 2
52 2 -
53 - 2
55 - 1
tot 6 5

t[1]31 + t[2]31 + t[1]30t[2]16 + t[1]16t[2]30 + t[1]28t[2]24 + t[1]24t[2]28 �
t[1]28t[2]28 � t[1]30t[2]24 � t[1]24t[2]30 � t[1]31t[2]16 � t[1]16t[2]31
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Notation

Notation:

D: basic nested design (defined later)

G (D): reference grid

M(D): reference model

P
(D)
M (y , x) polynomial interpolator of y on D using M(D)

G↵: tensor grid with ”corner” ↵: {� : 0  �  ↵}
M↵: tensor model with ”corner” ↵: {x� : 0  �  ↵}
P↵(y↵, x): polynomial interpolator of data y↵ on G↵ using model M↵
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Inclusion-exclusion: G

G̃ is the indicator function for G .

G̃ =
[̃

↵2A
G↵ =

X

j

(�1)j�1
X

↵2Aj

�i ,↵G̃j ,↵

The decomposition of the polynomial interpolator on G is exactly the
same as for the design:

PG (y , x) =
X

j

(�1)j�1
X

↵2Aj

�i ,↵PG↵,j ,↵(yj ,↵, x)

Henry Wynn (LSE) ...
CIRM, May 2017 Joint with Hugo Maruri, QMUL 13

/ 27



Inclusion-exclusion: D

D̃ is the indicator function for D.

D̃ =
[̃

↵2A
D↵ =

X

j

(�1)j�1
X

↵2Aj

�i ,↵D̃j ,↵

On D
P↵(y , x) =

X

j

(�1)j�1
X

↵2Aj

�i ,↵PD↵,j ,↵(yj ,↵, x),

where Dj ,↵ is the inverse image of Gj ,↵ under the mapping D ! G
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Summary

D �! G (D) �! I (G)

???y

???y

???y

{Dj ,↵}  � G
(D)
j ,↵  � {Ij ,↵}

???y

PD↵,j ,↵(yj ,↵, x)
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More examples

k =  1 , N =  5 k =  2 , N =  9 k =  3 , N =  17 k =  4 , N =  33

k =  6 , N =  65 k =  7 , N =  97 k =  9 , N =  161 k =  12 , N =  257

k =  13 , N =  321 k =  15 , N =  449 k =  18 , N =  705 k =  24 , N =  1025
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Reference grids

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

k =  1 , N =  5

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

k =  2 , N =  9

0 1 2 3 4 5 6

0
1

2
3

4
5

6

k =  3 , N =  17

0 1 2 3 4 5 6

0
1

2
3

4
5

6

k =  4 , N =  33

0 2 4 6 8 12

0
4

8
1
2

k =  6 , N =  65

0 2 4 6 8 12

0
4

8
1
2

k =  7 , N =  97

0 2 4 6 8 12

0
4

8
1
2

k =  9 , N =  161

0 5 10 20 30

0
5

1
5

2
5

k =  12 , N =  257

0 5 10 20 30

0
5

1
5

2
5

k =  13 , N =  321

0 5 10 20 30

0
5

1
5

2
5

k =  15 , N =  449

0 5 10 20 30

0
5

1
5

2
5

k =  18 , N =  705

0 10 30 50

0
2
0

4
0

6
0

k =  24 , N =  1025

Henry Wynn (LSE) ...
CIRM, May 2017 Joint with Hugo Maruri, QMUL 17

/ 27



3-d example

x
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k =  16 , N =  4447
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Betti for a 3-d example

j 0 1 2
52 6 - -
55 - 3 -
56 3 - -
63 - 3 -
67 - 6 -
70 - - 4
tot 9 12 4
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Hilbert Series for 3-d example

+t[1]28 ⇤ t[2]24+ t[1]24 ⇤ t[2]28+ t[1]28 ⇤ t[3]24+ t[2]28 ⇤ t[3]24+ t[1]24 ⇤
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Nested designs

We need to define the class of ”nested” designs under which the above
results hold.

Define a grid G in the usual way, in which variable xi has levels
1, 2, . . . , ni

Define new levels for the design D0 in which variabel xi has levels

zi ,1  · · ·  zi ,ni

Apart from the spacing this still has ths same ”structure” as G

Let be a permutaion of {1, . . . , ni}, i = 1 . . . n and write
⇡ = (⇡1, . . . ,⇡n)

From D0 construct D⇡ which permutes the levels, for each factor so
that all design point with levels zi ,j for factor i are assigned levels
zi ,zi,⇡i (j) for j = 1, . . . , ni , i = 1, . . . , n.
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Alexander duality

In [1] we define an operation which allows us to construct new designs D
which are nested and for which we know easilly what the model is.
Let N (ki ) = {1 . . . , ki} and define a tensor grid

G (k1, . . . , kn) = ⇥n
i=1N (ni ),

For a grid G with assciated model M with maximum levels (n1, . . . , nn)
interger ki � ni , i = 1, . . . , n, define the complementary design.

D 0 = G (k1, . . . , kn) \ G .

D 0 is a nested dersign which has a reference grid G 0 and associated model
M 0 which is the Alexander dual of M.
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Example
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New types of design
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Interpolation and quadrature error

In the approximation theory we assume we observe a function f on the
design D. If D is in our class then inspection of the reference grid G (D)

gives us our polynomial basis M and the interpolator

PD(y , x)

Quadrature Z
(f )dµ�

Z
(PD(y , x))  B1

Interpolation
f � PD(y , x))  B2
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Sketch of methods

Lebesgue constants

f �
Z

PD(y , x))  f � P⇤ ⇥�

where P⇤ is the best polynomial approximation to f and � is a
”Lebesque” constant which depends only on on the ”structure” of D
and the spacing.

The inclusion-exclusion identity for the main tensor components is
replaced by special disjoint components corresponding to the
elementary cells, which are also tensors into which the reference grid
and interpolator is divided. They take the form

�1,i1 · · ·�nin .

Optimal spacing can decrease the errors in interpolation and quadrature.
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